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ABSTRACT 
 

Aims: N6-methyladenosine (m6A), the most abundant and conserved epigenetic modification of mRNA, 
participates in various physiological and pathological processes. However, the roles of m6A modification in liver 
lipid metabolism have yet to be understood entirely. We aimed to investigate the roles of the m6A “writer” 
protein methyltransferase-like 3 (Mettl3) in liver lipid metabolism and the underlying mechanisms. 
Main Methods: We assessed the expression of Mettl3 in liver tissues of diabetes (db/db) mice, obese (ob/ob) 
mice, high saturated fat-, cholesterol-, and fructose-induced non-alcoholic fatty liver disease (NAFLD) mice, and 
alcohol abuse and alcoholism (NIAAA) mice by quantitative reverse-transcriptase PCR (qRT-PCR). Hepatocyte-
specific Mettl3 knockout mice were used to evaluate the effects of Mettl3 deficiency in mouse liver. The 
molecular mechanisms underlying the roles of Mettl3 deletion in liver lipid metabolism were explored by multi-
omics joint analysis of public data from the Gene Expression Omnibus database and further validated by qRT-
PCR and Western blot. 
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INTRODUCTION 
 

The liver is an essential organ with complex functions, 

including metabolism, drug detoxification, and hormone 

secretion [1]. It plays a central role in lipid homeostasis, 

including the synthesis of new fatty acids, uptake of 

circulating fatty acids, biosynthesis of triglycerides, and 

fatty acid oxidation [2], and disruption of one or more 

of these pathways may cause lipid metabolism disorder, 

which is a major contributing factor to cardiovascular 

diseases and nonalcoholic fatty liver disease (NAFLD) 

[3]. Recently, increasing evidence has shown that 

hepatic cholesterol accumulation, characterized by 

elevated cholesterol synthesis, uptake from circulating 

lipoproteins, and reduced cholesterol excretion, 

contributes to the pathogenesis of NAFLD [4–6]. Thus, 

identifying the key regulators of lipid metabolism may 

provide effective treatment measures for NAFLD. 

 

The critical role of epigenetic modifications in 

metabolic diseases has been widely reported [7, 8]. 

Among these medications, the N6-methyladenosine 

(m6A) modification is the most prevalent internal 

modification of mRNAs. It is catalyzed by a series of 

m6A “writers,” such as methyltransferase-like 3 

(Mettl3) [9], Mettl14 [10], Mettl16 [11], and Wilms 

tumor 1-associated protein (WTAP) [12]. It can be 

removed by RNA demethylases, including fat mass and 

obesity-associated protein (FTO) [13] and alkylation 

repair homolog protein 5 (ALKBH5) [14]. This 

modification can be recognized by a set of YHT family 

domain-containing “reader” proteins (Ythdf1/2/3) [15, 

16] or insulin-like growth factor-2 mRNA-binding 

proteins (Igfbp1/2/3) [17] and regulates gene expression 

by affecting multiple aspects of mRNA metabolism, 

such as RNA splicing, RNA stability, and mRNA 

translation efficiency [18]. Mettl3-mediated m6A 

modification plays a role in multiple biological events 

and complex diseases, such as spermatogenesis [19], 

stem cell pluripotency [20], postnatal liver development 

[21], and tumorigenesis [22]. Moreover, Mettl3 

regulates lipid metabolism in the liver and participates 

in NAFLD progression [23–25]. However, the 
molecular mechanisms underlying Mettl3-mediated 

regulation of liver lipid metabolism and NAFLD 

progression have not been fully elucidated. 

The present study aimed to investigate the roles of Mettl3 

in liver lipid metabolism using Mettl3 hepatocyte-specific 

knockout (HKO) mice and multi-omics joint analysis of 

public data from the Gene Expression Omnibus (GEO) 

database. Our study revealed that Mettl3 deficiency in 

hepatocytes mediated m6A modification regulated lipid 

metabolism and non-alcoholic fatty liver disease (NAFLD) 

progression by significantly downregulating genes related 

to lipid metabolism. The newly identified lipid 

metabolism-related genes modified by Mettl3-mediated 

m6A modification may serve as potential targets for the 

treatment of NAFLD in the future. 

 

RESULTS 
 

Mettl3 expression is downregulated in liver tissues of 

patients and mice with obesity 

 

To determine the expression of Mettl3 in fatty liver, we 

first used a public gene expression dataset from the GEO 

database. We found that the mRNA expression of Mettl3 

was significantly decreased in the liver of patients with 

obesity compared to that in lean individuals (Figure 1A). 

To further uncover the expression of Mettl3 with the 

progression of NAFLD, we analyzed the expression 

correlation of Mettl3 with Cd36 and Dgat1. As previously 

reported, the expression of Cd36 in the liver positively 

correlates with the progression of morbidly obese patients 

[26]. Dgat1 is a critical enzyme in triglyceride synthesis 

and NAFLD development [27–29]. Pearson’s correlation 

analysis revealed that the expression of Mettl3 in the liver 

was significantly negatively correlated with Cd36 and 

Dgat1 (Figure 1B and Supplementary Figure 1). 

Moreover, quantitative reverse transcriptase PCR (qRT-

PCR) analysis revealed that the mRNA level of Cd36 was 

significantly upregulated in the liver of four different kinds 

of fatty liver disease mouse models (Figure 1C–1F). 

However, Mettl3 expression was significantly down-

regulated in the liver of diabetes (db/db) mice and obese 

(ob/ob) mice (Figure 1C, 1D) but not in the liver of alcohol 

abuse and alcoholism (NIAAA) mice and high saturated 

fat, cholesterol, and fructose (FFC) diets induced mice 

(Figure 1E, 1F) compared to the control. These results 
indicate that the downregulation of Mettl3 expression in 

the livers may be associated with specific fatty liver 

disease pathogenesis. 

Key Findings: Significantly decreased Mettl3 expression was associated with NAFLD progression. Hepatocyte-
specific knockout of Mettl3 resulted in significant lipid accumulation in the liver, increased serum total 
cholesterol levels, and progressive liver damage in mice. Mechanistically, loss of Mettl3 significantly 
downregulated the expression levels of multiple m6A-modified mRNAs related to lipid metabolism, including 
Adh7, Cpt1a, and Cyp7a1, further promoting lipid metabolism disorders and liver injury in mice. 
Significance: In summary, our findings demonstrate that the expression alteration of genes related to lipid 
metabolism by Mettl3-mediated m6A modification contributes to the development of NAFLD. 
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Mettl3 HKO induces lipid accumulation in mouse 

hepatocytes 

 

To further determine the exact roles of Mettl3 in the 

progression of fatty liver disease, we crossed 

Mettl3flox/flox mice with heterozygous Alb-Cre mice to 

obtain Mettl3flox/wt; Alb-Cre mice (Figure 2A). 

We further intercrossed Mettl3flox/wt; Alb-Cre mice with 

Mettl3flox/flox mice to obtain Mettl3flox/flox; Alb-Cre mice 

(Figure 2B). The mice eventually used in the 

experiments were obtained by intercrossing 

Mettl3flox/flox; Alb-Cre with Mettl3flox/flox mice (Figure 

2C). The hepatocyte-specific knockout of Mettl3 was 

validated by agarose gel electrophoresis using 

 

 
 

Figure 1. Mettl3 expression is downregulated in liver tissues of patients and mice with obesity. (A) Mettl3 expression is 
downregulated in the liver of patients with obesity (with or without type 2 diabetes) compared to that in lean individuals from the GEO 
dataset (GSE15653). (B) The expression of Mettl3 is significantly negatively correlated with Cd36 in liver of obese hyperphagic mice fed with 
the high-fat diet and control mice from the GEO dataset (GSE43691). (C–F) Relative expression of Mettl3 in the livers of ob/ob (C), db/db 
(D), NIAAA (E), and FFC (F) mice was detected by qRT-PCR. Data are presented as the mean ± SD. Abbreviation: ns: not significant; *P < 0.05; 
**P < 0.01; ***P < 0.001. 
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liver, brain, and kidney tissues (Figure 2D). Moreover, 

qRT-PCR and Western blotting confirmed that the 

expression of Mettl3 was dramatically reduced in the 

liver of Mettl3 HKO mice (Figure 3A, 3B). To 

determine the function of Mettl3 in the liver, we 

dissected the livers of Mettl3 HKO and control mice at 

4 and 12 weeks. The body weight (Figure 3C), liver 

weight (Figure 3D), and liver-to-body weight ratio 

(Figure 3E) were comparable between Mettl3 HKO and 

control mice at both 4 and 12 weeks. However, the 

mouse liver in the Mettl3 HKO group showed a more 

yellowish appearance than in the control group at 

 

 
 

Figure 2. Generation of hepatocyte-specific Mettl3 knockout mice. (A) The offspring mice with different genotypes from 

intercrossing Mettl3flox/flox and heterozygous Alb-Cre mice. (B) The offspring mice with different genotypes from intercrossing Mettl3flox/wt; 
Alb-Cre and Mettl3flox/flox mice. (C) The offspring mice with different genotypes from intercrossing Mettl3flox/flox; Alb-Cre and Mettl3flox/flox 
mice. (D) PCR-based genotyping of genomic DNA collected from the main organs of METTL3 HKO mice and control mice. 
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4 weeks. This difference became more pronounced at 

12 weeks (Figure 3F). Consistent with this, H&E 

staining of mouse liver tissues at 12 weeks showed 

diffuse microsteatosis of hepatocytes (Figure 3F). 

Furthermore, Oil Red O staining indicated that large red 

lipid droplets were deposited in hepatocytes at both 

 

 
 

Figure 3. Hepatocyte-specific deletion of Mettl3 induces lipid accumulation in mouse liver cells. (A) qRT-PCR assay of the relative 

Mettl3 expression in control and METTL3 HKO mouse livers at 4 and 12 weeks. (B) Representative Western blot analysis and quantitative 
results in control and METTL3 HKO mouse livers. (C–F) Body weight (C), liver weight (D), and liver-to-body weight ratio (E) of METTL3 HKO and 
control mice at 4 and 12 weeks. (F) Representative images of the livers of METTL3 HKO (n = 5 for 4 weeks; n = 10 for 12 weeks) and control 
mice (n = 6 for 4 weeks; n = 8 for 12 weeks) stained with hematoxylin and eosin and Oil red O. Scale bars, 25 μm. (G–K) Serum levels of ALT (G), 
AST (H), TG (I), TC (J), and Oil red O positive area (K). Data are presented as mean ± SD. Abbreviations: TG: triglyceride; TC: total cholesterol; ns: 
not significant; *P < 0.05; **P < 0.01; ***P < 0.001. 
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timepoints (Figure 3F, 3K). In conclusion, these results 

suggested lipid accumulation in the hepatocytes of 

METTL3 HKO mice. 

 

Mettl3 HKO induces lipid metabolism disorder and 

liver injury 

 

Mettl3 HKO mice also showed higher serum alanine 

aminotransferase (ALT) activities at 4 and 12 weeks 

(Figure 3G). Serum aspartate transaminase (AST) activity 

was also significantly increased in Mettl3 HKO mice at 

both time points compared to that in control mice, and the 

difference was more pronounced at 12 weeks (Figure 3H). 

These results indicate that the hepatocyte deletion of 

Mettl3 results in progressive liver injury. We also observed 

a significant increase in serum total cholesterol (TC) levels 

in the METTL3 HKO group at 4 weeks (Figure 3J). 

Although the triglyceride (TG) level was slightly elevated 

in the METTL3 HKO group, it did not reach statistical 

significance at either time points (Figure 3I). Collectively, 

these results indicate that knockout of Mettl3 induced lipid 

dysmetabolism and caused liver injury in mice. 

 

Mettl3 HKO results in the downregulation of lipid 

metabolism-related gene expression 

 

To reveal the molecular events underlying the effect 

of Mettl3 knockout on lipid metabolism, we analyzed 

a publicly available gene expression dataset of 

METTL3 HKO liver from the GEO database 

(GSE176113). PCA plot showed good reproducibility 

among the replicates of each group and apparent 

differences between the two groups (Figure 4A). 

Moreover, 826 protein-coding genes were 

upregulated, and 528 protein-coding genes down-

regulated significantly upon METTL3 HKO in this 

dataset (adjust-P < 0.05, fold change >1.5; Figure 

4B). Gene set enrichment analysis (GSEA) using the 

curated gene set compilation M5 (MSigDb M5) 

demonstrated that several lipid metabolism and 

transport related-gene sets, including cellular lipid 

catabolic process, fatty acid beta-oxidation, 

cholesterol biosynthetic process, and cholesterol 

efflux, were significantly suppressed under the 

METTL3 HKO condition (|normalized enrichment 

score|>2.0; Figure 4C–4F), which may attribute to the 

phenotype of increased liver lipid accumulation and 

elevated serum cholesterol level in the METTL3 

HKO mice. Moreover, several apoptosis and cell 

cycle-related gene sets were significantly positively 

enriched under the METTL3 HKO condition 

(|normalized enrichment score |>1.5; Figure 4G, 4H). 

These results indicate that METTL3 HKO caused 
lipid accumulation and subsequent apoptosis of 

hepatocytes, further leading to the compensatory 

proliferation of hepatocytes. 

Multiple omics analyses identify the specific targets 

of lipid disorder caused by Mettl3-mediated m6A 

modification 

 

To gain deeper insights into the molecular mechanism 

underlying the effects of Mettl3 HKO on liver lipid 

metabolism, we overlapped significantly demethylated 

genes (GSE142835) (|fold change|>2) with significantly 

downregulated genes under the Mettl3 HKO condition 

(GSE176113) (|fold change|>1.5) as well as genes related 

to lipid metabolism and transport. A total of 12 genes were 

identified (Figure 5A). The four-quadrant diagram showed 

that these genes were dramatically hypomethylated and 

downregulated (Figure 5B). The hypomethylation levels of 

these genes under the Mettl3 HKO condition were further 

validated by the GSE179680 dataset (data not shown). 

Cholesterol 7α-hydroxylase (Cyp7a1), which is involved 

in the catalysis of cholesterol synthesis of bile acids, and 

ATP-binding cassette subfamily G member 8 (Abcg8), 

which mediates hepatic cholesterol efflux, were 

dramatically hypomethylated in the Mettl3 HKO group 

(Figure 5C, 5D). In addition, most of these genes, 

including Cyp7a1 and Abcg8, had classical m6A 

“DRACH” motifs in the 3′UTR or near the stop codon 

(Figure 5E, 5F). Meanwhile, Ahd7 and Cpt1a, key 

enzymes in fatty acid oxidation [30, 31], were significantly 

demethylated in the liver of Mettl3 HKO mice (Figure 6A, 

6B). Structurally, both Adh7 and Cpt1a have the classic 

“DRACH” sequence on the last exon (Figure 6C, 6D). 

These results indicate that Mettl3 may regulate lipid 

metabolism in hepatocytes by downregulating the 

expression of these lipid metabolism genes via m6A 

modification. 

 

Genes related to lipid metabolism are significantly 

downregulated in the liver of METTL3 HKO mice 

 

We performed qRT-PCR to validate our hypothesis that 

Mettl3 regulates the expression of lipid metabolism-related 

genes via m6A modification. As expected, most of the 

genes related to fatty acid oxidation (Figure 7A), 

cholesterol efflux (Figure 7B), lipid metabolic process 

(Figure 7C), lipid transport (Figure 7D), and lipid 

biosynthetic process (Figure 7E) were significantly 

decreased in the livers of Mettl3 HKO mice. Moreover, we 

found an expression correlation of the potential target 

genes with Mettl3 (Supplementary Figure 2) using the 

GEO database. Furthermore, the protein expression of 

Adh7, Cpt1a, and Cyp7a1 was significantly downregulated 

in the liver of METTL3 HKO mice. While the expression 

of Abcg8 and Hmgcr remains unchanged between the two 

groups (Figure 7F, 7G). The significant downregulation of 

Adh7 and Cpt1a could further lead to decreased hepatocyte 
fatty acid oxidation, while the apparent downregulation of 

Cyp7a1 could decrease the conversion and transport of 

cholesterol in the liver. In conclusion, these results 



www.aging-us.com 5556 AGING 

suggested that hepatocyte-specific Mettl3 deficiency-

mediated significant downregulation of Adh7, Cpt1a, and 

Cyp7a1 may account for lipid accumulation and elevated 

serum cholesterol amounts in mice (Figure 8). 

DISCUSSION 
 

Currently, NAFLD is a significant global health 

problem with no approved treatments. Dysfunction of 

 

 

 
 

Figure 4. Specific knockout of Mettl3 in hepatocytes results in downregulating lipid metabolism-related genes. (A) Principal 

component analysis (PCA) plot showing reproducibility among the replicates of each group. (B) Volcano plot showing the differential 
expression of protein-coding genes in the GSE176113 dataset. (C–H) Gene set enrichment analysis (GSEA) plot of enrichment of indicated 
signatures in Mettl3 HKO livers using the C5 MSigDB database. 
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liver lipid metabolism plays a vital role in the 

progression of NAFLD. However, the molecular 

mechanisms of liver lipid metabolism mediated by 

epigenetics have yet to be entirely understood. The 

present study found that decreased Mettl3 expression in 

NAFLD mouse models was associated with liver 

metabolic disorders. Using Mettl3 HKO mice, we 

observed significant lipid accumulation in the 

 

 
 

Figure 5. Multiple omics analyses identify the specific targets of lipid disorder caused by Mettl3-mediated m6A 
modification. (A) Venn diagram showing the number of overlapping Hypo-m6A-methylated mRNAs and downregulated genes in the liver 

of METTL3 HKO mice. Then the resultant 58 genes were annotated to GO term lipid metabolism and transport and obtained 12 genes.  
(B) Four-quadrant diagram showing the differentially methylated genes and differentially expressed genes in GSE142835 and GSE176113.  
(C, D) Peak distribution normalized to input in the genomic regions of Cyp7a1 (C) and Abcg8 (D) in control and METTL3 HKO mice in the 
GSE179680 dataset is shown. (E, F) Schematic representation of predicted positions of m6A motifs within Cyp7a1 (E) and Abcg8 (F) mRNA. 
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hepatocytes at 4 and 12 weeks. Moreover, increased 

serum levels of TC and progressive liver damage were 

observed in Mettl3 HKO mice compared to those in 

normal control mice at 4 and 12 weeks. Using public 

data from GEO for a multi-omics joint analysis and 

further molecular biology experiments, we identified 

potential targets modified by Mettl3-mediated m6A 

modification, such as Adh7, Cpt1a, and Cyp7a1, which 

regulate liver lipid metabolism. These results offer new 

insights into the molecular mechanism of m6A 

modifications in liver metabolism and may serve as a 

potential therapeutic target. 

 

Previous studies have shown that the loss of Mettl3 in 

hepatocytes promotes lipid accumulation in the liver 

and contributes to the progression of NAFLD [21, 23, 

24]. However, the exact molecular mechanism is not 

fully understood. The nuclear protein level of Mettl3 

is significantly decreased in the liver of methionine-

choline-deficient diet-induced nonalcoholic steato-

hepatitis (NASH) mice and patients with NASH but 

significantly increased in the liver of high-fat diet-

induced NASH mice [23]. In our study, Mettl3 mRNA 

expression was significantly downregulated in the 

livers of db/db and ob/ob mice but kept unchanged in 

the livers of NIAAA and FFC mice. These results were 

seemingly contradictory. However, owing to the 

different etiology of fatty liver disease caused by 

different molecular mechanisms, Mettl3 may 

participate in the pathogenesis of fatty liver disease 

related to glucose metabolism disorders. 

 

The present study found that hepatocyte Mettl3 

knockout resulted in lipid accumulation in the liver, 

elevated serum TC levels, and progressive liver injury, 

consistent with a previous report [21]. The high amount 

of TG accumulation in the liver may be caused by the 

significant downregulation of genes involved in 

 

 
 

Figure 6. Adh7 and Cpt1a are the potential targets modified by Mettl3-mediated m6A modification in regulating liver lipid 
metabolism. (A, B) Peak distribution normalized to input in the genomic regions of Adh7 (A) and Cpt1a (B) in control and METTL3 HKO 

mice in the GSE179680 dataset. (C, D) Schematic representation of predicted positions of m6A motifs within Adh7 (C) and Cpt1a (D) mRNA. 
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lipid catabolic processes and fatty acid oxidation, such 

as Adh7 and Cpt1a. As a critical ethanol-metabolizing 

enzyme, Adh7 participates in fatty acid omega-

oxidation [31]. However, the roles of Adh7 in NAFLD 

and its epigenetic regulation by m6A modification have 

yet to be reported. Our study suggested that significant 

downregulation of Adh7 expression, regulated by 

Mettl3-mediated m6A modification, may contribute to 

 

 
 

Figure 7. Genes related to lipid metabolism are significantly downregulated in the liver of METTL3 HKO mice. (A–E) qRT-PCR 

analysis of the mRNA expression of genes related to fatty acid oxidation (A), cholesterol efflux (B), lipid metabolic process (C), lipid 
transport (D), and lipid biosynthetic process (E) in the liver of METTL3 HKO mice and control mice. (F–G) Representative immunoblotting 
images (F) and quantitative results (G) for the potential target gene in the liver of METTL3 HKO mice and control mice. Data are presented 
as the mean ± SD. Abbreviations: FFA: free fatty acid; ns: not significant; *P < 0.05; **P < 0.01. 
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NAFLD progression. Meanwhile, Cpt1a is a critical 

enzyme in fatty acid beta-oxidation, whose mRNA 

was also significantly demethylated around the stop 

codon in the liver of Mettl3 HKO mice. Moreover, the 

mRNA and protein expression of Cpt1a was also 

dramatically downregulated under the Mettl3 HKO 

condition. Therefore, this gene is likely to be regulated 

by Mettl3-mediated m6A modification and thus 

participate in forming the fatty liver caused by Mettl3 

knockout. In addition, the significant increase in serum 

TC in our study may be caused by the combined effect 

of multiple genes related to cholesterol metabolism, 

including Cyp7a1, which plays a fundamental role in 

the regulation of hepatic cholesterol homeostasis by 

converting excess cholesterol to bile acids [32] and 

mediating cholesterol excretion via bile [33, 34]. In the 

present study, Cyp7a1 was significantly hypo-

methylated and downregulated, leading to decreased 

conversion and cholesterol transport into bile. These 

multiple effects eventually lead to a significant 

increase in serum cholesterol levels in Mettl3 HKO 

mice. Although a previous study has demonstrated the 

importance of cholesterol metabolism in NAFLD 

progression, few studies have reported the regulatory 

mechanism of cholesterol metabolism by m6A 

modification. Our study demonstrated, for the first 

time, that genes related to cholesterol metabolism, 

including Cyp7a1, may participate in NAFLD 

progression through Mettl3-mediated m6A 

modification. 

In addition, there were nine other lipid metabolism-

related genes, including Abcg8, Hmgcr, Srebf1, Triap1, 

Avpr1a, Dolk, Rdh16f2, Slc10a5, and Ang, which 

significantly lost their m6A modification and were 

downregulated in Mettl3 HKO mice. In these genes, 

Abcg8 worked as an essential enzyme mediating 

cholesterol excretion via bile [35]. Hmgcr is the enzyme 

catalyzing the rate-limiting step of cholesterol 

biosynthesis [36]. These genes were significantly 

downregulated at the mRNA level but kept unchanged 

at the protein level in METTL3 HKO mouse livers. 

Thus, their effect on NAFLD formation needs further 

study to illustrate. Srebf1 is a membrane-bound 

transcription factor that affects multiple biological 

processes of lipid homeostasis, including the synthesis 

of fatty acids, triglycerides, and cholesterol. Although 

the decreased expression of Srebf1 does not match the 

phenotype of hepatic lipid accumulation under the 

Mettl3 HKO condition, it may participate in hepatic 

lipid accumulation induced by Mettl3 loss, while its 

roles have been overshadowed by other genes. Except 

for Abcg8, Hmgcr, and Srebf1, the other genes’ roles in 

NAFLD need to be clarified. Thus, more profound 

studies are needed to clarify whether these genes 

contribute to the progression of NAFLD. 

 

Our study has limitations. We did not validate Mettl3 

protein expression in the liver of NAFLD mouse models 

and human NAFLD subjects. Moreover, the regulatory 

effect of m6A modification on mRNA fate is determined 

 

 
 

Figure 8. The proposed model of liver lipid accumulation through decreased m6A modification of the lipid metabolism 
genes mediated by Mettl3 deficiency. 
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by a set of “reader” proteins after recognizing of m6A-

modified transcripts, in which IGF2BP family proteins 

work to promote the stability of target mRNA [18]. 

Thus, we focused on genes significantly downregulated 

by Mettl3 HKO. However, if m6A modification is 

recognized by the “reader” protein YTHDF2 under 

Mettl3 HKO conditions, the expression of target genes 

is likely to be upregulated due to reduced degradation 

[37]. We also haven’t identified the “reader” protein 

under the Mettl3 HKO condition. Hence, future studies 

should address these issues. 

 

CONCLUSION 
 

In summary, our study suggested the regulatory 

function of Mettl3-mediated epigenetic modification in 

mouse liver lipid metabolism, expanding our under-

standing of the regulatory network outside of 

transcriptomics in mammalian liver lipid metabolism 

and NAFLD pathogenesis. The newly identified lipid 

metabolism-related target genes may be potential targets 

for the treatment of NAFLD in the future. 

 

MATERIALS AND METHODS 
 

Animal experiments 
 

All mice used in this study were raised in a specific 

pathogen-free-grade facility under a 12-h light/12-h 

dark cycle at 24 ± 2°C and humidity of 50% ± 10%. 

Mice were fed a standard chow diet with free access to 

water. All animal experiments were conducted in 
accordance with the National Institutes of Health 
Guide for the Care and Use of Laboratory Animals 
and were approved by the Animal Care and Use 
Committee of Southern Medical University. 
 
Generation of Mettl3flox/flox; Alb-Cre mice 
 

Mettl3flox/wt mice were generated using CRISPR-Cas9 

system-assisted homologous recombination. Mettl3flox/flox 

mice, in which exon 4 of Mettl3 was flanked by two loxp 

sites, were generated by mating Mettl3flox/wt and 

Mettl3flox/wt mice. The oligonucleotide sequences of the 

two sgRNAs were as follows: sgRNA1, GAAGTTACA 

CTCTTTTAGGGAGG; sgRNA2, TAAACACCGGCCC 

TACGCCCAGG. Alb-Cre mice were purchased from 

Cyagen Biosciences (Suzhou, China). Mettl3flox/flox; Alb-

Cre (Mettl3 HKO) mice were generated by crossing 

Mettl3flox/flox mice with Alb-Cre mice. Both male and 

female mice were used for further experiments. 

 

Genotype analysis using PCR 
 

Genomic DNA was prepared from mouse ear tissue 

using the TIANamp Genomic DNA Kit (Tiangen, 

Beijing, China), according to our previous publication 

[38]. Genotypes were determined by PCR using 

primers specific for Cre: 5′-ATCCGAAAAGAAAAC 

GTTGA-3′ (forward), 5′-ATCCAGGTTA 

CGGATATAGT-3′ (reverse); and specific for Mettl3: 

5′-TAGTGCTGTGCCTTTCTTAG-3′ (Mettl3-L-

LOXP-F), 5′-TTAAACTGACTGCCTCCATA-3′ 

(Mettl3-L-LOXP-R). The genomic DNA from a wild-

type (WT) mice was used as a template. Moreover, to 

assess the knockout efficiency of Mettl3 in adult liver, 

the main organs and tissues DNA, including the liver 

was subjected to PCR using the following primer pair 

to amplify 338bp Mettl3 mutant fragment, F1: 

GTGCTGTGCCTTTCTTAG, R1: AGCGTCACTGG 

CTTTCAT, and R2: TTCTTGTTCTCCCCCAAT. 

Primer pairs for Myo were used as a negative control 

(forward primer: TTACGTCCATCGTGGACAGC, 

reverse primer: TGGGCTGGGTGTTAGCCTTA). 

 

Mouse models of fatty liver disease 

 

All mouse models of fatty liver disease were 

generated using age-appropriate male mice with a 

C57BL/6 genetic background. Diabetes (db/db) mice 

and obese (ob/ob) mice were purchased from 

GemPharmatech Co., Ltd. (Jiangsu, China) (n = 11 for 

db/db mice, n = 10 for ob/ob mice). The National 

Institute on Alcohol Abuse and Alcoholism (NIAAA) 

model (n = 15) was induced by chronic and binge 

ethanol feeding as previously described [39]. The high 

saturated fat, cholesterol, and fructose (FFC) mouse 

model (n = 8) were induced by feeding with high 

fructose, high-fat, and high-cholesterol diet (research 

Dies: D09100310) for 24 weeks as previously 

reported [40]. 

 

Histological analysis 

 

Formalin-fixed, paraffin-embedded liver tissue samples 

were cut into 4 µm-thick sections and stained with 

hematoxylin and eosin (H&E) according to standard 

procedures. According to the manufacturer's 

instructions, liver lipid accumulation was confirmed 

using a Modified Oil Red O stain kit (Catalog No. 

C0158S; Beyotime, Beijing, China). Briefly, frozen 

liver slices (8 µm) were fixed in 10% formaldehyde for 

10 min and then washed with 60% isopropanol for  

20–30 s. Liver tissue was stained in Modified Oil Red O 

solution for 20 min. After staining, the slices were 

washed with 60% isopropanol and H2O. 

 

Serological test 

 
The supernatant was obtained by centrifugation at 800 g 

for 10 min. The mouse serum levels of liver damage 

indices, blood lipids, and blood sugar were detected 
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using the Beckman automatic biochemical analyzer 

AU680 (Beckman Coulter, Brea, CA, USA). 

 

RNA extraction and quantitative reverse transcriptase 

PCR  

 

Total RNA was extracted from the mouse liver at the 

same anatomical position using TRIzol Reagent 

(TaKaRa) and reverse-transcribed into cDNA using 

the Reverse Transcription System (TaKaRa). qRT-

PCR was performed using the SYBR Green qPCR 

Master Mix (TaKaRa) and a LightCycler 96 system 

(Roche). Relative gene expression was analyzed using 

the 2ΔΔCt method with Gapdh as the internal control. 

All primers used in this study are listed in 

Supplementary Table 1. 

 

Western blotting 

 

Total proteins from mouse liver tissues were extracted 

by Total Protein Extraction Kit (Keygen) and further 

quantified by BCA Protein Quantitation Kit (Keygen) 

according to the manufacturer’s instructions. Western 

blotting was performed as previously described with the 

following primary antibodies: anti-Mettl3 (1:1000; 

ab195352; Abcam), anti-β-actin (1:2000, 20536-1-AP; 

Proteintech Group), anti-Gapdh (1:5000, 10494-1-AP; 

Proteintech Group), anti-Adh7 (1:1000; 23425-1-AP; 

Proteintech Group), anti-Cpt1a (1:1000; 15184-1-AP; 

Proteintech Group), anti-Cyp7a1 (1:500; sc-293193; 

Santa Cruz), anti-Hmgcr (1:500; sc-271595; Santa 

Cruz), and anti-Abcg8 (1:1000; A01482-1; Boster).  

 

Public dataset 

 

All the public datasets used in this study were obtained 

from the National Cancer for Biotechnology 

Information GEO. RNA transcriptome sequencing data 

were from patients with obesity (GSE15653) and 

Mettl3 HKO mice (GSE176113). The MeRIP-seq 

datasets GSE179680 and GSE142835 were from 

Mettl3-knockout livers. The results of principal 

component analysis (PCA), volcano map, four-

quadrant diagram, and Venn diagram were visualized 

using the ggplot2 package [3.3.6]. GSEA was 

performed using GSEA software (version 4.3.2) 

downloaded from https://www.gsea-msigdb.org/ 

gsea/index.jsp [41], using the curated gene set 

compilation M5 (MSigDb M5). The m6A modification 

peaks of target genes were visualized by Integrative 

Genomics Viewer (IGV) software (version 2.16.0) 

downloaded from https://igv.org/ [42]. The potential 

m6A sites (“DRACH,” where D = A, G or U; R = A  
or G; H = A, C or U) of the target genes  

were predicted using an online tool, SRAMP 

(http://www.cuilab.cn/sramp/) [43]. 

Statistical analysis 

 

Student’s t-test was used to compare two groups if the 

data met the normal distribution; otherwise, the Mann-

Whitney U test was used. GraphPad Prism software 

(version 8.0) was used to analyze all data. Statistical 

significance was set at P < 0.05. Data are expressed as 

mean ± SD. 

 

Data availability 

 

The data supporting this study’s findings are available 

from the corresponding author upon reasonable request. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. The expression of Mettl3 is significantly negatively correlated with Dgat1 in GEO datasets. 



www.aging-us.com 5567 AGING 

 
 

Supplementary Figure 2. The expression correlation of the potential downstream target genes with Mettl3. (A) The 
correlation between Abcg8, Cpt1a (B), Adh7 (C), Cyp7a1 (D), Xbp1 (E), Srebf1 (F), Avpr1a (G), Hmgcr (H), Slc10a5 (I), Triap1 (J), Dolk (K), Ang 
(L) expression and Mettl3 expression was determined by Pearson's correlation test from liver mRNA profiles of 5-week-old wild type and 
Mettl3 liver specific knockout mice in a GEO datasets (GSE176113). 
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Supplementary Table 
 

Supplementary Table 1. Primers for qRT-PCR analysis of lipid metabolism genes. 

Gene Forward primer (5′–3′) Reverse primer (5′–3′) 

Gapdh CCTGCTTCACCACCTTCTTG CATGGCCTTCCGTGTTCCTA 

Mettl3 ATCCAGGCCCATAAGAAACAG CTATCACTACGGAAGGTTGGG 

Cd36 ATGGGCTGTGATCGGAACTG GTCTTCCCAATAAGCATGTCTCC 

Cyp7a1 GGGATTGCTGTGGTAGTGAGC GGTATGGAATCAACCCGTTGTC 

Abcg8 CTGTGGAATGGGACTGTACTTC GTTGGACTGACCACTGTAGGT 

Hmgcr AGCTTGCCCGAATTGTATGTG TCTGTTGTGAACCATGTGACTTC 

Adh7 ATGGGCACCGCTGGAAAAG TAACACGGACTTCCTTAGCCT 

Cpt1a CTCCGCCTGAGCCATGAAG CACCAGTGATGATGCCATTCT 

Srebf1 TGACCCGGCTATTCCGTGA CTGGGCTGAGCAATACAGTTC 

Avpr1a TGAGTTTCGTTCTGAGCATACC CCCAGCAATCTTGGGCTTTG 

Rdh16f2 TCTTGGGCAGAGTGTCACTTG TGCCAGGTATTTCTCTCCATAGA 

Slc10a5 CAGCTACCTGCTCGTGAAGTT AGGTTGACGGTAAAGTCTGTGA 

Triap1 GAGTACGACCAGTGCTTCAAC CTTGATTGCTTTCTGCACGCA 

Xbp1 AGCAGCAAGTGGTGGATTTG GAGTTTTCTCCCGTAAAAGCTGA 

Dolk CAGTGTGGGACCGATACTCCT CCAAGCAAAGGCATGACCA 

Ang CCAGGCCCGTTGTTCTTGAT GGAAGGGAGACTTGCTCATTC 

Acaa1a TCTCCAGGACGTGAGGCTAAA CGCTCAGAAATTGGGCGATG 

Acaa2 CTGCTACGAGGTGTGTTCATC AGCTCTGCATGACATTGCCC 

Acad11 TGACACCGTGGAAGTGCTAC CCCGGCAAGTGCTGATTCA 

Abcd3 GGCCTGCACGGTAAGAAAAGT CCGCAATAAGTAACAAGTAGCCT 

Bdh2 CGACTGGACGGCAAAGTTATT CCTGGAGTTTGGACTCGTTGA 

Apoa2 TGGTCGCACTGCTGGTAAC TTTGCCATATTCAGTCATGCTCT 

Apoa5 TCCTCGCAGTGTTCGCAAG CGAAGCTGCCTTTCAGGTTCT 

Apof ATAGCCTCCGACTCATCCTGA TCTGCATCTGGTATCCCAACTT 

Ceslb TACCTCCCCTGTTTTCCGAAG GATGCTCCGCCTGTCATCAAT 

Cesld ATGCGCCTCTACCCTCTGATA AGCAAATCTCAAGGAGCCAAG 

Cesle CAACTTCTGGAATTGATTGGGGA GGGCTCCGGCATCTCTATG 

 


