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ABSTRACT 
 

Background: In this study, we compared the prognosis, tumor immune microenvironment (TIM), and drug 
treatment response between left-sided (LCC) and right-sided (RCC) colon cancer to predict outcomes in patients 
with LCC and RCC. 
Methods: Based on identified differentially expressed genes and using single-cell RNA sequencing data, we 
constructed and validated a prognostic model for LCC and RCC patients in the TCGA-COAD cohort and 
GSE103479 cohort. Moreover, we compared the differences of TIM characteristics and drug treatment response 
between LCC and RCC patients. 
Results: We constructed and validated a five-gene prognostic model for LCC patients and a four-gene prognostic 
model for RCC patients, and both showed excellent performance. The RCC patients with higher risk scores were 
significantly associated with greater metastasis (P = 2.6×10-5), N stage (P = 0.012), advanced pathological stage 
(P = 1.4×10-4), and more stable microsatellite status (P = 0.007) but not T stage (P = 0.200). For LCC patients, the 
risk scores were not significantly associated with tumor stage and microsatellite status (P > 0.05). Additionally, 
immune infiltration by CD8 and regulatory T cells and M0, M1, and M2 macrophages differed significantly 
between LCC and RCC patients (P < 0.05). APC and TP53 mutations were significantly more common in LCC 
patients (P < 0.05). In contrast, KRAS, SYNE1, and MUC16 mutations were significantly more common in RCC 
patients (P < 0.05). In addition, tumor mutation burden values were significantly higher in RCC patients than in 
LCC patients (P = 5.9×10-8). Moreover, the expression of immune checkpoint targets was significantly higher in 
RCC patients than in LCC patients (P < 0.05), indicating that RCC patients maybe more sensitive to 
immunotherapy. However, LCC and RCC patients did not differ significantly in their sensitivity to eight selected 
chemicals or target drugs (P > 0.05). The average half-maximal inhibitory concentrations for camptothecin, 
teniposide, vinorelbine, and mitoxantrone were significantly lower in low-risk than in high-risk RCC patients  
(P < 0.05), indicating that the lower risk score of RCC patients, the more sensitive they were to these four drugs. 
Conclusions: We investigated the differences in prognosis, TIM, and drug treatment response between LCC and 
RCC patients, which may contribute to accurate colon cancer prognosis and treatment of colon cancer. 
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INTRODUCTION 
 

Colon cancer (CC) is a common gastrointestinal 

malignant tumor with high mortality worldwide [1]. 

Numerous studies have identified various prognostic 

signatures for CC [2–4] to facilitate CC prognosis and 

treatment. However, the tumor heterogeneity greatly 

complicates the treatment and prognosis of CC 

patients. A landmark study has divided CC into four 

consensus molecular subtypes (CMS) using 

aggregated gene expression data and facilitate the 

translation of molecular subtypes into the clinic [5]. 

Otherwise, CC can be subdivided into left-sided 

(LCC) and right-sided (RCC) based on the colon’s 

anatomical structure [6]. However, the tumor 

microenvironment (TME), prognosis, and treatment of 

LCC and RCC patients are inconsistent [7–9]. 

Therefore, exploring the potential relationship 

between CMS subtypes and RCC-LCC subtypes and 

exploring the heterogeneity may be critical for 

improving precision treatment of CC. 

 

Single-cell next-generation RNA sequencing (scRNA-

seq) can be used to investigate gene expression profiles 

at the single-cell level, facilitating the dissection of 

previously hidden heterogeneity in cell populations [10]. 

Therefore, exploring crucial genes based on scRNA-seq 

data could provide more meaningful prognostic 

signatures and drug treatment for CC. A recent study 

identified ferroptosis-related subtypes, investigated LCC 

and RCC heterogeneity, and established a scoring model 

to quantify tumor immune microenvironment (TIM) 

characteristics [11]. However, few studies have explored 

TME, prognosis, and treatment differences between 

LCC and RCC patients using scRNA-seq data. 

 

By combining scRNA-seq data and bulk RNA-seq data, 

our study established and verified the prognostic models 

for LCC and RCC patients, and compared their 

differences of prognosis, microenvironment and drug 

treatment response. Our findings may facilitate more 

accurate predictions of the prognosis and potential 

treatment benefits for CC patients. 

 

MATERIALS AND METHODS 
 

Data download 

 

The scRNA-seq dataset GSE200997, comprising 7 

normal and 15 tumor samples, was downloaded from 

the US National Center for Biotechnology 

Information’s Gene Expression Omnibus (GEO) 

database (https://www.ncbi.nlm.nih.gov/geo/). The 

original data included 23,828 genes and 49,859 cells, 

of which 18,273 cells were from normal samples, and 

31,586 were from tumor samples. And the cells from 

tumor samples were used for further analysis, of which 

16,448 cells were LCC cells and 15,138 were RCC 

cells. 

 

And another scRNA-seq dataset, GSE144735, was also 

downloaded from GEO database for verification. The 

dataset included 27,414 cells from 6 patients in the core 

and border regions, as well as in matched normal 

mucosa. Based on a previously reported study [7], the 

cecum, ascending, and hepatic belong to the right side, 

and the splenic, descending, sigmoid, rectum, and 

junction belong to the left side. Finally, 5,780 LCC cells 

and 2,474 RCC cells from the core region of tumor 

samples were selected for subsequent validation 

analysis. 

 

The Cancer Genome Atlas Colon Adenocarcinoma 

(TCGA-COAD) bulk RNA-seq data were downloaded 

from the University of California-Santa Cruz Xena 

platform (https://xenabrowser.net/datapages/). Only 

samples with survival and location information were 

included. Similarly, based on the published literature [7], 

we selected 394 samples, including 149 LCC samples, 

224 RCC samples, and 21 transverse sectional samples. 

Their detailed information is provided in Table 1. 

Furthemore, we also downloaded their corresponding 

somatic mutation profiling data. 

 

The independent dataset GSE103479 was downloaded 

from GEO database (https://www.ncbi.nlm.nih.gov/geo/), 

which included 77 LCC and 59 RCC samples, detailed 

information could be seen in Supplementary Table 1. 

 

Identification of the location-related differentially 

expressed genes (DEGs) based on the dataset 

GSE200997 

 

The various functions in Seurat package (version=4.1.1) 

for the R statistical software (v.4.0.2; http://www.R-

project.org) was used to analyze the scRNA-seq data 

[12–14]. Genes expressed in <3 cells and cells expressing 

<50 genes or >6,000 genes were excluded. In addition, 

the mitochondrial content was <20%. 

 

The filtered data were normalized using the 

NormalizeData function, and the first 3000 highly 

variable genes were screened using the 

FindVariableFeatures function. Next, the features were 

scaled using the ScaleData function, and their 

dimensionality was reduced using the RunPCA function. 

Then, we set dim = 20 and clustered the cells using the 

FindNeighbors and FindClusters functions. Importantly, 

we conducted the t-distributed stochastic neighbor 

embedding and uniform manifold approximation and 

projection (UMAP) algorithms to reduce dimensionality 

further and visualize the cluster classification based on 

https://www.ncbi.nlm.nih.gov/geo/
https://xenabrowser.net/datapages/
https://www.ncbi.nlm.nih.gov/geo/
http://www.r-project.org/
http://www.r-project.org/
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Table 1. Detailed information of TCGA-COAD cohort. 

 
Left Right Transverse Overall 

(N=149) (N=224) (N=21) (N=394) 

Gender     

female 79 (53.0%) 102 (45.5%) 13 (61.9%) 194 (49.2%) 

male 70 (47.0%) 122 (54.5%) 8 (38.1%) 200 (50.8%) 

Age     

<=60 51 (34.2%) 55 (24.6%) 12 (57.1%) 118 (29.9%) 

>60 98 (65.8%) 169 (75.4%) 9 (42.9%) 276 (70.1%) 

Microsatellite status    

N/A 4 (2.7%) 7 (3.1%) 0 (0%) 11 (2.8%) 

Indeterminate 3 (2.0%) 0 (0%) 0 (0%) 3 (0.8%) 

MSI-H 7 (4.7%) 65 (29.0%) 4 (19.0%) 76 (19.3%) 

MSI-L 26 (17.4%) 34 (15.2%) 4 (19.0%) 64 (16.2%) 

MSS 109 (73.2%) 118 (52.7%) 13 (61.9%) 240 (60.9%) 

AJCC-Stage     

i 23 (15.4%) 39 (17.4%) 1 (4.8%) 63 (16.0%) 

ii 49 (32.9%) 92 (41.1%) 8 (38.1%) 149 (37.8%) 

iii 49 (32.9%) 60 (26.8%) 9 (42.9%) 118 (29.9%) 

iv 25 (16.8%) 27 (12.1%) 1 (4.8%) 53 (13.5%) 

Missing 3 (2.0%) 6 (2.7%) 2 (9.5%) 11 (2.8%) 

AJCC-T     

T1 5 (3.4%) 4 (1.8%) 1 (4.8%) 10 (2.5%) 

T2 26 (17.4%) 38 (17.0%) 0 (0%) 64 (16.2%) 

T3 108 (72.5%) 156 (69.6%) 15 (71.4%) 279 (70.8%) 

T4 10 (6.7%) 25 (11.2%) 5 (23.8%) 40 (10.2%) 

Missing 0 (0%) 1 (0.4%) 0 (0%) 1 (0.3%) 

AJCC-N     

N0 76 (51.0%) 139 (62.1%) 11 (52.4%) 226 (57.4%) 

N1 48 (32.2%) 44 (19.6%) 7 (33.3%) 99 (25.1%) 

N2 25 (16.8%) 41 (18.3%) 3 (14.3%) 69 (17.5%) 

AJCC-M     

M0 103 (69.1%) 163 (72.8%) 17 (81.0%) 283 (71.8%) 

M1 25 (16.8%) 27 (12.1%) 1 (4.8%) 53 (13.5%) 

MX 19 (12.8%) 28 (12.5%) 3 (14.3%) 50 (12.7%) 

Missing 2 (1.3%) 6 (2.7%) 0 (0%) 8 (2.0%) 

Abbreviation: AJCC, American Joint Committee on Cancer. 
 

the selected top 20 principal components. In addition, 

the cell types of clusters were annotated using R’s 

SingleR package, with HumanPrimaryCellAtlasData as 

the reference [15]. Moreover, we identified DEGs 

between LCC and RCC cells in each cell type using the 

FindMarkers function with logfc.threshold = 0.585. 

Finally, we identified location-related DEGs for CC by 

merging the DEGs identified in all annotated cell types. 

Additionally, location-related DEGs were subjected to 

gene ontology (GO) functional and Kyoto Encyclopedia 

of Genes and Genomes (KEGG) enrichment analyses 

using R’s clusterProfiler package [16]. 

 

Prognostic LCC and RCC signature identification 

and validation 

 

The tumor samples containing expression data and 

survival information in the TCGA-COAD cohort were 

used to establish the prognostic model. Finally, 123 

LCC samples and 185 RCC samples were included. 
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Kaplan–Meier survival and univariate Cox regression 

analyses were performed on the location-related DEGs 

in the LCC and RCC expression profile data with a 

cutoff criterion of P < 0.05. The genes with maximum 

prognostic value were selected for least absolute 

shrinkage and selection operator (LASSO) regression 

analysis. Next, we established separate risk score 

models predicting LCC and RCC patient prognosis 

using a multivariate Cox regression analysis. Then, each 

patient’s risk score was calculated according to the 

following formula: 
 

 

   

       

n

i

risk score

coefficient of i

scaled expressionvalueof i





 



 

 

where “χi” represents the current signature, “i” 

represents the location of the current signature, and “n” 

represents the number of the whole signatures. 

Moreover, the prognostic signatures for LCC and RCC 

patients were validated using an independent cohort 

GSE103479. 

 

Additionally, we investigated the expression of these 

prognostic genes in different LCC and RCC cell types of 

scRNA-seq datasets (GSE200997 and GSE14473), and 

compared the expression differences in LCC and RCC 

samples of bulk RNA-seq datasets (TCGA-COAD cohort 

and GSE103479). 

 

The CMS analysis 

 

We predicted the CMS group of each tumor sample of 

TCGA-COAD cohort using R’s CMScaller package 

[17], the samples with an FDR > 0.05 were filtered out. 

Then, we calculated the proportion of LCC and RCC 

samples in each CMS group, and compared the 

relationship between each CMS group and OS. 

Moreover, the expression differences of the prognostic 

markers among CMS groups were compared using 

Kruskal–Wallis test. 

 

Statistical analysis 

 

We compared the overall survival (OS) status between 

LCC and RCC patients in the TCGA-COAD cohort and 

GSE103479 cohort by using the Kruskal–Wallis test. 

Additionally, receiver operating characteristic (ROC) 

and Kaplan–Meier curves were plotted to assess the 

predictive capabilities of the established risk score 

prognostic models. The most significant difference 

between true and false positive points on the ROC curve 

was selected as the best critical value for grouping 

patients. Moreover, we evaluated the performance of 

prognostic models in predicting tumor staging and 

microsatellite status for LCC and RCC patients. All 

results with P < 0.05 were considered statistically 

significant. 

 

Exploring TIM characteristics in LCC and RCC 

patients 

 

Consistent with the samples used in constructing LCC and 

RCC prognosis models, the CIBERSORT algorithm was 

used to estimate the proportion of 22 tumor infiltrating 

immune cell types in each sample based on expression 

profiling dataset [18]. Differences in the immune 

landscape between the LCC and RCC patients were 

assessed using an unpaired t-test. The cor.test function in 

R was used to assess the correlations between the 

estimated proportions of immune cell types and the risk 

score of each sample in LCC and RCC patients. 

Moreover, we compared the mRNA levels of immune 

checkpoint proteins and their ligands between LCC and 

RCC patients and high-risk and low-risk patients. 

 

Additionally, tumor samples containing somatic mutation 

data and survival information in the TCGA-COAD cohort 

were used to explore the mutation characteristics of LCC 

and RCC samples. Finally, 102 LCC samples and 166 

RCC samples were included. First, we analyzed and 

visualized LCC and RCC patients’ somatic mutation 

profiles using the maftools R package [19]. Genes with 

significant mutation differences between LCC and RCC 

patients were assessed for their association with OS. 

Moreover, the fraction of affected oncogenic pathways 

was predicted using the OncogenicPathways function in 

the maftools R package. Next, we calculated the tumor 

mutation burden (TMB) value and visualized the LCC 

and RCC patient mutation profiling dataset. Then, TMB 

values and mutation profiles were compared between 

LCC and RCC patients. The optimal cutoff value of TMB 

was determined by the surv_cutpoint algorithm of 

survivial R package and then all samples were categorized 

into TMB-high group and TMB-low group. Subsequently, 

Kaplan–Meier curves were plotted to visualize the 

association between TMB values and OS in LCC and 

RCC patients. Finally, we calculated the median value of 

the sample’s TMB, and the samples with TMB values 

higher than this median value were classified as TMB-

high group, while the samples with TMB values lower 

than this median value were classified as TMB-low group. 

Subsequently, the relationship between TMB and OS 

were further analyzed. All results with P < 0.05 were 

considered statistically significant. 

 

Prediction and comparison of drug sensitivity in 

LCC and RCC patients 

 

Consistent with the samples used in constructing LCC 

and RCC prognosis models, and based on the expression 
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profile dataset of these samples, we predicted the half-

maximal inhibitory concentration (IC50) of cancer drugs 

in LCC and RCC patients using the oncoPredict R 

package [20] and selected drugs with an average IC50 <5 

and related them to CC treatment. Next, we compared 

responses to these drugs in LCC and RCC patients and 

high-risk and low-risk LCC and RCC patients. 

 

Data availability statement 

 

The TCGA-COAD cohort was available in the UCSC 

Xena (https://xenabrowser.net/datapages/). The scRNA-

seq datasets GSE200997, GSE14473 and bulk RNA-seq 

data GSE103479 were download from NCBI-GEO 

database (https://www.ncbi.nlm.nih.gov/geo/). 

 

RESULTS 
 

Location-related DEGs identification in different cell 

types 

 

Figure 1 highlights the whole analysis workflow. After 

filtering according to the selection criteria, there were 

31,586 tumor cells in the scRNA-seq dataset 

(GSE200997), of which 16,448 were from LCC patients 

and 15,138 were from RCC patients. The quality control 

data of scRNA-seq data, such as the range of RNA 

features, counts, and mitochondrial gene expression 

percentages for each cell, were shown in Figure 2A. The 

cluster tree with a resolution range of 0 to 1.6 showed 

that when RNA_ Snn_ was equal to 0.6, the number of 

branches was minimized, making it the optimal choice 

for dimensionality reduction (Figure 2B). Then, all cells 

were classified into 21 clusters using the UMAP 

algorithm and further automatically annotated into eight 

main cell types using the singleR R package (Figure 2C, 

2D). LCC and RCC cell distributions in each annotated 

cell type were shown in Figure 2E. LCC and RCC DEGs 

statistics in each annotated cell type were provided in 

Table 2. More detailed DEGs information was provided 

in Supplementary Table 2. Finally, 690 location-related 

DEGs were obtained by merging the DEGs identified 

from each cell type. Functional and pathway enrichment 

analyses were performed on the location-related DEGs 

using the clusterProfiler R package. KEGG analysis 

indicated that the location-related DEGs were 

significantly enriched for terms associated with the 

interleukin-17 and tumor necrosis factor signaling 

pathways and apoptosis (Figure 2F). GO analysis 

indicated they had functions related to cytoplasmic 

translation, positive cell activation regulation, and cell-

cell adhesion regulation (Figure 2G). 

 

 
 

Figure 1. The whole analysis workflow. 

https://xenabrowser.net/datapages/
https://www.ncbi.nlm.nih.gov/geo/
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Figure 2. DEG identification between LCC and RCC in different cell types from scRNA-seq data. (A) scRNA-seq data quality control 

for LCC and RCC cells. (B) A cluster tree with a resolution range of 0 to 1.6. (C) All cells were classified into 21 clusters using the UMAP 
algorithm. (D) The clusters were annotated into eight main cell types using the singleR R package. (E) LCC and RCC distributions for each 
annotated cell type. (F) DEGs KEGG analysis results. (G) DEGs GO analysis results. 
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Table 2. The statistics of DEGs between LCC and RCC in each annotated cell type. 

Cell type Cluster number Up-regulated genes Down-regulated genes All genes 

T cells 0,1,3,5,6,7,11,16 62 14 76 

B cells 2,5,20 122 27 149 

Epithelial cells 4,8,10,12,17 81 60 141 

NK cells 13 104 26 130 

Macrophage 9 40 22 66 

Fibroblasts 14 66 62 128 

Endothelial cells 15 33 33 66 

Tissue stem cells 19 139 108 247 

 

Construction and validation of prognostic models for 

LCC or RCC patients 

 

Based on TCGA-COAD cohort, we observed that the 

survival time was significantly longer in LCC patients 

than in RCC patients (P = 0.038; Supplementary Figure 

1A). However, survival time did not differ significantly 

between patients with CC in the transverse section and 

LCC (P = 0.830) or RCC (P = 0.530) patients. In the 

GSE103479 cohort, the prognosis of LCC patients was 

also significantly better than that of RCC patients (P 

=0.043, Supplementary Figure 1B). In TCGA-COAD 

cohort, the relationship between CMS and OS was not 

significant (P >0.05, Supplementary Figure 1C). In 

GSE103479 cohort, CMS3 had the best OS, while 

CMS1 had the worst OS (Supplementary Figure 1D). 

 

The Kaplan–Meier survival analysis identified 17 genes 

significantly associated with LCC patient prognosis and 

20 genes significantly associated with RCC patient 

prognosis (P < 0.05; Supplementary Table 3). Univariate 

Cox regression analysis indicated that five were 

independent indicators for LCC patients and eight for 

RCC patients (Table 3). After further shrinkage through 

LASSO regression, we selected five genes for LCC 

patients and four for RCC patients. The coefficient of 

each prognostic signature was shown in Supplementary 

Figure 1E, 1F. The Kaplan-Meier curves of those genes 

were shown in Supplementary Figure 2. 

 

In the prognostic model for LCC patients, two genes 

(FosB proto-oncogene AP-1 transcription factor subunit 

[FOSB] and chromosome 11 open reading frame 96 

[C11orf96]) were risk factors (hazard ratio [HR] >1), 

while three (ribosomal protein L35 [RPL35], 

regenerating family member 1 alpha [REG1A], and 

tescalcin [TESC]) were protective factors (HR <1; 

Figure 3A). The heatmap showed that the risk factors 

were downregulated in the low-risk group and 

upregulated in the high-risk group (Figure 3B). In 

contrast, the protective factors showed the opposite 

pattern. The scatter diagram in Figure 3B indicated that 

the OS of patients was better in the low-risk group than 

in the high-risk group, consistent with the results in 

Figure 3C (P = 9.7×10-4). The areas under the ROC 

curve (AUC) for the prognostic model at 3-, 4-, and 5-

year OS are 0.721, 0.844, and 0.926, respectively 

(Figure 3D). 

 

There were four genes in the prognostic model for 

RCC patients. One (heat shock protein family A 

member 1A [HSPA1A]) was a risk factor (HR >1), 

and three (cluster of differentiation 69 [CD69], 

growth differentiation factor 15 [GDF15], and 

galectin 2 [LGALS2]) were protective factors (HR <1; 

Figure 3E). Consistent with the prognostic model for 

LCC patients, we found that the expression of risk 

factor was low in low-risk patients and high in high-

risk patients. In contrast, the protective factors 

showed the opposite pattern (Figure 3F). In addition, 

patients in the low-risk group had better prognoses 

than those in the high-risk group (P < 1.0×10-4; Figure 

3G). The model’s AUCs were 0.806 for 3-year OS, 

0.816 for 4-year OS, and 0.836 for 5-year OS (Figure 

3H). 

 

We further validated the effectiveness of the identified 

prognostic markers based on GSE103479 cohort. 

Consistent with the results obtained in the prognosis 

model based on TCGA-COAD cohort, in the LCC 

prognosis model, the prognosis of patients with low-

risk patients was significantly better than that of 

patients with low-risk score (P = 0.014, 

Supplementary Figure 3A), and the AUC for the 

prognostic model at 3-, 4-, and 5-year OS are 0.680, 

0.688, and 0.615, respectively (Supplementary Figure 

3B). In the RCC prognosis model, the low-risk 

patients’ OS was significantly longer than high-risk 

patients’ OS (P =0.012, Supplementary Figure 3C), 

and the model’s AUCs were 0.615 for 3-year OS, 

0.710 for 4-year OS, and 0.639 for 5-year OS 

(Supplementary Figure 3D). 
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Table 3. The detailed information of the potential independent signatures for patients with LCC or RCC. 

Patients 
Prognostic 

signatures 
HR HR.95L HR.95H p.value 

RCC 

HSPA1A 1.41356217671282 1.16350097826825 1.71736686496571 0.00049297581800357 

FOS 0.81584830453234 0.673878317257311 0.987727960616577 0.0369283627502978 

CD69 0.78042371991399 0.641390931256157 0.949594315921415 0.0132626664542913 

RHOH 0.800002515242927 0.64806037197813 0.987568523039716 0.0378600748868144 

KLF4 0.775803574145191 0.607680844919644 0.99043962087704 0.0416450641807661 

TFF1 0.905647012239849 0.823929582435838 0.995469186036703 0.039967568997509 

GDF15 0.622015292962873 0.495507478853596 0.780821765949578 0.0000426660693411279 

LGALS2 0.833641956980532 0.705030165125973 0.985715146406761 0.0333158089764621 

  
    

LCC 

FOSB 1.38792045878328 1.12035352253476 1.71938871183352 0.00269970420423281 

RPL35 0.503130789685977 0.303313150461264 0.834584953356195 0.00780834395123433 

REG1A 0.88427652277397 0.798529419282176 0.979231259171564 0.0181153181968568 

TESC 0.774472331024749 0.604301611845149 0.992562951621926 0.0434941395308241 

C11orf96 1.51919402433543 1.05004983019869 2.1979437710492 0.0264780661405852 

Abbreviation: HR, hazard ratio. 
 

We also evaluated the performance of prognostic 

model in predicting tumor staging and microsatellite 

status based on TCGA-COAD cohort. In the RCC 

prognostic model, higher risk scores were 

significantly associated with greater metastasis (P = 

2.6×10-5; Figure 4A), N stage (P = 0.012; Figure 4B), 

advanced pathological stage (P = 1.4×10-4; Figure 

4C), and more stable microsatellite status (P = 0.007; 

Figure 4D) but not T stage (P = 0.200; Figure 4E). 

However, in the LCC prognostic model, risk scores 

were not significantly associated with tumor stage and 

microsatellite status (P >0.05; Supplementary Figure 

3E–3I), potentially reflecting the small sample size at 

a certain level (<30; Table 1), leading to no statistical 

significance. 

 

The expression of the candidate prognostic genes in 

scRNA-seq and bulk RNAseq datasets 

 

Based on scRNA-seq dataset GSE200997, the 

differential expression of the marker genes between 

LCC cells and RCC cells in each annotated cell type 

was shown in Table 4. We observed that HSPA1A was 

expressed in all RCC cell types, CD69 was mainly 

expressed in immune-related cell types, including T, B, 

and natural killer cells; while GDF15 was mainly 

expressed in epithelial cells, and LGALS2 was 

expressed in epithelial cells and macrophages (Figure 

4F). FOSB and RPL35 were expressed in all LCC cell 

types; while REG1A was expressed in epithelial cells; 

TESC was mainly expressed in T, B, and epithelial 

cells; and C11orf96 was mainly expressed in fibroblasts 

and tissue stem cells (Figure 4G). 

Based on another scRNA-seq dataset GSE14473, we 

validated the expression differences of the candidate 

markers between LCC and RCC cells, and we found 

that all candidate markers were significantly 

differentially expressed except for C11orf96 (Table 5). 

Moreover, we also observed the expression patterns of 

the candidate markers in the cells types was similar to 

those of the dataset GSE200997 (Supplementary 

Figure 4A, 4B). 

 

Additionally, we investigated the expression differences 

of the candidate biomarkers in two bulk RNA-seq 

dataset. Based on the TCGA-COAD cohort, we 

observed that only REG1A and CD69 were 

significantly differential expressed between LCC and 

RCC patients (P <0.05, Figure 4H). In the dataset 

GSE103479, all the candidate markers were not 

significantly differential expressed between LCC and 

RCC patients (P > 0.05, Supplementary Figure 4C). 

 

Based on the two bulk RNA-seq datasets, we exhibited 

the proportions of LCC and RCC patients in each CMS 

group (Figure 4I, 4J). We observed that FOSB and 

GDF15 were significantly expressed among CMS 

groups in both the two bulk RNA-seq cohorts (P <0.05, 

Figure 4K and Supplementary Figure 4D). 

 

TME differences between LCC and RCC patients 

 

Based on the TCGA-COAD cohort, the proportions of 

22 immune cell types were estimated in LCC and RCC 

patients using the CIBERSORT algorithm. The 

immune-infiltrating profiles of LCC and RCC patients 
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are shown in Supplementary Figure 3A, 3B. When we 

compared the composition of immune cell types 

between LCC and RCC patients, we found significant 

differences in CD8 and regulatory (Tregs) T cells and 

M0, M1, and M2 macrophages (Figure 5A). 

 

In the LCC prognostic model, the immune-infiltrating 

degree of M2 macrophages was positively correlated 

with risk score (cor = 0.181, P = 0.045; Figure 5B), 

while the immune-infiltrating degree of activated CD4 

memory T cells was negatively correlated (cor = 

−0.185, P = 0.041; Figure 5C). In the RCC prognostic 

model, the immune-infiltrating degree of Tregs was 

positively correlated with risk score (cor = 0.229, P = 

0.002; Figure 5D), while the immune-infiltrating degree 

of resting CD4 memory T cells was negatively 

correlated (cor = −0.332, P = 4.0×10-6; Figure 5E). 

 

Additionally, we plotted and compared the mutation 

profiles of LCC and RCC patients using the maftools 

 

 
 

Figure 3. Construction and evaluation of prognostic models for LCC and RCC patients based on TCGA-COAD cohort.  
(A) A Forest plot shows the HR value of each candidate prognostic gene for LCC patients. (B) The distribution of LCC patients in the high- and 
low-risk score groups and their relationship with OS and the expression pattern of five prognostic genes. (C) A Kaplan–Meier curve shows that 
LCC patient OS was significantly higher in the low-risk score group than in the high-risk score group. (D) The AUCs of the prognostic model for 
LCC patients. (E) A Forest plot showing the HR value of each candidate prognostic gene in RCC patients. (F) The distribution of RCC patients in 
the high- and low-risk score groups and their relationship with OS and the expression pattern of four prognostic genes. (G) A Kaplan–Meier 
curve shows that RCC patient OS was significantly higher in the low-risk score group than in the high-risk score group. (H) The AUCs of the 
prognostic model for RCC patients. 
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Figure 4. The relationship between the risk score of RCC prognostic model and clinical features, (A) M stage, (B) N stage, (C) Advanced 

pathological stages, (D) Microsatellite status, (E) T stage. The prognostic markers’ expression level in each cell types based on scRNA-seq 
dataset GSE200997, (F) RCC cells, (G) LCC cells. (H) Comparing the differences of markers’ expression between LCC and RCC samples based on 
TCGA-COAD cohort. Comparing the proportions of LCC and RCC patients in each CMS group on TCGA-COAD cohort (I) and GSE103479 (J).  
(K) Comparing the expression differences of markers among CMS groups based on TCGA-COAD cohort. 
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Table 4. The differential expression of the marker genes between LCC cells and RCC cells in each cell 
type based on GSE200997. 

Markers myAUC avg_diff Power avg_log2FC pct.1 pct.2 Celltypes 

FOSB 0.599 0.4618231 0.198 0.666269896 0.562 0.373 T Cells 

HSPA1A 0.824 2.278156184 0.648 3.286684629 0.752 0.154 T Cells 

FOSB 0.637 0.662858049 0.274 0.95630202 0.579 0.361 B Cells 

HSPA1A 0.776 2.163085844 0.552 3.120673221 0.635 0.118 B Cells 

CD69 0.682 1.277230084 0.364 1.842653508 0.642 0.374 B Cells 

FOSB 0.58 0.423361877 0.16 0.61078208 0.593 0.481 NK cells 

HSPA1A 0.818 2.235335966 0.636 3.224908112 0.704 0.084 NK cells 

HSPA1A 0.565 0.447071753 0.13 0.644988201 0.664 0.601 macrophage 

CD69 0.564 0.622492906 0.128 0.898067428 0.216 0.092 macrophage 

RPL35 0.645 0.579500519 0.29 0.836042525 0.854 0.789 epithelial 

REG1A 0.431 -1.121210588 0.138 -1.617564954 0.03 0.168 epithelial 

TESC 0.436 -0.676260355 0.128 -0.97563746 0.15 0.264 epithelial 

GDF15 0.565 0.652976527 0.13 0.942045997 0.521 0.455 epithelial 

LGALS2 0.442 -0.901389298 0.116 -1.30042987 0.05 0.162 epithelial 

C11orf96 0.571 0.454403273 0.142 0.655565348 0.46 0.362 fibroblasts 

HSPA1A 0.388 -0.843405708 0.224 -1.216777233 0.684 0.751 fibroblasts 

GDF15 0.424 -0.562241804 0.152 -0.811143462 0.107 0.258 fibroblasts 

FOSB 0.403 -0.434459647 0.194 -0.626792779 0.422 0.581 endothelial 

C11orf96 0.566 0.503324559 0.132 0.726143845 0.286 0.167 endothelial 

HSPA1A 0.373 -0.646403691 0.254 -0.932563399 0.656 0.747 endothelial 

FOSB 0.388 -0.481429936 0.224 -0.694556582 0.382 0.617 stem cells 

C11orf96 0.561 0.527176636 0.122 0.760555119 0.52 0.469 stem cells 

HSPA1A 0.31 -1.093683253 0.38 -1.577851406 0.598 0.815 stem cells 

 The red color means markers for LCC. 
 The green color means markers for RCC. 
 The cyan color means type1 cells. 
 The lawngreen color means type2 cells. 
 The brown color means type3 cells. 
 

Table 5. The differential expression of the marker genes in each cell type based on GSE14473. 

Markers myAUC avg_diff power avg_log2FC pct.1 pct.2 celltypes 

HSPA1A 0.585 17.67964 0.17 0.909902001 0.38 0.24 T Cells 

FOSB 0.262 6.571136 0.476 -0.97096937 0.46 0.78 B cells 

RPL35 0.713 3.467668 0.426 0.668682238 0.976 0.919 B cells 

CD69 0.692 34.30116 0.384 0.987759617 0.485 0.114 B cells 

REG1A 0.449 -181.39 0.102 -1.06795157 0.004 0.105 Epithelial cells 

TESC 0.344 -7.81038 0.312 -0.82064498 0.151 0.45 Epithelial cells 

HSPA1A 0.699 5.855744 0.398 1.225526512 0.52 0.135 Epithelial cells 

GDF15 0.319 -12.5721 0.362 -1.2395757 0.161 0.499 Epithelial cells 

LGALS2 0.312 -21.5721 0.376 -1.59399592 0.141 0.487 Epithelial cells 

C11orf96 0.397 -2.6086 0.206 -0.39939187 0.238 0.436 Stromal cells 

 

R package. While the top 10 mutated genes in LCC 

and RCC patients were similar, their ranking differed. 

The median number of mutations in LCC patients was 

higher than in RCC patients. In LCC and RCC 

patients, the most common variant type was single 

nucleotide polymorphisms (SNP), the most common 

SNP classification was missense, and the most 

common SNP class was C>T (Figure 5F, 5G). Among 
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Figure 5. Differences in immune-infiltrating and mutation profiles between LCC and RCC patients based on TCGA-COAD 
cohort. (A) Differences in the composition of immune cell types between LCC and RCC patients. (B) The correlation between the immune-

infiltrating degree of M2 macrophages with LCC patient risk scores. (C) The correlation between the immune-infiltrating degree of activated 
CD4 memory T cells with LCC patient risk scores. (D) The correlation between the immune-infiltrating degree of Tregs with RCC patient risk 
scores. (E) The correlation between the immune-infiltrating degree of resting CD4 memory T cells with RCC patient risk scores. (F) LCC 
patients’ mutation profiles. (G) RCC patients’ mutation profiles. 
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the top 10 mutated genes, adenomatous polyposis coli 

regulator of WNT signaling pathway (APC) and tumor 

protein p53 (TP53) mutation rates were significantly 

higher in LCC patients (P < 0.05). In contrast, Kirsten 

rat sarcoma virus proto-oncogene GTPase (KRAS), 

spectrin repeat containing nuclear envelope protein 1 

(SYNE1), and mucin 16 cell surface associated 

(MUC16) the mutation rates were significantly higher 

in RCC patients (P < 0.05; Figure 6A). Moreover, the 

mutation status of TP53 was significantly associated 

with OS in RCC patients (HR = 1.9, P = 0.036; Figure 

6B) but not in LCC patients (HR = 1.19, P = 0.695; 

Figure 6C). The mutation statuses of APC, KRAS, 

SYNE1, and MUC16 were not significantly associated 

with OS in LCC or RCC patients (P >0.05; 

Supplementary Figure 5C–5J). Figure 6D, 6E shows 

that the fractions of pathways and samples affected by 

the oncogenic pathways in RCC patients were higher 

than in LCC patients. 

 

We also calculated and visualized each sample’s TMB 

value. The median TMB value was 1.81/Mb in LCC 

patients (Supplementary Figure 5K) and 2.47/Mb in 

RCC patients (Supplementary Figure 5L). TMB values 

were significantly higher in RCC patients than in LCC 

patients (P = 5.9×10-8; Figure 6F). Moreover, LCC 

patients with lower TMB values had better OS (P = 

0.019; Figure 6G). However, TMB values were not 

significantly associated with OS in RCC patients  

(P = 0.110; Figure 6H). 

 

Prediction and comparison of the drug response in 

LCC and RCC patients 

 

Figure 7A exhibited that the expression level of immune 

checkpoint targets in TMB-high group was significantly 

higher than that in TMB-low group (P < 0.05). And the 

expression of immune checkpoint targets in RCC patients 

was significantly higher than in LCC patients (P < 0.05; 

Figure 7B). Among LCC patients, the expression of 

immune checkpoint targets was significantly higher in the 

high-risk group than in the low-risk group, indicating that 

the high-risk group would be more sensitive to 

immunotherapy (P < 0.05, Figure 7C). Among RCC 

patients, cluster of differentiation 274 (CD274), cytotoxic 

T-lymphocyte associated protein 4 (CTLA4), and T cell 

immunoreceptor with Ig and ITIM domains (TIGIT) 

expression were significantly higher in the low-risk group 

than in the high-risk group. However, lymphocyte 

activating 3 (LAG3), programmed cell death 1 (PDCD1), 

and hepatitis A virus cellular receptor 2 (HAVCR2) 

expression did not differ significantly between the high- 

and low-risk groups (Figure 7D). Therefore, low-risk 

RCC patients are more likely to benefit from 

immunotherapy drugs targeting CD274, CTLA4, or 

TIGIT. 

Additionally, we found that CC patients were sensitive 

to 44 drugs (average IC50 <5; Supplementary Table 4), 

of which eight were related to CC treatment. Figure 7E 

shows that sensitivity to these eight drugs does not 

differ significantly between LCC and RCC patients  

(P > 0.05). In addition, drug response sensitivity did not 

differ significantly between high-risk and low-risk LCC 

patients (P > 0.05, Figure 7F). However, the average 

IC50 values for camptothecin, teniposide, vinorelbine, 

and mitoxantrone were significantly lower in low-risk 

than in high-risk RCC patients, indicating that low-risk 

patients will be more sensitive to them (Figure 7G–7J). 

Sensitivity to the other four drugs did not differ 

significantly between high-risk and low-risk RCC 

patients (Figure 7K–7N). 

 

DISCUSSION 
 

Extensive studies have identified various signatures  

for predicting CC prognosis, diagnosis, and treatment 

[21–23]. However, CC shows significant tumor-location-

based differences, including phenotypic characteristics, 

TME, and treatment response [9, 24–26]. Consistent 

with a previous study [7], our study found that 

prognosis was significantly better in LCC than in RCC 

patients (Supplementary Figure 1A, 1B). To further 

understand the differences between LCC and RCC, we 

identified DEGs between LCC and RCC cells for each 

cell type based on scRNA-seq data. 

 

The common prognostic models are mainly based on 

gene-sequencing dataset. For example, Liu et al. [27] 

found that nine ferroptosis-related long noncoding 

RNAs could be used as prognostic markers of COAD, 

and the prognostic signature has a good predictive value 

because of the AUC>0.8 for 5-year survival. However, 

our study built prognostic models for LCC or RCC 

patients through TCGA-COAD, where the 5-year OS 

AUCs for the LCC and RCC models were 0.926 and 

0.836, respectively, suggesting that our prognostic 

models had better performance. In addition, similar to 

other study [28], the performance of the RCC model is 

worse than that of the LCC model. Besides, we also 

compared the expression differences of the identified 

markers in TCGA-COAD cohort (Figure 3H), and 

found that only REG1A and CD16 were significantly 

differential expressed between LCC and RCC samples, 

which may indicate that DEGs obtained from bulk 

RNA-seq data cannot reflect the true expression of 

genes in different cell types. According the prognostic 

markers’ expression in each cell type (Table 4), the 

annotated eight main cell types could be categorized 

into 3 types:1) type 1(immune cells): T cells, B cells 

and macrophage; 2) type 2: epithelial cells; 3) type 

3(stromal cells): fibroblasts, endothelial, and stem cells. 

It can be seen that the expression trend of the same gene 
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Figure 6. Differences in mutation profiles and affected oncogenic pathways and their relationships with patient OS based on 
TCGA-COAD cohort. (A) Differences in the top mutated genes. (B) TP53 mutation status was significantly associated with OS in RCC 

patients. (C) TP53 mutation status was not significantly associated with OS in LCC patients. (D) The fraction of pathways and samples affected 
by the oncogenic pathways in RCC patients. (E) The fraction of pathways and samples affected by the oncogenic pathways in LCC patients.  
(F) TMB values were significantly higher in RCC than in LCC patients. (G) LCC patients with lower TMB values had better OS. (H) TMB values 
were not significantly associated with OS in RCC patients. 
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in the same cell type is the same, but the expression 

trend is different in different cell types. For example, 

HSPA1A and FOSB are up-regulated in type 1 and 

down-regulated in type 3. GDF15 is up-regulated in 

type 2 and down-regulated in type 3. 

 

In the five-gene LCC prognostic model, low C11orf96 

and FOSB expression levels were associated with lower 

risk scores and longer survival time. In contrast, the 

high expression levels of REG1A, RPL35, and TESC 

were associated with higher risk scores and shorter 

survival time. These findings indicate that C11orf96 and 

FOSB are risk factors, while REG1A, RPL35, and TESC 

are protective factors, which is consistent with the 

results shown in Figure 3B. A four-gene prognostic 

model was also developed for RCC patients, comprising 

 

 
 

Figure 7. Prediction and comparison of the drug response in LCC and RCC patients based on TCGA-COAD cohort. (A) The 

expression of immune checkpoint targets was significantly higher in TMB-high patients than in TMB-low patients. (B) The expression of 
immune checkpoint targets was significantly higher in RCC patients than in LCC patients. (C) The expression of immune checkpoint targets 
was significantly higher in high-risk than low-risk LCC patients. (D) Comparison of immune checkpoint target expression between high-risk 
and low-risk RCC patients. (E) Sensitivity to the eight drugs did not differ significantly between LCC and RCC patients. (F) Drug response 
sensitivity did not differ significantly between high-risk and low-risk LCC patients. (G–N) Correlations between the average IC50 values of the 
eight drugs and RCC patient risk scores. 
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HSPA1A, CD69, GDF15, and LGALS2. HSPA1A was a 

risk factor for RCC, while CD69, GDF15, and LGALS2 

were protective factors. REG1A, RPL35, TESC, 

HSPA1A, and GDF15 have been associated with CC 

prognosis in all signatures [29–33]. 

 

Furthermore, we found many significant TME 

differences between LCC and RCC. First, while the 

infiltration degree of M0 macrophages was significantly 

higher in LCC patients than in RCC patients, the 

infiltration degrees of CD8 T cells and M1 macrophages 

were instead significantly lower. Secondly, while APC 

and TP53 mutation rates were significantly lower in 

RCC patients than in LCC patients, KRAS, SYNE1, and 

MUC16 mutation rates were instead significantly 

higher. In addition, TMB values were significantly 

higher in RCC patients than in LCC patients. These 

TME differences may cause differences in prognosis or 

treatment between LCC and RCC patients. 

 

Additionally, consistent with the results found in 

previous study [5], patients in CMS1 subtype were 

mainly RCC, while CMS2 were mainly LCC (Figure 4I, 

4J), which may indicate that CMS2 has better OS than 

CMS1 subtype. Otherwise, patients in TMB-high group 

had higher expression level of immune checkpoint 

targets than patients in TMB-low group, and the 

expression of immune checkpoint targets in RCC 

patients was significantly higher than in LCC patients, 

which may indicate that RCC patients were more likely 

to benefit from immunotherapy. 

 

In summary, we systematically investigated differences 

in prognosis, TME, and treatment between RCC and 

LCC patients by integrative analysis of scRNA-seq and 

bulk RNA-seq data, providing insights into LCC and 

RCC heterogeneity. We also explored immunotherapy 

and drug chemotherapy differences between LCC and 

RCC patients, which may be conducive to providing 

patients with more accurate treatment. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 

 
 

Supplementary Figure 1. Survival time comparison between patients with LCC and RCC, based on (A) TCGA-COAD cohort, (B) GSE103479 

cohort. Survival time comparison between patients in CMS subtypes, based on (C) TCGA-COAD cohort, (D) GSE103479 cohort. Candidate 
prognostic signature coefficients for (E) LCC patients, (F) RCC patients based on TCGA-COAD cohort. 
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Supplementary Figure 2. The relationship between prognostic markers’ expression with patients’ OS, including (A) C11orf96, (B) FOSB, (C) 

REG1A, (D) RPL35, (E) TESC, (F) CD69, (G) GDF15, (H) HSPA1A, (I) LGALS2. 
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Supplementary Figure 3. Validation the identified prognostic markers based on GSE103479. (A) A Kaplan–Meier curve shows that 

low-risk score LCC patients had better OS than high-risk score LCC patients. (B) The AUCs of the prognostic model for LCC patients.  
(C) A Kaplan–Meier curve shows that low-risk score RCC patients had better OS than high-risk score RCC patients. (D) The AUCs of the 
prognostic model for RCC patients. The relationship between LCC patients’ risk scores and clinical features, (E) T stage, (F) M stage,  
(G) N stage, (H) Advanced pathological stages, (I) Microsatellite status, based on TCGA-COAD cohort. 
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Supplementary Figure 4. The expression level of prognostic markers in each cell types based on scRNA-seq dataset GSE14473, such as  

(A) RCC cells and (B) LCC cells. (C) Comparing the expression differences of markers between LCC and RCC samples based on TCGA-COAD 
cohort. (D) Comparing the expression differences of markers among CMS subtypes based on TCGA-COAD cohort. 
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Supplementary Figure 5. The mutation profiles and relationships between the status of top mutated genes and OS. (A) LCC 

sample mutation profiles. (B) RCC sample mutation profiles. (C) Relationships between APC mutation status and OS in LCC patients.  
(D) Relationships between APC mutation status and OS in RCC patients. (E) Relationships between KRAS mutation status and OS in LCC 
patients. (F) Relationships between KRAS mutation status and OS in RCC patients. (G) Relationships between SYNE1 mutation status and OS in 
LCC patients. (H) Relationships between SYNE1 mutation status and OS in RCC patients. (I) Relationships between MUC16 mutation status 
and OS in LCC patients. (J) Relationships between MUC16 mutation status and OS in RCC patients. (K) The median TMB value in LCC patients. 
(L) The median TMB value in RCC patients. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Table 2. 

 

Supplementary Table 1. The detailed information of GSE103479. 

 
LCC RCC Overall 

(N=76) (N=58) (N=134) 

Gender    

Female 30 (39.5%) 31 (53.4%) 61 (45.5%) 

Male 46 (60.5%) 27 (46.6%) 73 (54.5%) 

Age    

<=60 19 (25.0%) 4 (6.9%) 23 (17.2%) 

>60 57 (75.0%) 54 (93.1%) 111 (82.8%) 

CMS    

CMS1 6 (7.9%) 16 (27.6%) 22 (16.4%) 

CMS2 33 (43.4%) 17 (29.3%) 50 (37.3%) 

CMS3 13 (17.1%) 6 (10.3%) 19 (14.2%) 

CMS4 14 (18.4%) 10 (17.2%) 24 (17.9%) 

Unknown 10 (13.2%) 9 (15.5%) 19 (14.2%) 

stage    

II 41 (53.9%) 28 (48.3%) 69 (51.5%) 

III 35 (46.1%) 30 (51.7%) 65 (48.5%) 

OS    

Alive 51 (67.1%) 31 (53.4%) 82 (61.2%) 

Death 25 (32.9%) 27 (46.6%) 52 (38.8%) 

OS.time    

Mean (SD) 60.7 (32.8) 51.1 (32.1) 56.6 (32.7) 

Median [Min, Max] 56.1 [0.329, 205] 44.8 [0.362, 143] 51.2 [0.329, 205] 

T    

T1 1 (1.3%) 0 (0%) 1 (0.7%) 

T2 4 (5.3%) 2 (3.4%) 6 (4.5%) 

T3 54 (71.1%) 38 (65.5%) 92 (68.7%) 

T4 17 (22.4%) 18 (31.0%) 35 (26.1%) 

M    

M 38 (50.0%) 27 (46.6%) 65 (48.5%) 

M0 38 (50.0%) 31 (53.4%) 69 (51.5%) 

N    

N0 41 (53.9%) 28 (48.3%) 69 (51.5%) 

N1 23 (30.3%) 24 (41.4%) 47 (35.1%) 

N2 12 (15.8%) 6 (10.3%) 18 (13.4%) 
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Supplementary Table 2. The detailed information of DEGs between RCC cells and LCC cell in each cell type. 

 

Supplementary Table 3. The detailed 
information of the 37 prognostic genes. 

Type GeneName P-value 

RCC 

HSPA1A 0.038 

ZFP36 0.011 

FOS 0.031 

BTG1 0.015 

CD69 0.0023 

SARAF 0.042 

RHOH 0.0068 

IGKV3-20 0.024 

IGLC2 0.012 

IGLV3-1 0.018 

IGLC3 0.036 

KLF4 0.009 

TFF1 0.01 

GDF15 0.035 

LGALS2 0.028 

TNFSF11 0.013 

CXCL2 0.033 

PRKAR2B 0.038 

FSTL3 0.03 

GSTM1 0.038 

LCC 

GADD45B 0.039 

DUSP1 0.024 

FOSB 0.0037 

SLC2A3 0.0091 

CLEC2B 0.025 

RPL35 0.039 

REG1A 0.017 

TESC 0.026 

MUC2 0.023 

UCP2 0.036 

BCL3 0.046 

C11orf96 0.017 
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Supplementary Table 4. The detailed information of the 44 sensitive drugs. 

DrugName Average IC50 of LCC Average IC50 of RCC 

AZD7762_1022 1.1204019813473 1.14668122516778 

AZD8055_1059 0.819746194430271 0.817151413765119 

BI-2536_1086 1.43477406540067 1.44516285070571 

BMS-754807_2171 2.18563326304696 2.0995544101959 

Bortezomib_1191 0.0079553655585555 0.00795034351693453 

Buparlisib_1873 2.64067623292989 2.71915407159633 

Camptothecin_1003 0.106941939328332 0.126685792093699 

CDK9_5038_1709 0.101784844963055 0.110910831372088 

CDK9_5576_1708 0.697126165684043 0.747710358035258 

Dactinomycin_1811 0.0914565247765287 0.0947628168703208 

Dactinomycin_1911 0.00930230788904291 0.00979743548734258 

Dactolisib_1057 0.208373502951644 0.217767507782637 

Daporinad_1248 0.0159589729625909 0.0152438928452886 

Dihydrorotenone_1827 2.67874699895989 2.58263284297451 

Dinaciclib_1180 0.0622924469820657 0.0643635837037069 

Docetaxel_1007 0.0114575094281596 0.0123631384452993 

Docetaxel_1819 0.115262401841707 0.153395306777572 

Eg5_9814_1712 0.0514518409829225 0.0578239198162486 

Epirubicin_1511 0.39873780453285 0.443820929049132 

Foretinib_2040 2.8036548807378 2.8351526305029 

Gemcitabine_1190 0.670396146804438 0.885694591519111 

GNE-317_1926 1.7357221893917 1.78365491687438 

Luminespib_1559 0.114542509427635 0.124908217906364 

MG-132_1862 0.199904631860733 0.200702148062894 

Mitoxantrone_1810 2.35472957002234 2.78548918493597 

MK-1775_1179 1.84196464279701 1.88729184406175 

Obatoclax Mesylate_1068 4.21859659918443 4.25533904583997 

Paclitaxel_1080 0.0699157080248199 0.0776069245152012 

PD0325901_1060 1.78951162837727 1.81467908936507 

Pevonedistat_1529 2.2223919772503 2.58925495765451 

Pictilisib_1058 4.23695684306298 4.34822145911636 

Podophyllotoxin bromide_1825 0.534256310699056 0.584762508793234 

Rapamycin_1084 0.124666540178059 0.128443408563328 

Sabutoclax_1849 0.715483989210096 0.735267805242988 

Sepantronium bromide_1941 0.0141875929157305 0.0148052970774564 

Staurosporine_1034 0.0530226514569955 0.0570266509673851 

Telomerase Inhibitor IX_1930 1.74804204176677 1.80528995955417 

Teniposide_1809 1.88461723681019 2.23104661366957 

Topotecan_1808 1.23814143201278 1.36328885227713 

Trametinib_1372 2.01427331557814 2.10670533866479 

Vinblastine_1004 0.0258534037328264 0.0307996754635948 

Vincristine_1818 0.19105207223191 0.240791887001131 

Vinorelbine_2048 0.0490856376646081 0.0567394338636524 

Vorinostat_1012 4.29191225842706 4.32462213402817 

 


