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INTRODUCTION 
 

Cytokines mediate cellular communication in the tumor 

microenvironment (TME) [1]. Cytokines and their 

receptors are abundant in the TME of cancer, which 

promote and inhibit cancer growth. Some cytokines, 

such as IL-2, IFNα, and IFN γ, can help fight against 

tumors in the TME. Abnormal generation of cytokines 

by cancer cells, the immune system, and the stroma 

cells promotes the development and resistance of cancer 

[2]. Therefore, further understanding of cytokines and 

their impact on human cancer is crucial. 

Some CXCL family genes, including CXCL8, are 

related to cancer progression [3]. In this study, the 

function and mechanism of CXCL genes in renal clear 

cell carcinoma (ccRcc), especially their prognostic 

significance and interaction with immune components, 

were analyzed based on multiple data sources (mRNA 

datasets and pan-cancer data). The results were analyzed 

using multiple dimensions (bulk RNAsequencing and 

single-cell RNA-sequencing evaluations). Furthermore, 
neutrophil polarization towards a pro-tumor state 

promoted ccRcc development mainly mediated by 

CXCL2-CXCR1. Bioinformatic analysis and in vitro 
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ABSTRACT 
 

This study aimed to investigate the clinical significance, biological functions, and underlying mechanisms of 
CXCL genes in clear cell renal cell carcinoma (ccRcc) based on patient datasets and pan-cancer analysis. The 
interaction between CXCL genes in ccRcc and immune components, particularly in relation to neutrophil 
recruitment and polarization mechanisms, was also evaluated. Furthermore, a risk score was developed 
using a signature for neutrophil polarization. The role of CXCL2 was assessed through in vitro experiments. 
Results showed that five CXCL genes (CXCL 2, 5, 9, 10, and 11) were upregulated in renal cancer tissue, while 
seven genes (CXCL 1, 2, 3, 5, 8, 13, and 14) significantly impacted patient survival. Moreover, CXCL 1, 5, and 
13 affected progression-free survival. Besides, differences in mRNA expression and immune components 
affected renal cancer outcomes. Furthermore, three pairs of CXCL gene-immune cell interactions (CXCL13-
CD8+ T cells, CXCL9/10-M1 cells, CXCL1/2/3/8-neutrophils) were identified through single-cell and pan-cancer 
analysis. A TAN risk score with prognostic value for KIRC patients was constructed using 11 genes and a TAN 
signature. Neutrophil polarization significantly impacted survival. Notably, CXCL2 was involved in neutrophil 
recruitment and polarization, thus promoting ccRcc progression. In conclusion, seven prognostic CXCL genes 
(CXCL 1/2/3/5/8/13/14) for ccRcc patients and three pairs of CXCL gene-immune cell interactions were 
identified. Furthermore, results showed that CXCL 2 promotes ccRcc progression through neutrophil 
recruitment and polarization. 
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experiments showed that CXCL2 promotes ccRcc 

through many mechanisms. 

 

MATERIALS AND METHODS 
 

Data sources 

 

Four types of publicly available data sources were used 

in this study, including TCGA-KIRC dataset, ICGC 

website data, GEO datasets, and clinical trial data. The 

TCGA-KIRC dataset was the primary data source, where 

mRNA expression, gene function prediction, immune 

component, prognostic value, and other dimensions of 

CXCLs genes were analyzed. Additionally, a multi-

dimensional Pan-cancer analysis was conducted based on 

33 TCGAcancer datasets. The TCGA data were obtained 

from the TCGA website (https://www.cancer.gov/about-

nci/organization/ccg/research/structural-genomics/tcga) 

[4]. Gene expression and clinical information were also 

obtained from the GEO dataset website (https://www.ncbi. 

nlm.nih.gov/gds/) [5]. Data from renal cancer collected by 

the International Cancer Genome Consortium (ICGC) 

were obtained from the ICGC website (https://dcc. 

icgc.org/) [6]. Furthermore, a clinical trial, the Checkmate 

Trial (CM Trial) [7], analyzing the effect of PD-1 blockade 

on advanced clear renal cell carcinoma patients, was 

included in this research. The gene expression, clinical 

information, and other data from this trial are available 

in the Supplementary Materials of the research paper. 

 

Prognostic analysis 

 

Prognostic analysis was conducted after collecting RNA 

sequencing expression profiles and corresponding 

clinical information from the original datasets. The 

prognostic value of single gene expression or a specific 

score was determined using Kaplan-Meier (KM) 

method. The time-dependent prognostic value or 

comparison of the prognostic value of different indices 

was achieved using receiver operating characteristic 

(ROC) curve. A Cox Proportional Hazards Regression 

analysis was also conducted. 

 

Unsupervised cluster analysis 

 

Consensus Cluster Plus (v1.54.0), an R package, was 

used for the unsupervised cluster analysis [8]. The 

maximum number of clusters was set to 6, and 80% of 

the total samples were selected for analysis. The process 

was repeated 100 times. 

 

Immunity analysis 

 

Immune components and related scores were analyzed 

using immuneeconv R package [9]. This package 

integrates six algorithms, including TIMER, xCELL, 

MCP-counter, CIBERSORT, EPIC, and quanTIseq, and 

provides direct evaluation and analysis of eight immune 

checkpoint expressions. 

 

Mutation analysis 

 

The mutation data were downloaded and visualized 

using the maftools R package. The mutation status and 

correlation of CXCL family genes were analyzed via 

cBioPortal (https://www.cbioportal.org/) [10]. 

 

Single cell analysis 

 

Two GEO datasets of single cells from renal cancer 

(GSE171306 and GSE121636) were included for single 

cell analysis. An object was developed using the R 

package “Seurat” [11] we created, then cells with low 

quality were filtered out. Standard data preprocessing, 

involving excluding genes that were detected in fewer 

than three cells and cells with fewer than 200 genes, was 

performed. The library size of each cell was normalized 

by scaling UMI counts with a factor of 10000. The data 

were log-transformed, then corrected for variation using 

the scale data function in Seurat. The corrected and 

normalized data were used for standard analysis 

following the Seurat R package guidelines. The top 1000 

variable genes were selected for Principal Component 

Analysis (PCA) while the top ten components were used 

for UMAP visualization and clustering. 

 

TAN-related differentially expressed gene signature 

 

Tumor-associated central granulocyte (TAN) is a crucial 

survival index in the TME. TAN polarization can 

promote or inhibit cancer. In this study, markers 

(Supplementary Table 1) were collected from two TAN 

subtypes (N2 subtype (pro-tumoral) and N1 subtype 

(anti-tumoral)) [12]. An unsupervised cluster analysis 

was then performed based on the KIRC dataset using 

TAN subtype markers and identified groups 1/2 as TAN 

N1 and TAN N2 models, respectively. The differentially 

expressed genes (DEGs) between the two groups were 

detected using the R package limma at P < 0.001. TAN-

related DEGs were detected using a Cox proportional 

hazards regression analysis (P < 0.01). A TAN-related 

signature was developed using the Least Absolute 

Shrinkage and Selection Operator (LASSO) regression 

algorithm [13]. LASSO and glmnet package in R were 

used for feature selection and cross-validation (10 times), 

respectively. 

 

A new signature containing TAN-related DEGs was 

predicted by calculating the risk score of each sample as 
follows: 

Risk Score i (Coef i Exp Gene)=    

https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.ncbi.nlm.nih.gov/gds/
https://www.ncbi.nlm.nih.gov/gds/
https://dcc.icgc.org/
https://dcc.icgc.org/
https://www.cbioportal.org/
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where “Coef” and “Exp Gene” represent the non-zero 

regression coefficients obtained through the LASSO 

regression analysis and the expression values of the 

genes, respectively. 

 

Functional enrichment analysis 

 

Enrichment analysis is widely used to explore gene 

function and associated high-level genomic information. 

In this study, enrichment evaluation was conducted 

using Gene Ontology (GO) and Kyoto Encyclopedia of 

Genes and Genomes (KEGG) via R’s Cluster Profiler 

package [14]. Additionally, Gene Set Variation 

Analysis (GSVA) was used to assess the correlation 

between genes and pathway scores via the “GSVA” R 

package [15]. 

 

Prediction of molecular docking potential 

 

AutodockVina 1.2.2 [16], a computational protein-

ligand docking software, was used to study the binding 

strengths and interactions between CXCL2 and 

CXCR1/2. The molecular structures of CXCL2 and 

CXCR1/2 were obtained from PubChem compound 

[17] (https://pubchem.ncbi.nlm.nih.gov/), while their 

3D coordinates were downloaded from the PDB 

(http://www.rcsb.org/) [18]. The protein and molecular 

files were converted into the PDBQT format, which 

involved excluding water molecules and adding polar 

hydrogen atoms. The grid box was centered to 

encompass the protein domain and provide room for 

molecular movement. 

 

In vitro experiment 

 

Cell line  

Human kidney cell line (293T) and a ccRcc cell line 

(Caki-1) were obtained from the Authenticated Cell 

Culture Compilation of China to investigate the 

amounts of CXCL in non-cancerous and cancerous 

kidney cells. The cell lines were treated following the 

guidelines of the Authenticated Cell Culture 

Compilation of China. 

 

CXCL mRNA and protein analysis 

 

CXCL expression levels between non-cancerous and 

cancerous kidney cells were compared using Q-PCR, 

western blot (WB), and Elisa assay, as previously 

described. TOYOBO ReverTra Ace was used for 

quantitative RT-PCR with TOYOBO primers. Primary 

antisera directed against the GAPDH and CXCL genes, 

and secondary antisera from Boiss (Beijing, China), 

were utilized in the WB analysis. GAPDH was utilized 

as an internal control. Image J program was utilized to 

analyze western blot images. Hilink’s (Nanchang, 

China) CXCL2 Elisa assay kit was used to measure 

CXCL2 protein levels. 

 

Cell transfection 

 

Three siRNAs targeting CXCL2 were obtained from 

General Biology Company, China, for transfection 

analysis. Quantitative PCR was employed to evaluate 

the efficiency of transfecting cells. The siRNA with the 

lowest CXCL2 expression was chosen for functional 

study. 

 

CCK-8 and Transwell assays 

 

The CCK-8 assay was utilized to assess the proliferation 

of renal carcinoma cells via Dojindo’s ECC Kit-8 

(Enhanced Cell Counting Kit-8, Japan), following the 

manufacturer’s protocols. The migratory and invasive 

capabilities of kidney carcinoma cell lines were 

evaluated using Transwell assays. 

 

Sunitinib in vitro resistance analysis 

 

Sunitinib maleate was obtained from MedChemExpress 

(New York, USA, product ID: HY-10255A). The 

Caki-1 cell line was treated with increasing doses of 

sunitinib. A CCK-8 assay was conducted after sunitinib 

treatment for over 48 hours to analyze cell survivability. 

GraphPad Prism software was used to draw the 

medication sensitivity curves and determine IC50 

values. 

 

Statistical analysis  

 

R rendition 4.0.3 and GraphPad Prism rendition 9.4 

were used for all data analysis. P < 0.05 was considered 

statistically significant. 

 
Availability of data and materials 

 

The original data used in this study are included in the 

article. The data were obtained from public databases. 

 
RESULTS 
 

Analysis of CXCL mRNA expression in multi-renal 

cancer datasets 

 

Fourteen CXCL genes were found in the Gene Bank 

database (https://www.ncbi.nlm.nih.gov/gene/), includ-

ing CXCL 1, 2, 3, 5, 6, 8, 9, 10, 11, 12, 13, 14, 16, and 

17. The mRNA expression levels of these genes were 

then compared across three renal cancer datasets. 1. The 

mRNA expression of eight genes (CXCL 2, 5, 9, 10, 11, 

13, 14, and 16) was increased in cancer tissue of the 

TCGA-KIRC dataset (Figure 1A-1) (P < 0.05), while 

https://pubchem.ncbi.nlm.nih.gov/
http://www.rcsb.org/
https://www.ncbi.nlm.nih.gov/gene/
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only CXCL 12 was downregulated (P < 0.05). 2. The 

mRNA expression of eight genes (CXCL 1, 2, 5, 6, 8, 9, 

10, and 11) was increased in cancer tissue of the 

GSE15641 dataset (Figure 1A-2) (P < 0.05). 3. The 

mRNA expression of nine genes (CXCL 2, 5, 6, 8, 9, 

10, 11, 13, and 16) was increased in cancer tissue of the 

GSE14762 dataset (Figure 1A-3) (P < 0.05), while 

CXCL 12 and 14 were downregulated (P < 0.05). 

 

 
 

Figure 1. A plot showing the expression of CXCL genes in three datasets, TCGA-KIRC (A-1), GSE14762 (A-2), and GSE15641 (A-3). The 

expression of selected CXCL genes (CXCL 2/5/9/10/11) was upregulated in cancer tissues from the three datasets (A-4). In the TCGA-KIRC 
dataset, the OS and PFS of patients were analyzed. Selected CXCL genes (CXCL 1/2/3/5/8/13/14) were found to influence the prognosis of 
OS as shown in the forest plot (B-1). KM analysis was also performed on CXCL3 (B-2) and CXCL1 (B-3), with CXCL3 showing a P-value of 
0.001 and CXCL1 showing a P-value of < 0.001. In the FPS analysis, CXCL 1/5/13 were associated with prognostic outcomes (C-1), and KM 
analysis was performed on CXCL1 and CXCL5, with CXCL1 showing a P-value of 0.005 and CXCL5 showing a P-value of < 0.001 (C-2, C-3). 
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Further analysis showed that five CXCL genes (CXCL 2, 

5, 9, 10, and 11) had increased mRNA expression in 

renal cancer tissue across all three datasets (Figure 1A-4). 

 

Prognostic value of CXCL expression in the TCGA-

KIRC dataset 

 

The prognostic significance of 14 CXCL genes in ccRcc 

was assessed based on the KIRC dataset. Seven CXCL 

genes (CXCL 1, 2, 3, 5, 8, 13, and 14) significantly 

impacted the overall survival (OS) (P < 0.05, Figure 

1B-1–3), while CXCL 1, 5, and 13 significantly 

affected progression-free survival (FPS) (P < 0.05, 

Figure 1C-1–3). The data were represented based on 

forest plots and KM analysis. 

 

The mechanisms of CXCL gene expression in renal 

cancer: insights from unsupervised cluster analysis 

and immune component analysis 

 

The unsupervised cluster analysis based on the KIRC 

dataset showed that CXCL gene expression levels 

significantly impacted the survival outcomes of renal 

cancer patients (Figure 2A). Moreover, the 

unsupervised cluster analysis identified four CXCL 

subtypes (Supplementary Table 2) with significantly 

different mRNA expressions (P < 0.05, Figure 2C). 

Further analysis using the KM method showed that the 

four subtypes had significantly different OS (Figure 

2B), with subtype 3 having the worst OS and subtype 4 

having the best OS (C1 vs. C3: P < 0.001; C2 vs. C3: 

P < 0.01; C4 vs. C3: P < 0.05). 

 

The difference could be because of the differential 

expression of immune components. xCELL analysis 

showed that the immune components among the four 

subtypes (Figure 2D), including tumor suppressors 

(CD8+ effector, CD8+ central memory, Macrophage 

M1) and tumor promoters (CD4+ Th2, Macrophage 

M2), were significantly different (P < 0.001). 

 

Further analysis revealed that the expression of six main 

immune cells (LAG3, SIGLEC15, CTLA4, HAVCR2, 

PDCD1LG2, and PDCD1) analyzed via TIMER were 

significantly different between subtypes C3 and C4 

(P < 0.01, Figure 2E). For example, the expression of 

the cells was higher in subtype C3 than in subtype C4 

(P < 0.001, Figure 2F). 

 

The potential impact of VHL and PRBM1 mutations on 

the expression of CXCL genes and their tumor 

suppression function were also investigated. CXCL14 

had the highest mutation rate (6%) in KIRC patients 
(Supplementary Figure 1A), while the other 13 CXCL 

genes had a mutation rate of less than 1%. The mutation 

rates of VHL (50%) and PRBM1 (49%) were higher in 

subtype C3 (Figure 2G) than in subtype C4 (less than 

13%, Figure 2H). Finally, a correlation analysis 

indicated that the mutation of VHL and PRBM1 can 

influence the expression of CXCL genes (Figure 2I). 

 

Single cell analysis and pan-cancer analysis 

 

The function and mechanism of CXCL genes were 

evaluated using single-cell analysis based on two 

single-cell datasets of renal cancer, GSE171306 and 

GSE121636. Two samples of GSE171306 

(GSM5222644 and GSM5222645) and three samples of 

GSE121636 (GSM3440844, GSM3440845, and 

GSM3440846) underwent detailed analysis after 

standard data preprocessing. The UMAP method 

identified 24 distinct cell clusters based on 27049 cells 

(Figure 3A-1). The top ten genes with the highest 

expression in each cluster were used to assign cell 

lineages, resulting in the identification of 14 cell types 

(Figure 3A-2), including lymphocytes (CD8+ T cells, 

B cells, NK cells, and CD4+ T cells), myeloid cells 

(monocytes, macrophages, neutrophils, DC cells, and 

mast cells), and other cellular units (endothelial cellular 

units, epithelial cellular units, plasma cellular units, and 

stem cellular units). Two separate plots were drawn for 

GSE121636 (Figure 3A-3) and GSE171306 (Figure  

3A-5). A heat plot of enrichment analysis was also 

drawn (Figure 3A-4). 

 

The expression and distribution patterns of the CXCL 

genes were analyzed via single-cell analysis (Figure 3B, 

3C). CXCL 13 was upregulated in CD8+ T cells and 

CD4+ T cells, while CXCL 2, CXCL 3, CXCL 8, 

CXCL 9, CXCL 10, and CXCL 16 were upregulated in 

B cells. However, CXCL genes were downregulated in 

NK cells. The interaction between CXCL genes and 

myeloid cells showed that CXCL 2, CXCL 3, CXCL 8, 

and CXCL 16 were upregulated in multi-myeloid cells, 

such as monocytes, macrophages, and neutrophils, 

while CXCL 1, CXCL 9, and CXCL 10 were only 

upregulated in macrophages and neutrophils. 

 

The interaction between CXCL genes and immune 

components in a pan-cancer dimension was also 

evaluated. The expressions of CXCL genes in 33 types 

of TCGA datasets were estimated. The immune 

components of 33 types of TCGA cancer patients were 

evaluated using the CIBERSORT method. The 

correlation between CXCL 2, CXCL 3, CXCL 8, CXCL 

9, CXCL 10, and CXCL 16 expressions and B cell 

percentage in different cancers was unclear (Figure 3D-

1). Furthermore, the expression of CXCL 13 was 

positively correlated with CD8+ T cell percentage in 
most cancers, while the correlation between CXCL13 

expression with CD4+ T cell and NK cell was not 

identified (Figure 3D-2). The expression of CXCL 9 
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and CXCL 10 was positively correlated with macrophage 

percentages in most cancers, especially with macrophage 

M1 (Figure 3D-3). Also, the expressions of CXCL 1, 

CXCL 2, CXCL 3, CXCL 8, CXCL 10, and CXCL 16 

positively influenced the percentages of neutrophils in 

most cancers (Figure 3D-4). 

 

 
 

Figure 2. Unsupervised cluster analysis was performed on the TCGA-KIRC dataset to group patients based on the 
expression level of CXCL genes. The results show the distribution of four clusters, CDF plot (A-i) and delta area plot (A-ii) were 
presented. The overall survival (OS) of patients in each cluster was analyzed using KM (B). The expression of CXCL genes was analyzed 
between the clusters (C), and the immune components of the clusters were analyzed using the xCELL and TIMER methods (D, E). The 
immune checkpoints’ expression was also analyzed between the C3 and C4 clusters (F). The mutation condition of patients in the C3 and C4 
clusters was also analyzed (G, H), as well as the correlation between VHL/RBPM1 mutation and the expression of CXCL genes (I). 
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The interaction among CXCL genes was analyzed 

based on the KIRC dataset. The results showed that the 

expression of two clusters (clusters 1 and 2) was 

positively correlated. Cluster one included CXCL 1, 

CXCL 2, CXCL 3, CXCL 5, CXCL 6, and CXCL 8 

(correlation R-value = 0.22 ~ 0.76, Supplementary 

Figure 1B), and cluster two included CXCL 9, CXCL 

10, and CXCL 13 (correlation R-value = 0.59 ~ 0.95). 

 

 
 

Figure 3. Single cell analysis was performed on two datasets, GSE121636 and GSE171306. 24 clusters were identified using the UMAP 

method, and 14 cell types were identified, including lymphocytes (CD8+ T cells, B cells, NK cells, and CD4+ T cells), myeloid cells 
(monocytes, macrophages, neutrophils, DC cells, and mast cells), and other cells (endothelial cells, epithelial cells, plasma cells, and stem 
cells) (A-1 and A-2). An enrichment analysis for the cell components (A-3) was provided. The plots of cell components in the datasets of 
GSE121636 (A-4) and GSE171306 (A-5) were showed, respectively. The expression of CXCL genes was analyzed in lymphocyte and myeloid 
cells (B, C), and the correlation between CXCL genes and cell components was analyzed in a pan-cancer dataset, including CXCL genes and B 
cell (D-1), CXCL13 and T cell (D-2), CXCL genes and Macrophage (D-3), and CXCL genes and Neutrophil (D-4). 
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The relationship between CXCL 13 with CD8+-

exhausted T cells, CXCL 9/10, macrophage M1 cells, 

CXCL 1/2/3/8, and neutrophils in renal cancer 

patients 

 

CXCL 13 and exhausted CD8 T cells  

CXCL13 expression was positively correlated with 

CD8+ T cell percentage in most cancer types. 

Furthermore, CXCL13 expression was significantly 

upregulated in CD8+ T cells. However, KM analysis 

revealed that high CXCL 13 levels in renal cancer 

patients resulted in worse survival outcomes (Figure 

4A-1), while high CD8+ T levels resulted in better 

survival outcomes (Figure 4A-2). The relationship 

between CXCL13 expression and the divergent 

prognostic outcomes of CD8+ T cells in renal cancer 

patients was further evaluated via correlation 

analysis. Several markers of CD8+-exhausted T 

cells, including PDCD1, TOX, CTLA4, TIM-3, 

EOMES, and CD101, in both the KIRC and CM 

datasets, were analyzed. Results revealed that 

CXCL13 expression was related to CD8-exhausted T 

cell markers in both datasets (P < 0.05), especially 

between CXCL13 expression and four markers 

(PDCD1, TOX, CTLA4, and EOMES) (P < 0.001, 

Figure 4A-3). These findings suggest that CXCL13 

may serve as a novel marker for CD8+-exhausted T 

cells. A high CXCL13 expression in renal cancer 

patients may indicate the presence of several CD8+-

exhausted T cells, suggesting that it can suppress 

immune function. 

 

CXCL 9/10 and macrophage M1 cells  

The expression of CXCL 9/10 was significantly 

associated with M1 cell percentage in most cancer 

types, especially in the KIRC and CM datasets, 

(compared with M2 cells) (Figure 4B-1). However, the 

correlation between CXC L9/10 and M1 cells had no 

direct advantage for renal clear cell carcinoma patients 

(Figure 4B-2, 4B-3). 

 

CXCL 1/2/3/8 and neutrophil 

CXCR1/2 can recruit neutrophils from the blood vessel 

into the tumor. Besides, CXCL-CXCR is a common 

molecular pairing model. In this study, CXCR 1/2 

expression was significantly correlated with neutrophil 

percentage (Figure 4C-1). Moreover, CXCL 8 

expression was significantly associated with CXCR 1/2 

expression (Figure 4C-2). The prognostic value of 

neutrophil percentage was explored using KIRC and 

CM datasets. Furthermore, Kaplan-Meier analysis 

showed that neutrophil percentage can predict OS in the 

KIRC cohort (P = 0.03, Figure 4C-3). However, the 
correlation between neutrophil percentage with OS or 

PFS in the CM dataset was not significantly different 

(P > 0.05, Figure 4C-4). 

Although neutrophil density in the tumor was not a 

significant prognostic index, neutrophil polarization 

may be an important prognostic index. 

 

Neutrophil polarization is an important prognostic 

factor for renal cancer patients 

 

Neutrophil polarization is crucial in survival outcomes. 

Different neutrophil phenotypes are associated with 

different survival outcomes. For instance, type 1 

neutrophils (TAN 1) can promote inflammation and 

suppress tumor growth, while type 2 neutrophils 

(TAN 2) promote tumor growth. 

 

In this study, TAN 1/2 markers were extracted from 

relevant studies to assess the prognostic value of 

neutrophil polarization in patients with clear cell renal 

cancer. The patients in the KIRC dataset were subjected 

to an unsupervised cluster analysis (Figure 5A-1, 5A-2). 

Five subtypes had significant prognostic value and were 

used for further analysis (Supplementary Table 3) 

(Figure 5B). The expression analysis of CXCL and 

CXCR 1/2 (Figure 5C-1), survival analysis (Figure  

5C-2), immune component analysis (Figure 5C-4), and 

comparison of TAN 1/2 marker expression (Figure  

5C-3) were then performed to further analyze the five 

subtypes. The C1/2 subtypes were classified as TAN 

1/2 phenotypes (213 patients in the C1 subtype and 160 

patients in the C2 subtype). Compared with the C2 

subtype, the C1 subtype exhibited a more active 

immune function, characterized by huge percentage of 

activated CD8 T cells, NK cells, M1 macrophages, and 

mast cells. Meanwhile, the C2 subtype promoted tumor 

progression and immune suppression and was 

characterized by high percentages of resting CD4+ T 

cell memory, M2 macrophages, resting DC cells, resting 

mast cells, and neutrophils. Further comparison analysis 

showed that most TAN 2 markers were highly 

expressed in the C2 subtype (P < 0.05). Furthermore, 

KM analysis indicated that the C2 subtype was 

associated with worse survival outcomes (OS, P = 

0.0061; FPS, P < 0.0001). The expressions of CXCL 

1/2/3/8 and CXCR 1/2 were higher in the C2 subtype 

than in the C1 subtype (P < 0.001). However, CXCR 

1/2 expression was not significantly different between 

the two subtypes (P > 0.05). 

 

Moreover, a neutrophil polarization signature and 

related risk score were constructed. The neutrophil-

related signature (TAN signature) was developed in 

three steps as follows: 1. Differentially expressed genes 

(DEGs) between the two subtypes were identified via 

the “limma” package in R (P < 0.01, Figure 5D-1 and 
Supplementary Table 4); 2. The DEGs with prognostic 

value (P < 0.01) were further selected in the KIRC 

cohort based on OS analysis (Supplementary Table 5); [3]. 
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Figure 4. The correlation and prognostic analysis of CXCL13 and CD8 exhausted cells (A). The KM analysis (A-1) of CXCL13 in the KIRC 

dataset, (A-2) of CXCL13 and CD8+ T cell percentage combined. The correlation between CXCL13 and markers of CD8 exhausted cell (A-3). 
The correlation and prognostic value of CXCL9/10 and macrophage M1 cells (B). The correlation between CXCL9/10 and three types of 
macrophage cells (B-1), and the forest plot (B-2) showing CXCL9/10 expression level and the percentages of three types of macrophage 
cells in the KIRC dataset. The variance analysis (B-3) of three types of macrophage cells between immunotherapy response and non-
response groups. The correlation and prognostic value of CXCL genes and neutrophil (C). The correlations (C-1) among CXCL genes, 
CXCR1/2, and the percentage of neutrophil in two datasets, as well as the correlation (C-2) between CXCL genes and CXCR1/2. The KM 
analysis (C-3) for the percentage of neutrophil in the KIRC dataset (P = 0.03), and the KM analysis (C-4) for the percentage of neutrophil in 
the CM dataset (P = 0.83). 
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Figure 5. Unsupervised cluster analysis for TAN 1/2 markers in the KIRC dataset. The CDF plot (A-1) and delta area plot (A-2). 

(B) Indicates the KM analysis for the 5 subtypes. (C) Shows the prognostic value and TAN 2 markers for the subtype 1/2. The CXCL genes  
(C-1) for the subtype 1/2, the KM analysis (C-2) for subtype 1/2, the TAN 2 markers (C-3) between subtype 1/2, and the percentage of 
immune components (C-4) for the subtype 1/2. (D) Illustrates the different expression genes and lasso analysis for subtype 1/2. The volcano 
plot (D-1) and the process of lasso analysis (D-2). (E) Shows the prognostic value of TAN-related risk score in the KIRC dataset. The KM 
analysis (E-1) for different risk scores, the ROC time-dependent analysis (E-2), The forest plot of the univariate COX analysis for risk score 
and other clinical information (E-3), The nomogram (E-4). (F) Shows the comparison between 5 different renal cancer-related signatures. 
The ROC time-dependent analysis (F-1) and DCA analysis (F-2). 
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Lasso regression analysis was conducted, and the TAN 

signature was constructed using the remaining genes 

(Figure 5D-2). A total of 150 DEGs were identified (69 

upregulated in the C1 subtype, 81 upregulated in the C2 

subtype), of which 107 genes exhibited significant 

survival values in the KIRC dataset. Finally, the TAN 

signature was constructed using 11 genes (BBOX1, 

TMEM125, SLC16A12, LRRC19, SAA1, SLC38A5, 

SMIM24, PLAUR, CXCL1, CXCL2, and CXCL5). 

Functional enrichment analysis indicated that the DEGs 

were significantly involved in cytokine and cytokine 

receptor functions, and cytokine and cytokine receptor 

interactions in the C2 subtype. Further analysis also 

revealed that CXCL 2/3/5 were among the significant 

DEGs. 

 

The TAN risk score was developed using signature and 

LASSO regression techniques as follows:  

 

Risk Score = (−0.0159) × BBOX1 + (−0.0007) ×  

TMEM125 + (−0.146) × SLC16A12 + (−0.043) ×  

LRRC19 + (0.0217) × SAA1 + (0.0063) × SLC38A5 + 

(−0.0701) × SMIM24 + (0.0179) × PLAUR + (0.0332) ×  

CXCL1 + (0.0141) × CXCL2 + (0.0061) × CXCL5. 

 

KM analysis (Figure 5E-1), time-dependent ROC 

analysis (Figure 5E-2), and COX regression analysis 

(Figure 5E-3) were performed to assess the prognostic 

value of the TAN risk score in patients with renal 

cancer. The analyses confirmed that the TAN risk score 

had some prognostic value in KIRC patients (P < 0.001) 

in the KM analysis and COX regression analysis: AUC 

= 0.77, 0.73, 0.75 after one, = 0.73, after three, and = 

five years, respectively (ROC analysis). The nomogram 

map (Figure 5E-4) showed that the risk score was 

significantly associated with clinical features, such as 

age and TNM stages. Compared with four other renal 

cancer prognostic signatures, ROC analysis (Figure  

5F-1) and DCA (Figure 5F-2) showed that the TAN 

signature had the largest AUC value and the maximum 

area under the curve, respectively. 

 

These results indicate neutrophil polarization is a 

significant prognostic factor for patients with renal clear 

cell cancer. CXCL 1/2/3/8 were upregulated in the TAN 

2 subtype and thus may be positively correlated with the 

TAN 2 phenotype. CXCL 8/CXCR1-2 promotes cancer 

progression in various cancers, while CXCL 2/CXCR1 

facilitates renal clear cell carcinoma. 

 

CXCL2-CXCR1 axis is crucial for neutrophil 

recruitment and polarization 

 
The expression levels of CXCL2 varied among various 

cancers. For example, CXCL 2 was upregulated in 11 

cancers (Figure 6A-1) and downregulated in 10 cancers 

(P < 0.05, Figure 6A-2). CXCL2 also had survival value 

in six cancers (P < 0.05, Figure 6B), especially in renal 

clear cell carcinoma (P = 0.003). 

 

CXCL2 is crucial in neutrophil recruitment into the 

tumor tissue. Herein, CXCL2 expression was correlated 

with neutrophil percentage across multiple cancers 

based on six immune analysis methods (Figure 6C-1), 

suggesting that neutrophil percentage increases with 

increasing CXCL2 expression level. Furthermore, 

CXCL 2 expression was significantly associated with 

CXCL 1/3/8 expression in four datasets of renal clear 

cell carcinoma, especially CXCR 1 (Figure 6C-3). 

CXCR 1/2 are crucial in recruiting neutrophils from 

blood vessels, while CXCL 1/3/8 activates CXCR 1/2 

function. These findings suggest that CXCL 2 

stimulates CXCR 1 and thus can recruit neutrophils into 

the cancer tissue. Also, single-cell analysis revealed that 

CXCL 2 was significantly upregulated in neutrophils 

(Figure 6C-2), indicating that the neutrophils recruited 

by CXCL 2 can secrete more CXCL 2 and recruit 

additional neutrophils. 

 

CXCL 2 participates in neutrophil polarization towards 

TAN 2 phenotype within tumor tissue. In this study, 

CXCL2 expression was upregulated in TAN 2 

phenotype (C2 subtype). Besides, CXCL2 expression 

was positively correlated with TAN risk score 

(P < 0.0001, Supplementary Figure 1E). GSVA analysis 

revealed that CXCL2 expression was associated with 

many pathways, such as apoptosis, angiogenesis, IL-10 

anti-inflammatory signaling, cellular response to 

hypoxia, and glycolysis gluconeogenesis based on the 

KIRC dataset (P < 0.01, Figure 6D-1). CXCL2 

expression was associated with many pathways with the 

pathways in the CM dataset, such as apoptosis, 

angiogenesis, hypoxia, and glycolysis (P < 0.01, Figure 

6D-2). 

 

Further analysis showed that the CXCL2-CXCR1 axis 

is a potential molecular docking site. Although CXCR 

1/2 are potential receptors for CXCL2, CXCL2-CXCR1 

is more likely a molecular docking site because CXCL 

2 expression was significantly correlated with CXCR1 

in three renal cancer datasets (KIRC, P < 0.001; ICGC, 

P < 0.05; CM, P < 0.001), not significantly correlated 

with CXCR2 in the KIRC and ICGC datasets. Besides, 

CXCL 2 expression was negatively correlated with 

CXCR 2 in the GSE15461 dataset. The potential 

molecular docking between CXCL 2 and CXCR 1/2 

was further analyzed using AutodockVina. Five 

potential binding sites for CXCL2-CXCR1 with low 

binding energies (−48.98, −48.2, −48.15, −47.96, and 
−47.63 kcal/mol, respectively) were detected, indicating 

high stability (Figure 6E-1 and Supplementary Figure 

1C). Moreover, one potential binding site with a high 
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Figure 6. CXCL2 expression was upregulated in 11 types of cancer (CESC, COAD, DLBC, ESCA, GBM, KIRC, LGG, READ, STAD, THCA, UCEC), 

with P < 0.05 (A-1). On the other hand, CXCL2 expression was significantly (P < 0.05) downregulated in 10 types of cancer (ACC, BLCA, BLRA, 
KICH, HNSC, LUAD, LUSC, PAAD, PRAD, SKCM) (A-2). (B) Shows that CXCL2 was significantly (P < 0.05) associated with the survival value of 6 
types of cancers (KIRC, BRCA, UVM, SARC, LUSC, ACC). The relationship between CXCL2 expression and neutrophils in various types of 
cancer. The correlation between CXCL2 expression and the percentage of neutrophils in pan-cancer dataset as determined by 6 different 
methods (C-1). CXCL2 expression in different types of cells. CXCL2 expression was highest in neutrophils (C-2). The correlation between 
CXCL2 expression and other CXCL genes, specifically CXCR1 and CXCR2 (C-3). The expression level of CXCL2 was positively correlated with 
various pro-tumor pathways in two renal cancer datasets. In the first dataset of KIRC (D-1), CXCL2 expression level was positively correlated 
with 6 pro-tumor pathways, including Angiogenesis, Inflammatory response, fatty acid elongation, EMT pathway, cellular response to 
hypoxia, and anti-inflammatory signaling pathway (P < 0.01). In the second dataset (D-2), CXCL2 expression was positively correlated with 9 
key pro-tumor pathways (P < 0.01), such as apoptosis, hypoxia, P53 pathway, and glycolysis. Molecular docking analysis of CXCL2 and its 
receptors. Interaction models between CXCL2 and CXCR1 (E-1) and CXCR2 (E-2) were developed. These models provided insights into the 
molecular mechanisms behind the positive correlations between CXCL2 expression and pro-tumor pathways. 
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binding energy of 4759 kcal/mol was also identified, 

indicating low stability (Figure 6E-2 and Supplementary 

Figure 1D). 

 

Therefore, these results indicate that CXCL2 activates 

CXCR 1 and recruits neutrophils into the tumor tissue 

through interaction with CXCR 1. Additionally, CXCL2 

promotes neutrophil polarization within the tumor 

towards the TAN 2 phenotype, thus facilitating cancer 

progression. Furthermore, CXCL2 can promote the 

growth, penetration, and movement of renal clear cell 

carcinoma cells in a laboratory setting through the 

activation of the EMT process. 

 

The CXCL2 enhanced the proliferation, invasion 

and migration of renal clear cell carcinoma’s cells by 

activating the EMT pathway 

 

The expression of CXCL2 at mRNA and protein levels 

was measured by Quantitative PCR (Q-PCR) and 

western blotting. The results showed that the mRNA 

and protein levels of CXCL2 in the caki-1 cell line were 

higher (P < 0.01, Figure 7A, 7B) compared with levels 

in the 293T cell line. To explore the correlation between 

CXCL2 expression and the function of renal clear cell 

carcinoma cells, CXCL2 was downregulated in the 

caki-1 cell line. Three caki-1 cell lines with CXCL2 

knockdown were generated, and the cell line with the 

lowest CXCL2 expression (siRNA-227 cell line) was 

selected for further functional experiments (Figure 7C). 

 

Functional comparison between the caki-1 cell line and 

siRNA-227 cell line was performed in terms of 

proliferation, invasion, and migration. The results 

showed that the siRNA cell line exhibited a weaker 

proliferation ability (determined by CCK-8 assay, 

P < 0.01, Figure 7D), reduced invasion (Transwell 

assay, P < 0.01, Figure 7E-1), and migration (Transwell 

assay, P < 0.01, Figure 7E-2) compared with the caki-1 

cell line. 

 

 
 

Figure 7. The mRNA expression of CXCL2 was measured using Q-PCR (A). The protein expression of CXCL2 was measured using western 

blotting (B). In the caki-1 cell line, the down-regulation of CXCL2 was performed (C). The impact of CXCL2 down-regulation on cell 
proliferation was measured using CCK-8 assay (D). The impact on migration (E-1) and invasion (E-2) was measured using Transwell assay. 
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The protein concentration of CXCL2 in the 

extracellular medium of renal clear cell carcinoma has 

been identified as an important factor contributing to 

cancer development. The protein concentration of 

CXCL2 in the medium was first compared between 

the siRNA-227 cell line and caki-1 cell line. Analysis 

of ELSA results demonstrated that CXCL2 was 

downregulated in the siRNA-227 cell line (P < 0.01, 

Figure 8A). Furthermore, the effects of human 

recombinant CXCL2 protein (SB, product ID: 10586-

HNCE) on the cell proliferation, infiltration, and 

migration were investigated by incubation with three 

different concentrations of the caki-1 cell culture 

medium (1 ng/ml, 10 ng/ml, and 100 ng/ml). The 

results indicated that the caki-1 cell line which had the 

highest concentration of human recombinant CXCL2 

protein (100 ng/ml, CXCL2 group) exhibited 

increased proliferation activity (P < 0.01, Figure 8B), 

increased invasion (P < 0.01, Figure 8C-1, 8C-2), and 

migration (P < 0.01, Figure 8C-1, 8C-2) compared 

with the control group (NC). Furthermore, the caki-1 

cell line with 100 ng/ml human recombinant CXCL2 

protein showed increased resistance to sunitinib 

(MCE, product ID: SU11248) compared with the NC 

group (NC group vs. CXCL2 group IC50: 6.9 vs. 

8.8 μm, Figure 8E-1). 

 

Considering that CXCL2 promoted the progression of 

renal clear cell carcinoma via inducing activation of 

the EMT process, we added the EMT pathway 

inhibitor (EMT inhibitor-1, 10 uM/mL, product ID: 

HY-101275) to the medium containing 100 ng/mL of 

human recombination CXCL2 protein (EMT group). 

Subsequently, invasion, migration, and sunitinib 

resistance were then explored in three cell lines 

(CXCL2 group, EMT group, and NC group). Results 

indicated that the EMT group had reduced invasion 

and migration abilities (Figure 8E-2, 8E-3 and 

Supplementary Figure 2) compared with the CXCL2 

group. Moreover, the IC50 test revealed that the EMT 

group had a lower value relative to the CXCL2 group 

(5.4 vs. 8.8 uM, Figure 8E-1). The expression of 

markers of the EMT pathway (E-cadherin, N-

cadherin, Twist1, Vimentin, and Snail1) in the three 

groups was quantified by Q-PCR. Results showed that 

while E-cadherin was lower in the CXCL2 group, N-

cadherin, Twist1, Vimentin, and Snail1 were higher 

compared with levels in the NC group. Further 

analysis showed that E-cadherin was increased while 

N-cadherin, Twist1, Vimentin, and Snail1 were 

decreased in the EMT group (Figure 8D) compared 

with levels in the CXCL2 group. These findings 

suggest that addition of the human recombination 
CXCL2 protein activated the EMT pathway in the 

caki-1 cell line, and activated CXCL2 inhibited the 

EMT pathway. 

DISCUSSION 
 

The function of CXCL genes, particularly CXCL8, in 

tumor development has been extensively studied [19]. 

CXCL8, the key ligand of CXCR1/2, is overexpressed 

in various solid tumors and has been shown to promote 

tumor development [20]. However, the functions of 

other CXCL genes in different types of cancers are 

largely unknown. This study highlights the crucial role 

of CXCL genes in patients with ccRCC. Specifically, 

the expression level of the genes was associated with 

the survival outcomes of patients. A single-cell analysis 

revealed three pairs of CXCL genes and immune cells, 

which were validated through pan-cancer analysis. The 

present results demonstrate that CXCL genes can 

influence cancer progression by regulating immune 

cells. 

 

In particular, our results showed that elevated 

expression of CXCL13 was correlated with poor 

survival outcomes in ccRCC patients. Moreover, we 

found a positive correlation between the expression 

levels of CXCL13 and CD8+ exhausted T cells, which 

is in line with findings from previous reports in other 

types of solid tumors. The relationship between elevated 

levels of CXCL13 and negative outcomes in patients 

has been previously reported in several solid tumors 

[21]. The CXCL13-CXCR5 axis, which drives B cell 

recruitment, is believed to have a vital role in this 

phenomenon [22]. In a 2021 study, high expression of 

CXCL13 was correlated with high levels of CD8+ T 

cells in ovarian cancer, and the authors demonstrated 

that the CXCL13-CXCR5 axis was involved in CD8+ T 

cell recruitment [23]. A single-cell meta-analysis of 

nine datasets from immunotherapy (ICI) trials revealed 

that CD8+ T cells expressing CXCL13 can be potential 

predictors of ICI outcomes, with CXCL13 being 

recognized as a marker for CD8+ exhausted cells in 

2022 [24]. In our study, the conflicting prognostic 

results for CXCL13 and CD8+ T cells in ccRcc patients 

could not be explained initially. However, further 

analysis revealed a significant positive correlation 

between the expression levels of CXCL13 and markers 

for CD8+ exhausted T cells, which provided a 

hypothesis suggesting a potential link between CXCL13 

and CD8+ exhausted T cells. Further investigations are 

required to fully explore the function of CXCL13 in this 

context. 

 

In this study, single-cell and pan-cancer analysis 

revealed that CXCL9/10 plays a role in M1-polarized 

tumor-associated macrophages in ccRcc patients. M1 

macrophages produce angiostatic substances which 

regulate the development of immunity response against 

cancer and CXCL10 has been identified as a marker of 

M1 macrophages. Furthermore, in a single-cell analysis 
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of breast cancer [25, 26], it was found that high 

expression of CXCL9/10 in M1 macrophages was 

linked to better response to immune checkpoint 

inhibitor therapy. Similarly, high expression of 

CXCL9/10 was observed in macrophage cells in renal 

cancer datasets, with a strong correlation with M1 

macrophages in the KIRC and CM datasets. However, 

our analysis of CXCL9/10 levels and the percentage of 

 

 
 

Figure 8. The protein concentration of CXCL2 in the extracellular medium as determined using ELISA (A). The impact of three 

concentrations of human recombinant CXCL2 protein on cell proliferation as determined by the CCK-8 assay (B). The impact on 
migration and invasion as evaluated using the Transwell assay (C-1, C-2). The mRNA expression of EMT markers was in three different 
cell culture environments (D). The migration, invasion, and resistance to sunitinib outcomes in three different cell culture environments 
(E-1–E-3). 
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M1 cells did not reveal any significant association with 

prognostic results or response to immune checkpoint 

inhibitors in ccRcc patients. 

 

CXCL1/2/3/8, on the other hand, was significantly 

associated with the overall survival of ccRcc patients. In 

addition, there was a correlation between CXCL1/2/3/8 

and neutrophils in renal clear cell carcinoma. To 

understand the potential mechanism of these genes and 

neutrophil in ccRcc patients, we analyzed the density of 

neutrophil in renal cancer. Activation of CXCR1/2 by 

CXCL genes is a key factor regulating the recruitment of 

neutrophils into the cancer site [27]. However, the 

percentage of neutrophils in ccRcc patients was not found 

to be an independent prognostic indicator, despite the 

strong association of CXCR1/2 with the density of 

neutrophil, as well as between CXCL1/2/3/8 and 

CXCR1/2 in the two ccRcc patient datasets. Another 

potential mechanism is the neutrophil polarization. In our 

analyses, we found that different TAN phenotypes had 

distinct influence on the prognostic outcomes. TAN1/2 

phenotypes had pro-tumor or tumor suppressor properties 

in various types of cancers, such as melanoma [28], head 

and neck cancer [29], and HCC [30]. Several CXCL 

genes have been recognized to be potential markers of 

TAN2 phenotype, such as CXCL5, which has been 

reported to independently predict reduced overall 

survival duration and total risk of reoccurrence in liver 

cancer patients [31]. CXCL8 can stimulate the 

transformation of neutrophils towards the TAN2 

phenotype by upregulating GM-CSF and HGF in HCC 

tissues [32]. In our study, we identified more than 100 

genes with significant prognostic value between TAN1/2 

phenotypes, suggesting that the mechanisms of 

neutrophil polarization may be driven by multiple genes. 

Additionally, we constructed a TAN phenotype-based 

signature and risk score for ccRcc patients. The 

performance of the signature was compared with four 

other renal cancer signatures. Results showed that our 

signature had the highest AUC value based on the ROC 

and maximum area under the curve in DCA, suggesting 

that TAN phenotype has a more significant function in 

ccRcc patients compared with the immune phenotype 

[33], fatty acid metabolism [34], amino acid metabolism 

[35], and autophagy [36]. 

 

Moreover, our results revealed that CXCL2 promoted 

renal clear cell carcinoma progression through multiple 

mechanisms. Firstly, CXCL2 (one ligand of CXCR1/2) 

was associated with tumor-associated neutrophil 

recruitment in the KIRC and CM datasets. Further 

analysis of molecular docking results confirmed the 

stable binding of CXCL2 to CXCR1. Secondly, CXCL2 
may serve as a novel marker of TAN 2 phenotype, and 

is strongly associated with the TAN 2 phenotype 

functions such as apoptosis, angiogenesis, anti-

inflammatory signaling, hypoxia, and glycolysis-

gluconeogenesis. Thirdly, CXCL2 was found to directly 

enhance the malignant features of carcinoma cells such 

as proliferation, invasion, and migration. The EMT 

pathway, as analyzed through GSVA in KIRC, was 

verified to be a key mechanism by which CXCL2 

regulated renal clear cell carcinoma cells. 

 

Furthermore, we identified three pairs of interactions 

between CXCL genes and the specific immune cells in 

renal clear cell carcinoma samples: CXCL13-CD8+ 

exhausted T cells, CXCL 9/10-M1, and CXCL 1/2/3/8-

neutrophil polarization for cancer. However, the 

mechanisms regulating these interactions are poorly 

understood, and thus further in vivo experiments are 

advocated to provide deeper understanding of the 

intricate interactions between TME and cancer cells. To 

further test the function of CXCL2 on the tumor 

microenvironment and neutrophil polarization, we plan 

to conduct additional in vivo experiments. 

 

CONCLUSION 
 

Seven CXCL genes (CXCL 1/2/3/5/8/13/14) can 

influence the prognosis of ccRcc patients, and three pairs 

of interactions between CXCL genes and immune cells 

(CXCL13- CD8+ exhausted T cells, CXCL 9/10 and M1 

cells, CXCL 1/2/3/8 and neutrophils) were identified in 

this study. CXCL2 can attract and regulate neutrophils 

thereby participate in the progression of ccRcc. 

 

AUTHOR CONTRIBUTIONS 
 

SJW wrote the initial draft of the manuscript, WRJ and 

TJE edited the manuscript, GJG, CY, FZH, and CXN 

analyzed the data, and YJX, SXL created the images 

and performed the experiments. All authors revised the 

manuscript and approved the submitted version. 

 

ACKNOWLEDGMENTS 
 

We acknowledge the support of the Home for 

Researchers (https://www.home-for-researchers.com), 

Xiantao (https://www.xiantao.love/products), and other 

tools that were freely used in this study. 

 
CONFLICTS OF INTEREST 
 

The authors declare no conflicts of interest related to 

this study. 

 

FUNDING 
 

This study was funded by the Medicine and Health 

Program of Zhejiang Province (2022KY366) and the 

https://www.home-for-researchers.com/
https://www.xiantao.love/products


www.aging-us.com 7990 AGING 

Public Welfare Projects of Huzhou Science and 

Technology Bureau (2021GY34). 

 

REFERENCES 
 
1. Propper DJ, Balkwill FR. Harnessing cytokines and 

chemokines for cancer therapy. Nat Rev Clin Oncol. 
2022; 19:237–53. 
https://doi.org/10.1038/s41571-021-00588-9 
PMID:34997230 

2. Waldmann TA. Cytokines in Cancer Immunotherapy. 
Cold Spring Harb Perspect Biol. 2018; 10:a028472. 
https://doi.org/10.1101/cshperspect.a028472 
PMID:29101107 

3. Wang Z, Liu Y, Mo Y, Zhang H, Dai Z, Zhang X, Ye W, 
Cao H, Liu Z, Cheng Q. The CXCL Family Contributes to 
Immunosuppressive Microenvironment in Gliomas 
and Assists in Gliomas Chemotherapy. Front 
Immunol. 2021; 12:731751. 
https://doi.org/10.3389/fimmu.2021.731751 
PMID:34603309 

4. Wang Z, Jensen MA, Zenklusen JC. A Practical Guide 
to The Cancer Genome Atlas (TCGA). Methods Mol 
Biol. 2016; 1418:111–41. 
https://doi.org/10.1007/978-1-4939-3578-9_6 
PMID:27008012 

5. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, 
Tomashevsky M, Marshall KA, Phillippy KH, Sherman 
PM, Holko M, Yefanov A, Lee H, Zhang N, et al. NCBI 
GEO: archive for functional genomics data sets--
update. Nucleic Acids Res. 2013; 41:D991–5. 
https://doi.org/10.1093/nar/gks1193 
PMID:23193258 

6. Mafficini A, Scarpa A. Genomic landscape of 
pancreatic neuroendocrine tumours: the 
International Cancer Genome Consortium. J 
Endocrinol. 2018; 236:R161–7. 
https://doi.org/10.1530/JOE-17-0560 
PMID:29321190 

7. Braun DA, Hou Y, Bakouny Z, Ficial M, Sant' Angelo M, 
Forman J, Ross-Macdonald P, Berger AC, Jegede OA, 
Elagina L, Steinharter J, Sun M, Wind-Rotolo M, et al. 
Interplay of somatic alterations and immune 
infiltration modulates response to PD-1 blockade in 
advanced clear cell renal cell carcinoma. Nat Med. 
2020; 26:909–18. 
https://doi.org/10.1038/s41591-020-0839-y 
PMID:32472114 

 8. Yu W, Ma Y, Hou W, Wang F, Cheng W, Qiu F, Wu P, 
Zhang G. Identification of Immune-Related lncRNA 
Prognostic Signature and Molecular Subtypes for 
Glioblastoma. Front Immunol. 2021; 12:706936. 
https://doi.org/10.3389/fimmu.2021.706936 

PMID:34899682 

 9. Sturm G, Finotello F, Petitprez F, Zhang JD, Baumbach 
J, Fridman WH, List M, Aneichyk T. Comprehensive 
evaluation of transcriptome-based cell-type 
quantification methods for immuno-oncology. 
Bioinformatics. 2019; 35:i436–45. 
https://doi.org/10.1093/bioinformatics/btz363 
PMID:31510660 

10. Wu P, Heins ZJ, Muller JT, Katsnelson L, de Bruijn I, 
Abeshouse AA, Schultz N, Fenyö D, Gao J. Integration 
and Analysis of CPTAC Proteomics Data in the Context 
of Cancer Genomics in the cBioPortal. Mol Cell 
Proteomics. 2019; 18:1893–8. 
https://doi.org/10.1074/mcp.TIR119.001673 
PMID:31308250 

11. Mangiola S, Doyle MA, Papenfuss AT. Interfacing 
Seurat with the R tidy universe. Bioinformatics. 2021; 
37:4100–7. 
https://doi.org/10.1093/bioinformatics/btab404 
PMID:34028547 

12. Keeley T, Costanzo-Garvey DL, Cook LM. Unmasking 
the Many Faces of Tumor-Associated Neutrophils and 
Macrophages: Considerations for Targeting Innate 
Immune Cells in Cancer. Trends Cancer. 2019; 5:789–98. 
https://doi.org/10.1016/j.trecan.2019.10.013 
PMID:31813456 

13. McEligot AJ, Poynor V, Sharma R, Panangadan A. 
Logistic LASSO Regression for Dietary Intakes and 
Breast Cancer. Nutrients. 2020; 12:2652. 
https://doi.org/10.3390/nu12092652 
PMID:32878103 

14. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R 
package for comparing biological themes among gene 
clusters. OMICS. 2012; 16:284–7. 
https://doi.org/10.1089/omi.2011.0118 
PMID:22455463 

15. Hänzelmann S, Castelo R, Guinney J. GSVA: gene set 
variation analysis for microarray and RNA-seq data. 
BMC Bioinformatics. 2013; 14:7. 
https://doi.org/10.1186/1471-2105-14-7 
PMID:23323831 

16. Eberhardt J, Santos-Martins D, Tillack AF, Forli S. 
AutoDock Vina 1.2.0: New Docking Methods, 
Expanded Force Field, and Python Bindings. J Chem 
Inf Model. 2021; 61:3891–8. 
https://doi.org/10.1021/acs.jcim.1c00203 
PMID:34278794 

17. Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, 
Shoemaker BA, Thiessen PA, Yu B, Zaslavsky L, Zhang 
J, Bolton EE. PubChem in 2021: new data content and 
improved web interfaces. Nucleic Acids Res. 2021; 
49:D1388–95. 

https://doi.org/10.1038/s41571-021-00588-9
https://pubmed.ncbi.nlm.nih.gov/34997230
https://doi.org/10.1101/cshperspect.a028472
https://pubmed.ncbi.nlm.nih.gov/29101107
https://doi.org/10.3389/fimmu.2021.731751
https://pubmed.ncbi.nlm.nih.gov/34603309
https://doi.org/10.1007/978-1-4939-3578-9_6
https://pubmed.ncbi.nlm.nih.gov/27008012
https://doi.org/10.1093/nar/gks1193
https://pubmed.ncbi.nlm.nih.gov/23193258
https://doi.org/10.1530/JOE-17-0560
https://pubmed.ncbi.nlm.nih.gov/29321190
https://doi.org/10.1038/s41591-020-0839-y
https://pubmed.ncbi.nlm.nih.gov/32472114
https://doi.org/10.3389/fimmu.2021.706936
https://pubmed.ncbi.nlm.nih.gov/34899682
https://doi.org/10.1093/bioinformatics/btz363
https://pubmed.ncbi.nlm.nih.gov/31510660
https://doi.org/10.1074/mcp.TIR119.001673
https://pubmed.ncbi.nlm.nih.gov/31308250
https://doi.org/10.1093/bioinformatics/btab404
https://pubmed.ncbi.nlm.nih.gov/34028547
https://doi.org/10.1016/j.trecan.2019.10.013
https://pubmed.ncbi.nlm.nih.gov/31813456
https://doi.org/10.3390/nu12092652
https://pubmed.ncbi.nlm.nih.gov/32878103
https://doi.org/10.1089/omi.2011.0118
https://pubmed.ncbi.nlm.nih.gov/22455463
https://doi.org/10.1186/1471-2105-14-7
https://pubmed.ncbi.nlm.nih.gov/23323831
https://doi.org/10.1021/acs.jcim.1c00203
https://pubmed.ncbi.nlm.nih.gov/34278794


www.aging-us.com 7991 AGING 

https://doi.org/10.1093/nar/gkaa971 
PMID:33151290 

18. Burley SK, Berman HM, Kleywegt GJ, Markley JL, 
Nakamura H, Velankar S. Protein Data Bank (PDB): 
The Single Global Macromolecular Structure Archive. 
Methods Mol Biol. 2017; 1607:627–41. 
https://doi.org/10.1007/978-1-4939-7000-1_26 
PMID:28573592 

19. Huang Z, Li Z, Chen X, Zhu X, Zhang J, Song Y, Cao Y, 
Lu P. Comparison between Clinical Utility of CXCL-8 
and Clinical Practice Tumor Markers for Colorectal 
Cancer Diagnosis. Biomed Res Int. 2022; 
2022:1213968. 
https://doi.org/10.1155/2022/1213968 
PMID:36567905 

20. Zadian SS, Adcock IM, Salimi B, Mortaz E. Circulating 
Levels of Monocytic Myeloid-Derived Suppressor Cells 
(M-MDSC) and CXCL-8 in Non-Small Cell Lung Cancer 
(NSCLC). Tanaffos. 2021; 20:15–21. 
PMID:34394365 

21. Jin K, Cao Y, Gu Y, Fang H, Fei Y, Wang J, Liu X, Lv K, 
He X, Lin C, Liu H, Li H, He H, et al. Poor clinical 
outcomes and immunoevasive contexture in 
CXCL13+CD8+ T cells enriched gastric cancer patients. 
Oncoimmunology. 2021; 10:1915560. 
https://doi.org/10.1080/2162402X.2021.1915560 
PMID:33996266 

22. Workel HH, Lubbers JM, Arnold R, Prins TM, van der 
Vlies P, de Lange K, Bosse T, van Gool IC, Eggink FA, 
Wouters MCA, Komdeur FL, van der Slikke EC, 
Creutzberg CL, et al. A Transcriptionally Distinct 
CXCL13+CD103+CD8+ T-cell Population Is Associated 
with B-cell Recruitment and Neoantigen Load in 
Human Cancer. Cancer Immunol Res. 2019; 7:784–96. 
https://doi.org/10.1158/2326-6066.CIR-18-0517 
PMID:30872264 

23. Yang M, Lu J, Zhang G, Wang Y, He M, Xu Q, Xu C, Liu 
H. CXCL13 shapes immunoactive tumor 
microenvironment and enhances the efficacy of PD-1 
checkpoint blockade in high-grade serous ovarian 
cancer. J Immunother Cancer. 2021; 9:e001136. 
https://doi.org/10.1136/jitc-2020-001136 
PMID:33452206 

24. Liu B, Zhang Y, Wang D, Hu X, Zhang Z. Single-cell 
meta-analyses reveal responses of tumor-reactive 
CXCL13+ T cells to immune-checkpoint blockade. Nat 
Cancer. 2022; 3:1123–36. 
https://doi.org/10.1038/s43018-022-00433-7 
PMID:36138134 

25. Bassez A, Vos H, Van Dyck L, Floris G, Arijs I, 
Desmedt C, Boeckx B, Vanden Bempt M, Nevelsteen 
I, Lambein K, Punie K, Neven P, Garg AD, et al. 

A single-cell map of intratumoral changes during 
anti-PD1 treatment of patients with breast cancer. 
Nat Med. 2021; 27:820–32. 
https://doi.org/10.1038/s41591-021-01323-8 
PMID:33958794 

26. Zhang Y, Chen H, Mo H, Hu X, Gao R, Zhao Y, Liu B, 
Niu L, Sun X, Yu X, Wang Y, Chang Q, Gong T, et al. 
Single-cell analyses reveal key immune cell subsets 
associated with response to PD-L1 blockade in triple-
negative breast cancer. Cancer Cell. 2021; 39:1578–
93.e8. 
https://doi.org/10.1016/j.ccell.2021.09.010 
PMID:34653365 

27. Rajarathnam K, Schnoor M, Richardson RM, Rajagopal 
S. How do chemokines navigate neutrophils to the 
target site: Dissecting the structural mechanisms and 
signaling pathways. Cell Signal. 2019; 54:69–80. 
https://doi.org/10.1016/j.cellsig.2018.11.004 
PMID:30465827 

28. Jensen TO, Schmidt H, Møller HJ, Donskov F, Høyer 
M, Sjoegren P, Christensen IJ, Steiniche T. 
Intratumoral neutrophils and plasmacytoid dendritic 
cells indicate poor prognosis and are associated with 
pSTAT3 expression in AJCC stage I/II melanoma. 
Cancer. 2012; 118:2476–85. 
https://doi.org/10.1002/cncr.26511 
PMID:21953023 

29. Trellakis S, Bruderek K, Dumitru CA, Gholaman H, Gu 
X, Bankfalvi A, Scherag A, Hütte J, Dominas N, 
Lehnerdt GF, Hoffmann TK, Lang S, Brandau S. 
Polymorphonuclear granulocytes in human head and 
neck cancer: enhanced inflammatory activity, 
modulation by cancer cells and expansion in 
advanced disease. Int J Cancer. 2011; 129:2183–93. 
https://doi.org/10.1002/ijc.25892 
PMID:21190185 

30. Li YW, Qiu SJ, Fan J, Zhou J, Gao Q, Xiao YS, Xu YF. 
Intratumoral neutrophils: a poor prognostic factor for 
hepatocellular carcinoma following resection. 
J Hepatol. 2011; 54:497–505. 
https://doi.org/10.1016/j.jhep.2010.07.044 
PMID:21112656 

31. Zhou SL, Dai Z, Zhou ZJ, Wang XY, Yang GH, Wang Z, 
Huang XW, Fan J, Zhou J. Overexpression of CXCL5 
mediates neutrophil infiltration and indicates poor 
prognosis for hepatocellular carcinoma. Hepatology. 
2012; 56:2242–54. 
https://doi.org/10.1002/hep.25907 
PMID:22711685 

32. He M, Peng A, Huang XZ, Shi DC, Wang JC, Zhao Q, Lin 
H, Kuang DM, Ke PF, Lao XM. Peritumoral stromal 
neutrophils are essential for c-Met-elicited metastasis 

https://doi.org/10.1093/nar/gkaa971
https://pubmed.ncbi.nlm.nih.gov/33151290
https://doi.org/10.1007/978-1-4939-7000-1_26
https://pubmed.ncbi.nlm.nih.gov/28573592
https://doi.org/10.1155/2022/1213968
https://pubmed.ncbi.nlm.nih.gov/36567905
https://pubmed.ncbi.nlm.nih.gov/34394365
https://doi.org/10.1080/2162402X.2021.1915560
https://pubmed.ncbi.nlm.nih.gov/33996266
https://doi.org/10.1158/2326-6066.CIR-18-0517
https://pubmed.ncbi.nlm.nih.gov/30872264
https://doi.org/10.1136/jitc-2020-001136
https://pubmed.ncbi.nlm.nih.gov/33452206
https://doi.org/10.1038/s43018-022-00433-7
https://pubmed.ncbi.nlm.nih.gov/36138134
https://doi.org/10.1038/s41591-021-01323-8
https://pubmed.ncbi.nlm.nih.gov/33958794
https://doi.org/10.1016/j.ccell.2021.09.010
https://pubmed.ncbi.nlm.nih.gov/34653365
https://doi.org/10.1016/j.cellsig.2018.11.004
https://pubmed.ncbi.nlm.nih.gov/30465827
https://doi.org/10.1002/cncr.26511
https://pubmed.ncbi.nlm.nih.gov/21953023
https://doi.org/10.1002/ijc.25892
https://pubmed.ncbi.nlm.nih.gov/21190185
https://doi.org/10.1016/j.jhep.2010.07.044
https://pubmed.ncbi.nlm.nih.gov/21112656
https://doi.org/10.1002/hep.25907
https://pubmed.ncbi.nlm.nih.gov/22711685


www.aging-us.com 7992 AGING 

in human hepatocellular carcinoma. Oncoimmunology. 
2016; 5:e1219828. 
https://doi.org/10.1080/2162402X.2016.1219828 
PMID:27853643 

33. Shen J, Wang R, Chen Y, Fang Z, Tang J, Yao J, Ling Y, 
Zhang L, Zhang X. An Immune-Related Signature 
Predicted Survival in Patients With Kidney Papillary 
Cell Carcinoma. Front Oncol. 2021; 11:670047. 
https://doi.org/10.3389/fonc.2021.670047 
PMID:34164341 

34. Wang R, Shen J, Chen Y, Gao J, Yao J. Fatty acid 
metabolism-related signature predicts survival in 
patients with clear cell renal carcinoma. Aging 
(Albany NY). 2022; 14:9969–79. 
https://doi.org/10.18632/aging.204433 
PMID:36516496 

35. Cheng X, Deng W, Zhang Z, Zeng Z, Liu Y, Zhou X, 
Zhang C, Wang G. Novel amino acid metabolism-
related gene signature to predict prognosis in clear 
cell renal cell carcinoma. Front Genet. 2022; 
13:982162. 
https://doi.org/10.3389/fgene.2022.982162 
PMID:36118874 

36. He M, Li M, Guan Y, Wan Z, Tian J, Xu F, Zhou H, Gao 
M, Bi H, Chong T. A New Prognostic Risk Score: Based 
on the Analysis of Autophagy-Related Genes and 
Renal Cell Carcinoma. Front Genet. 2022; 12:820154. 
https://doi.org/10.3389/fgene.2021.820154 
PMID:35237298 

 

https://doi.org/10.1080/2162402X.2016.1219828
https://pubmed.ncbi.nlm.nih.gov/27853643
https://doi.org/10.3389/fonc.2021.670047
https://pubmed.ncbi.nlm.nih.gov/34164341
https://doi.org/10.18632/aging.204433
https://pubmed.ncbi.nlm.nih.gov/36516496
https://doi.org/10.3389/fgene.2022.982162
https://pubmed.ncbi.nlm.nih.gov/36118874
https://doi.org/10.3389/fgene.2021.820154
https://pubmed.ncbi.nlm.nih.gov/35237298


www.aging-us.com 7993 AGING 

SUPPLEMENTARY MATERIALS 
 

One year ago, we authored the initial draft of our 

research paper and submitted it to the pre-print 

section of Nature Research Square 

(https://www.researchsquare.com/article/rs-1550360/v1). 

Over the past year, we conducted a comprehensive 

series of bioinformatics studies and in vitro 

experiments, incorporating the novel findings into the 

revised version of our paper. Upon comparison of the 

current version with the initial draft, we discovered 

that Figure 7 was present in both iterations, whereas 

several other figures have been omitted. 

 
 

  

https://www.researchsquare.com/article/rs-1550360/v1
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Supplementary Figures 
 

 
 

Supplementary Figure 1. (A) The mutation condition of CXCL genes in the KIRC dataset; (B) The correlation between CXCL genes in KIRC 

the dataset; (C, D) The correlation between CXCL2 gene expression and pathway ssGSVA score, c KIRC, d CM; (E) The correlation between 
CXCL2 gene expression and TAN related risk score. 
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Supplementary Figure 2. The cell invasion and migration abilities under three conditions: control group, the CXCL2 
(100 ng/ml) group, and CXCL2 (100 ng/ml) combined with EMT inhibitor 1 group. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 2–5. 

 

Supplementary Table 1. The markers from two TAN subtypes (N2 subtype was pro-tumoral and N1 subtype was 
anti-tumoral) from the literature. 

TAN 1 marker TAN 2 marker 

ARG1 ARG1 

CCL3 IL-6 

CXCL10 IL-17 

CXCL9 IL-8 

H2O2 CXCL5 

IFNB1 G-CSF 

IL-1B TGFB1 

IL-8 GM-CSF 

NETS TNF 

ROS MPO 

TNF CXCL2 

 CCL2 

 CCL5 

 CCL3 

 CCL17 

 ROS 

 NE 

 VEGF 

 H2O2 

 MMP9 

 HGF 

 OSM 

 NETS 

 

 

Supplementary Table 2. Two subtypes information for TCGA-KIRC patients. 

 

Supplementary Table 3. Five subtypes information for TCGA-KIRC patients. 

 

Supplementary Table 4. Differentially expressed genes (DERs) between the C1/2 subtypes. 

 

Supplementary Table 5. DERs with prognostic value. 

 


