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INTRODUCTION 
 

It was reported that lung cancer (LC) was one of the 

most common malignant tumors worldwide and the 

leading cause of cancer-related mortality [1]. In 2020, 

over 2.2 million new cases were diagnosed as LC 

globally, and more than 1.8 million people died of LC. 

As the primary subtype of LC, lung adenocarcinoma 

(LUAD) accounts for more than 40% of LC cases [2,  

3]. In recent years, new diagnostic techniques and 

treatment strategies, such as immunotherapy, have been 

emerging and prominently prolonged the survival time 

of LUAD patients [3]. However, the 5-year survival rate 

of LUAD patients remains <20% [4, 5]. Therefore, 

there is an urgent need to identify more biomarkers for 

diagnosis and prognostic assessment in LUAD, which 

may be helpful to risk stratification and increase the 

long-term survival rate of LUAD patients. 

 
Programmed cell death, such as apoptosis and autophagy, 

could enable cells to coordinate their end, thereby 

benefiting living organisms [6, 7]. Recently, Liu et al. 

proposed a novel form of cell death named disulfidptosis. 

The main mechanism of disulfidptosis is that accumulating 
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intracellular disulfides caused by cells starved of glucose 

in SLC7A11high cells could bond in actin cytoskeleton 

proteins [8, 9]. In addition, excessive cystine uptake 

could couple with the insufficient supply of NADPH, 

causing NADPH depletion, aberrant disulfide bonding 

in actin cytoskeleton proteins, F-actin collapse, and 

subsequent cell death [8]. Distinct from apoptosis and 

ferroptosis, deleting BAX and BAK, fatty acid 

oxidation inhibitors, did not prevent death, and iron was 

not required [8]. The results reported a new cell death 

model, disulfide stress-mediated disulfidptosis, and a 

viable therapeutic strategy to target disulfidptosis in 

cancer treatment. However, the disulfidptosis process in 

LUAD and relevant disulfidptosis-related genes related 

to the prognosis remains to be further elucidated. 

 

This study collected mRNA expression profiles from 

The Cancer Genome Atlas (TCGA; https://www.cancer. 

gov) and Gene Expression Omnibus (GEO; https://www. 

ncbi.nlm.nih.gov) to investigate the expression of 

disulfidptosis-related genes (DRGs). Then, we utilized 

disulfidptosis-related genes to construct a DRGs model 

for predicting the clinical outcome in LUAD. Lastly, we 

explored the expression profiles of disulfidptosis-related 

genes with Single-cell RNA sequencing (scRNA-seq). 
 

RESULTS 
 

The expression profile of 23 DRGs 

 

As shown in Figure 1A, among 23 DRGs, 3 DRGs (GYS1, 

NDUFA11, ACTN4) were located at Chromosome 20. 

In addition, 3 DRGs (LRPPRC, NCKAP1, NDUFS1) 

were situated at Chromosome 2. 2 DRGs (FLNB, RPN1) 

were found at Chromosome 3. 2 DRGs (NUBPL, INF2) 

were located at Chromosome 14.  

 

 

 

Figure 1. The expression of 23 DRGs in LUAD. (A) Location of 23 DRGs in chromosomes. (B) The different expression of DRGs between 
normal and LUAD tissues. (C) The correlation network of 23 DRGs. (D) The mutation frequency of 23 DRGs. Abbreviations: DRGs: 
Disulfidptosis-related genes; LUAD: Lung adenocarcinoma; N: normal tissues. *P < 0.05, **P < 0.01, ***P < 0.001. 
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Others (CAPZB, SLC7A11, CD2AP, ACTB, TLN1, 

PDLIM1, SLC3A2, MYL6, IQGAP1, MYH10, DSTN, 

MYH9, FLNA) were located at Chromosome 4, 6, 7, 9, 

10, 11, 12, 15, 17, 21, 22, and X, respectively. The 

Wilcoxon rank-sum test showed significantly different 

expressions in 22 DRGs, except for ACTN4, between 

normal and tumor tissues (Figure 1B). The correlation 

among 23 DRGs was presented in Figure 1C. Among 

23 DRGs, 15 DRGs had gene mutation, although the 

mutation frequency for each DRGs was relatively low 

(Figure 1D). 
 

Establishment and evaluation of a DRGs model 
 

We utilized the least absolute shrinkage and selection 

operator (LASSO) regression (LASSO) analysis to 

analyze 23 DRGs and determined 8 DRGs highly 

related to the overall survival (OS) of LUAD patients in 

the TCGA set (Figure 2A). Then, those 8 DRGs were 

subjected to the multivariate Cox regression analysis. 5 

candidate DRGs (ACTB, FLNB, NCKAP1, SLC3A2, 

SLC7A11) were screened out and used to build a 

prognostic model (Figure 2B) and a risk score formula 

to calculate the risk score of all patients. The risk score 

formula was presented as follows. The Kaplan–Meier 

plots demonstrated that all 5 DRGs were unfavorable 

factors for the clinical outcomes of LUAD patients 

(Figure 2C–2G). Figure 2H showed the correlation 

among 5 DRGs. According to the optimal cut-off risk 

score: 0.987, patients were divided into low- and high-

risk groups. The principal component analysis (PCA) 

revealed that the samples in two risk groups were 

distributed in different areas (Figure 2I). 

 

 

Risk score (0.430 expof ACTB)

(0.248 expof FLNB)

(0.408 exp of NCKAP1)

(0.336 exp of SLC3A11)

(0.153 exp of SLC7A11)

= 

+ 

+ 

+ 

+ 

 

 

Next, we calculated the area under the curve (AUC) 

value and the c-index in each set to estimate the

 

 
 

Figure 2. Construction of a DRGs model in TCGA set. (A) The LASSO regression analysis to filter out prognosis-related DRGs. (B) The 
multivariate Cox regression analysis to develop a DRGs model. (C–G) Survival analysis of 5 candidate DRGs (ACTB, FLNB, NCKAP1, SLC3A2, 
SLC7A11). (H) The correlation network of 5 candidate DRGs. (I) Patients in different risk groups gathering in two areas in PCA analysis. 
Abbreviations: LASSO: Least absolute shrinkage and selection operator; PCA: Principal component analysis. 
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predictive accuracy of the DRGs model. The results 

showed the AUC values and c-index based on risk score 

in all sets were higher than that based on clinical 

indexes (age, gender, smoking, TNM stage), hinting 

that the DRGs model performed well in predicting 

clinical outcomes of LUAD patients (Figure 3A, 3B). In 

addition, the calibration plot in each set revealed that 

when the line angle is 45°, it represents the best 

prediction result, indicating that the DRGs model had a 

good predictive ability (Figure 3C). 

 

Correlation between DRGs model and clinical 

characteristics 

 

The distributions of samples with different TNM stage 

(P = 0.003), tumor size (P < 0.003), and lymph node 

metastasis (P = 0.025) were significantly diverse between 

different risk groups (Figure 4A). Moreover, there  

was a significant difference in the risk scores among 

patients with varying tumor sizes (P < 0.001, Figure 

4E). Similar results were observed among patients with 

different TNM stages (Figure 4H). The risk score 

significantly increased in female patients (P = 0.042, 

Figure 4C) or with lymph node metastasis (P = 0.009, 

Figure 4F). However, we did not find the effect of age 

(Figure 4B), smoking (Figure 4D) and distant metastasis 

(Figure 4G) on the risk score. 

 

The DRGs model is an independent prognostic 

factor for the prognosis of LUAD 

 

The Kaplan–Meier plot in the TCGA set illustrated that 

the high-risk score predicted poorer clinical outcomes 

(P < 0.001, Figure 5A). It was confirmed in GEO set 1 

(P < 0.001, Figure 5B), GEO set 2 (P < 0.001, Figure 

5C), and GEO set 3 (P < 0.001, Figure 5D). Furthermore, 

stratification analyses demonstrated the low-risk patients 

had a better prognosis in each subgroup (Supplementary 

Figure 1). 

 

To compare the DRGs model with clinical parameters 

(age, gender, stage, tumor size, lymph node metastasis, 

and distance metastasis), we performed the univariate 

and multivariate Cox regression model. The univariate 

Cox regression model showed that the DRGs model was 

an essential prognosis-related influence factor (HR = 

3.423, 95% CI (2.431, 4.820), P < 0.001, Figure 5E). 

The multivariate Cox regression model demonstrated 

that the DRGs model was an independent prognostic 

factor for the OS of LUAD patients (HR = 3.316,

 

 
 

Figure 3. Evaluation of the DRGs model. (A) The time-dependent AUC value in each set. (B) The time-dependent C-index in each set. 

(C) The calibration plots of each set. Abbreviations: AUC: The area under the curve; C-index: concordance index. 
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95% CI (2.300, 4.782), P < 0.001, Figure 5F).  

Similar results were observed in GEO set 1, 2, and 3 

(Supplementary Figure 2). 

 

Gene set enrichment analysis (GSEA) 

 

Then, we performed the GSEA to explore the altered 

biological roles and signaling pathways between the 

low- and high-risk group. A total of 27 pathways were 

enriched, including Pathways in cancer, P53 signaling 

pathway, and so on, that were highly associated with 

tumorigenesis and development (Figure 6A). Figure 6B, 

6C presented the top 5 pathways enriched in high- and 

low-risk groups. 

 

Tumor mutational burden (TMB) 

 

The mutational landscape showed that the frequent 

mutation events in the low-risk group (96.53%) were 

more than that in the high-risk group (90.99%) (Figure 

7A, 7B). In the high-risk group, the most frequently 

mutated gene was TTN (50%), followed by TP53 (50%) 

and MUC56 (44%). In the low-risk group, the top 3 

frequently mutated genes were TP53 (45%), TTN 

(43%), and CSMD3 (38%). However, there was no 

difference in TMB between the two risk groups 

(P = 0.180, Figure 7C). Survival analysis revealed that 

high TMB had a better prognosis in LUAD patients 

(P = 0.008, Figure 7D). Furthermore, it could better 

predict prognosis when combining the TMB and the 

risk score (Figure 7E). 

 

Investigation of the relation of the DRGs model to 

the immune statue 

 

We applied the single-sample gene set enrichment 

analysis (ssGSEA) to analyze the level of 15 tumor-

infiltrating immune cells (TIICs) and the activity of 13 

 

 
 

Figure 4. Correlation between risk score and clinical characteristics. (A) The distribution of clinical characteristics between 

high- and low-risk groups. (B) The difference of risk score between Age ≤65 and Age >65, (C) different gender, (D) smoking and non-
smoking, (E) tumor size, (F) with and without lymph node metastasis, (G) with and without distance metastasis, (H) different TNM 
stage. **P < 0.01. 
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immune-related functions. The results demonstrated that 

the enrichment scores of 9 TIICs (aDCs, B cells, CD8 T 

cells, iDCs, Mast cells, Neutrophils, Tfh, Th1 cells, 

TIL) in the low-risk group were significantly enhanced 

(Figure 8A). Similar results were observed in 4 

immune-related functions (Check-point, HLA, T cell 

co−stimulation, Type II IFN response, Figure 8B). The 

immune score in the high-risk group was significantly 

higher than in the low-risk group (Figure 8C). The 

TIDE score and Exclusion score in the high-risk group 

were increased (Figure 8D), whereas the IPS values  

of PD-1/PD-L1 and CTLA4 were decreased (Figure 

8E). Drug sensitivity analysis manifested a significant 

difference in the sensitivity of 47 anti-tumor drugs 

between high- and low-risk groups (Supplementary 

Figure 3). 

 

scRNA-seq analysis 

 

Before filtering, there were 45,632 features for 23,747 

cells in the 8 LUAD samples. Then, we performed  

data standardization and quality control and finally 

selected 18,977 cells and the top 2000 highly expressed 

and variable genes for further analysis. The PCA  

for reducing data dimensionality reduction revealed  

no noticeable separation trend of cells. Nonlinear 

 

 
 

Figure 5. The DRGs model is an independent prognostic factor for the prognosis of LUAD. Survival difference between high- and 

low-risk groups (A) in TCGA set, (B) GEO set 1, (C) GEO set 2, (D) GEO set 3. (E) The univariate Cox regression analyses of risk score and 
clinical characteristics in TCGA set. (F) The multivariate Cox regression analyses of risk score and clinical characteristics in TCGA set. 
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dimension reduction was performed with the t-Stochastic 

Neighbor Embedding (t-SNE) algorithm, which success-

fully clustered the cells into 14 clusters (Figure 9A). 

Then, we annotated all clusters, and 11 cell types were 

identified (Figure 9B). In addition, the expression level 

of SLC7A11 and SLC3A2 were most abundant in 

Epithelial cells (Figure 9D). NCKAP1 and FLNB had 

the highest expression in Endothelial cells. ACTB was 

expressed in most cell types. However, the expression 

level in Naive CD4 T was the richest. In this study, 

cluster 2, 8, and 13 were annotated into Epithelial cells, 

which mainly contained cancer cells and cancer stem 

cells. Thence, we included the Epithelial cells in the 

pseudo-time cell differentiation trajectory analysis. The 

results were presented in Figure 9F and demonstrated 

the evolutionary pattern of Epithelial cells. Based on the 

ordering of pseudotime, Epithelial cells (cluster 2) were 

divided into Epithelial cells (cluster 8) and Epithelial 

cells (cluster 13). Figure 9G showed the 5 candidate 

DRGs expression in different developmental states. 

Finally, we further analyzed the Epithelial cells with the 

t-SNE algorithm and clustered Epithelial cells into 6 

sub-clusters (Figure 9C). The expression of SLC7A11, 

SLC3A2, NCKAP1, and ACTB in sub-cluster 4 was 

highest, whereas FLNB in sub-cluster 2 was highest 

(Figure 9E). 

 

Construction of a prognostic nomogram 

 

Using clinical characteristics (age, gender, smoking, TNM 

stage) and risk score, we develop a prognostic nomogram 

in TCGA set for predicting 1-, 3-, and 5-year OS of 

LUAD patients (Figure 10A). The AUCs and c-index  

in each set were more than 0.7 (Figure 10B, 10C). In 

addition, the calibration plot showed an optimally fit 

with the ideal model (Figure 10D). 
 

DISCUSSION 
 

It has been reported that the incidence rate of LC is 

continuously rising because of smoking, air pollution, 

and other factors. Also, the morbidity of LUAD, the 

most common pathological subtype of LC, is increasing 

[1, 10]. Despite emerging advanced diagnostic and 

therapeutic means which have extensively upgraded the 

long-term quality of life and survival rate of LUAD 

patients, the 5-year survival rate is still <20% [4, 5]. 

The most commonly used method for clinical treatment 

 

 

 

Figure 6. Gene set enrichment analysis (GSEA) between high- and low-risk groups. (A) 27 pathways enriched in GSEA. (B) Top 5 

pathways enriched in high-risk group. (C) Top 5 pathways enriched in low-risk group. Abbreviations: FDR: False discovery rate; NES: 
Normalized enrichment score. 
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and prognosis prediction in LUAD is the TNM stage. 

Nevertheless, numerous studies have shown that, 

although patients had the same TNM stage and therapy 

strategy, the prognosis was different, indicating that 

prognosis prediction only relying on the TNM stage 

maybe not be enough to evaluate the clinical outcomes 

in LC [11]. Therefore, identifying more accurate tumor-

specific biomarkers of LUAD for further guiding 

clinical decisions and prognostic evaluation remains a 

top priority. 

 
Recently, a novel cell death model: disulfidptosis, has 

been proposed, which was induced by disulfide stress 

and markedly distinguished from any of the commonly 

studied forms of regulated cell death [8, 9]. In the cell 

death model, the excessive accumulation of intracellular 

disulfide molecules causes disulfide stress and bond to 

actin cytoskeleton proteins, subsequently leading to actin 

network collapse and cell death. In the process, NADPH 

could suppress disulfidptosis via resolving disulfide 

bonding to actin cytoskeleton proteins. There is no doubt 

that the concept would benefit a further and more 

comprehensive understanding of cell death mechanisms, 

which may provide a practicable therapeutic means by 

targeting disulfidptosis in cancer treatment. However, 

up to now, no research has been reported on the role of 

disulfidptosis in LUAD. Herein, we would investigate 

the expression of DRGs in LUAD and the predictive 

value of DRGs in LUAD. 

 
Firstly, we analyzed the differential expression of  

DRGs between normal and LUAD tissues and found  

the expression of 22 DGRs except for ACTN4 in 

LUAD tissues was significantly increased/decreased 

compared with normal tissues, implying the process of 

disulfidptosis in LUAD underwent drastically changed. 

Then, we took advantage of LASSO analysis and 

multivariate Cox regression analysis to develop a DRGs 

model for predicting the prognosis of LUAD patients 

with 5 candidate DRGs (ACTB, FLNB, NCKAP1, 

SLC3A2, SLC7A11). The AUC value and C-index 

based on the DRGs model in 4 sets were all more than 

0.7 and significantly superior to that based on clinical 

parameters (age, gender, TNM stage, and smoking). 

Furthermore, the calibration plot demonstrated the 

consistency between the survival rate predicted by the

 

 

 
Figure 7. The tumor mutation burden characteristics in low- and high-risk group. (A) Mutational landscape in the low-risk group. 

(B) Mutational landscape in the high-risk group. (C) The difference in TMB between two groups. (D) Survival difference between high- and 
low-TMB. (E) Survival analysis of TMB along with risk score. Abbreviation: TMB: Tumor mutational burden. 
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DRGs model and the actual survival rate. All data 

suggested that the established prognostic model is stable 

enough to estimate the prognosis of LUAD patients. 

 

We divided all samples into low- and high-risk groups 

according to the risk-score formula. The survival analysis 

illustrated that patients in the high-risk group exerted 

poorer clinical outcomes. And stratification analyses 

confirmed the results. Moreover, the univariate and 

multivariate Cox regression model indicated that the 

risk score was an independent prognostic factor in LUAD 

patients. The above data manifested that disulfidptosis 

was highly associated with the prognosis of LUAD 

patients, and the DRGs model could provide a good 

prediction of the clinical outcomes. 

To determine the potential biological process changes 

between the low- and high-risk groups, we executed a 

GSEA analysis. The results showed 27 pathways were 

enriched. Of note, several immune-related pathways 

were identified in the low-risk group, including Primary 

immunodeficiency, Intestinal immune network for IgA 

production, etc. For further investigating the relation of 

the DRGs model to the immune status, we appraised the 

difference in the level of TIICs, the activity of immune-

related functions, and the response to immunotherapy 

between the two groups. Interestingly, in the low-risk 

group, patients had a higher level of TIICs and better 

immune function, which may be why those patients had 

better treatment responses to immune therapy and better 

prognosis. 

 

 

 
Figure 8. The relation of the DRGs model to immune statue. Comparison of the enrichment score of (A) TIICs, (B) immune-related 

functions, (C) TME, (D) TIDE score, (E) The immunophenoscore value between low- and high-risk groups. *P < 0.05, **P < 0.01, ***P < 0.001. 
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The application of Next Generation Sequencing (NGS) 

provides a practicable means for exploring human cell 

transcription patterns [12]. Traditional method is cost-

effective and measures the total RNA of all cells. Still, 

it fails to consider the heterogeneity of cancer cells, 

which poses substantial challenges in diagnosing and 

treating cancer [13]. To uncover the expression profiles 

of DRGs in different cell types in LUAD tissue, we 

 

 
 

Figure 9. scRNA-seq data analysis. (A) The t-SNE algorithm divided the cells into 14 clusters by 20 principal components. (B) The tSNE 

plot revealing 14 clusters was annotated into 11 different cell types. (C) The t-SNE algorithm divided Epithelial cells into 6 sub-clusters. 
(D) The expression of 5 candidate DRGs in 11 cell types, (E) in 6 Epithelial cells sub-clusters. (F) The trajectory analysis of Epithelial cells 
with top 10 marker genes. (G) 5 candidate DRGs expression in different developmental states. Abbreviations: ScRNA-seq: Single-cell RNA 
sequencing; t-SNE: t-Stochastic Neighbor Embedding. 
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performed scRNA-seq analysis. All cells were clustered 

into 14 clusters and annotated to 11 cell types. CD8  

T cell was the most abundant cell. CD8 T cells are 

classified into naive like, cytotoxic, and dysfunctional 

CD8 T cells based on their differentiation status. CD8 T 

cells have the ability to selectively detect and eradicate 

cancer cells. However, the sustained antigen stimulation 

of the tumor itself is considered one of the main 

driving factors for T cell dysfunction. In order to 

eliminate the tumor cells, T cells will enter the tumor 

microenvironment from the peripheral circulation. 

Because of this, the proportion of CD8 T cells in the 

tumor microenvironment will significantly increase. In 

addition, three clusters (2, 8, 13) were annotated to 

Epithelial cells. Tumor Epithelial cells mainly contain 

cancer cells and cancer stem cells. Then, we pictured 

the transcriptional differentiation trajectory of the 

epithelial cells. The results demonstrated that Epithelial 

cells (clusters 2) differentiate into two clusters (cluster 8 

and 13), implying the heterogeneity of cancer cells. 

 

Herein, we developed a DRGs model to predict the  

OS in LUAD patients. However, some limitations still 

need to be addressed. (1) All data were gathered from 

two public databases: TCGA and GEO, and lacking 

sufficient experimental evidence and animal models  

to verify the results, which may lead to potential 

selection bias. (2) This study was retrospective, and 

prospective validations were still needed. (3) All data 

used in the study were from microarray expression and 

RNA-seq (RNA sequencing). And the specific role of 

disulfidptosis progress remains relatively enigmatic and 

 

 
 

Figure 10. Construction of a prognostic nomogram. (A) A nomogram for predicting the 1-, 3-, and 5-year overall survival rate in LUAD 

patients. (B) The time-dependent AUC value. (C) The time-dependent C-index. (D) The calibration plot. 
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warrants further investigation. (4) Herein, we performed 

stratification analyses and determined the significant 

survival difference between the low- and high-risk 

groups. However, due to lacking information of therapies 

like surgery, targeted therapy, and immunotherapy in 

most patients, we could not homogenize the treatment and 

evaluate the predictive effectiveness and accuracy of the 

IRGPs signature in patients with surgery, targeted therapy, 

and immunotherapy. It may bring biased prognosis 

predictions. 

 

Together, in the study, we investigated the expression 

profile of DRGs and constructed a predictive DRGs 

model for predicting the prognosis of LUAD patients. 

Evidence showed that the model was stable and reliable 

for predicting LUAD prognosis. Our research provided 

a novel understanding of the predictive value of 

disulfidptosis progress in LUAD and will be helpful for 

the prognosis evaluation of LUAD patients. 

 
MATERIALS AND METHODS 
 

Patients set 

 

Four independent sets, including 1306 samples, were 

collected from TCGA and GEO databases in the study. 

TCGA set (n = 465) was from TCGA-LUAD and level  

3 RNA sequencing. GEO set 1 (n = 432), GEO set 2 

(n = 83), and GEO set 3 (n = 226) were from GSE68465 

[14], GSE30219 [15], and GSE31210 [16], respectively. 

The gene expression profile in GSE68465, GSE30219, 

GSE31210 was raw data and normalized with the robust 

multi-array average algorithm via the R package Affy 

(3.17). The corresponding clinical data of all patients were 

also collected. Patients lacking pathologic diagnosis, 

survival time, or survival status would be removed. All 

patients’ detailed demographic and baseline information 

was presented in Table 1. ScRNA-seq data from 8 human 

LUAD samples were gathered from the GSE171145 [17] 

dataset in the GEO database. Disulfidptosis-related genes 

were obtained from previous literature [8, 9, 18, 19]. 

 

Establishment and evaluation of a disulfidptosis-

related genes model (DRGs) model 

 

In the TCGA set, we investigated the difference in  

the expression of 23 DRGs between normal and  

LUAD tissues with the Wilcoxon rank-sum test. Then, 

we preliminary identified prognosis-related genes among 

23 DRGs using the least absolute shrinkage and 

selection operator (LASSO) regression analysis with R 

package “glmnet” (4.0.2). Under the minimum lambda, 

genes with coefficient ≠ 0 were chosen for screening 
genes. The iteration was set as 1,000 and 10-fold cross-

validations to avoid overfitting. Then, the screened 

genes were subjected to the multivariate Cox regression 

analysis to filter candidate genes and develop a DRGs 

model for predicting the prognosis of LUAD. The risk 

score was calculated as Risk score = h0(t) × exp 

(β1X1 + β2X2 + … + βnXn), where β refers to the 

regression coefficient; X represented the gene 

expression level; h0(t) is the benchmark risk function. 

Also, a risk score formula was formed, and patients’ 

risk scores were calculated. Finally, we used the “surv 

cutpoint” functions of the package “Survminer” (0.4.9) 

in R to determine the optimal cut-off value of risk score, 

which divided patients into low- and high-risk groups. 

Based on the cut-off value, patients in GEO set 1, 2, and 

3 were also divided into two groups. 

 

The AUC value and the c-index in four sets were 

calculated to assess the predictive capacity of the DRGs 

model. The calibration plot with a boot-strapping set of 

1,000 resamples was also pictured to investigate the 

predictive accuracy of the DRGs model. 

 
GSEA 

 
The GSEA was performed to explore the altered 

biological roles and signaling pathways between the 

low- and high-risk group with the R package 

“clusterProfiler” (4.2.2). The “c2.cp.v7.2.symbols.gmt 

(Curated)” was selected as annotated gene set. The false 

discovery rate (FDR) <0.05 was set as the threshold. 

 
Assessment of the relation of the DRGs model to the 

immune statute and drug sensitivity 

 
The R package: GSVA (3.1.7) was applied to carry  

out the ssGSEA reflecting the level of TIICs and the 

activity of immune-related functions. The R package: 

“ESTIMATE” (1.0.13) was used to calculate the immune 

and stromal score in the tumor microenvironment. The 

immunophenoscore (IPS) value of samples was gathered 

from The Cancer Immunome Atlas (TCIA, https://tcia.at) 

to present the response to immune checkpoint inhibitors 

treatment [20]. The TIDE score was collected from Tumor 

Immune Dysfunction and Exclusion (TIDE, http://tide. 

dfci.harvard.edu). The higher TIDE score represents the 

worse response to immune therapy. 

 

We took advantage of the R package “pRRophetic” 

(version 6) [21] to calculate the semi-inhibitory concen-

tration values of commonly used anti-tumor drugs for 

LUAD to look for variations in the efficacy of medicines 

between the two groups. P < 0.01 was set as the cut-off 

value. 

 
TMB 
 

The DNA somatic mutation data of corresponding 

LUAD patients were also downloaded from TCGA and 

https://tcia.at/
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Table 1. The baseline characteristics of lung adenocarcinoma patients in this study. 

Parameter TCGA cohort GEO cohort 1 GEO cohort 2 GEO cohort 3 

Database TCGA-LUAD GSE68465 GSE30219 GSE31210 

Age 

≤65 235 (50.53%) 224 (51.85%) 60 (72.29%) 176 (77.88%) 

>65 230 (49.46%) 208 (48.15%) 23 (27.71%) 50 (22.12%) 

Gender 

Female 248 (53.33%) 214 (49.54%) 36 (43.37%) 121 (53.54%) 

Male 217 (46.67%) 218 (50.46%) 47 (56.63%) 105 (46.46%) 

Smoking 

Never 62 (13.33%) 50 (11.57%) 0 115 (55.88%) 

Ever 384 (82.58%) 290 (67.13%) 0 111 (49.12%) 

NA 19 (4.08%) 92 (21.30%) 83 (100%) 0 

TNM stage 

I 264 (56.77%) 149 (34.50%) 64 (77.11%) 114 (50.44%) 

II 103 (22.15%) 216 (50.00%) 13 (15.66%) 78 (34.51%) 

III 73 (15.70%) 67 (15.50%) 6 (7.23%) 34 (15.05%) 

IV 25 (5.38%) 0 0 0 

Tumor size 

T1 162 (34.84%) 148 (34.26%) 56 (67.47%) NA 

T2 241 (51.83%) 245 (56.71%) 17 (20.48%) NA 

T3 44 (9.46%) 28 (6.48%) 10 (12.05%) NA 

T4 18 (3.87%) 11 (2.55%) 0 NA 

NA 0 0 0 226 (100%) 

Lymph node 

N0 316 (67.96%) 298 (68.98%) 73 (87.95%) NA 

N1-3 149 (32.04%) 134 (31.02%) 10 (12.05%) NA 

NA 0 0 0 226 (100%) 

Metastasis 

M0 442 (95.05%) 432 (100%) 83 (100%) NA 

M1 23 (4.95%) 0 0 NA 

NA 0 0 0 226 (100%) 

Survival status 

Alive 305 (65.60%) 203 (46.99%) 40 (48.19%) 191 (84.51%) 

Dead 160 (34.40%) 229 (53.01%) 43 (51.81%) 35 (15.49%) 

Risk score 

Low 219 (47.10%) 232 (53.70%) 45 (54.22%) 86 (38.05%) 

High 246 (52.90%) 200 (46.30%) 38 (45.78%) 140 (61.95%) 

Total 465 (100%) 432 (100%) 83 (100%) 226 (100%) 

Abbreviations: TCGA: The Cancer Genome Atlas; GEO: Gene Expression Omnibus; NA: represents information not available. 

 
further analyzed with the “maftools” R package (3.17). 

The ChromPlot function in the “maftools” R package 

was used to visualize the output results. The results were 

presented with waterfall diagram to show the variation 

distribution of genes with high somatic mutation frequency 

in LUAD samples and two different groups. Further, it 

was used to evaluate the difference in survival of the 

patients classified in the high-TMB and low-TMB 

groups. 

 

scRNA-seq data processing 

 

The R package: “Seurat” (3.4) [22] was used to analyze 

the transcript count matrix for quality control and 
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preliminary data exploration. The filtering threshold 

was set as follows: 

 

Excluding genes detected in less than 3 cells 

Excluding cells with <50 genes detected 

Excluding cells with >10% mitochondrial gene 

expression 

 
Then, the expression profiles were normalized with the 

Log Normalization algorithm and were subsequently 

normalized using a linear regression model. The top 2000 

highly expressed and variable genes were selected for 

PCA to determine significant and influential dimensions. 

The t-SNE algorithm was used to reduce the dimension 

of the top 20 principal components and gather major 

cell clusters. The marker genes between difference 

clusters were identified with |log2 (fold change) |>1 and 

adjusted P value < 0.05 as the threshold. Cell annotation 

was carried out with the “SingleR” package (3.17) [23] 

and reports from the literature [24–26]. Finally, single-

cell trajectory analysis was performed with the “Monocle 

2 algorithm” [27]. 

 
Statistical analysis 

 
The categorical data were presented as Numbers and 

compared with the chi-square test. The measurement 

data were presented as Mean ± standard deviation  

(SD) and compared with the Wilcoxon rank-sum test. 

Correlation analysis was performed with the Spearman 

correlation test. Survival analysis was performed with 

the Kaplan–Meier plot and compared by the log-rank 

method. Finally, the univariate and multivariate Cox 

regression analysis determined the independent prognostic 

predictors. P < 0.05 was set as the cut-off value. All 

statistical analyses were conducted with R 4.1.1 (https:// 

www.r-project.org). 

 
Availability of data and materials 

 
Bulk RNA-seq data were analyzed in this study,  

this data can be found at: The Cancer Genome Atlas 

(TCGA-LUAD, https://portal.gdc.cancer.gov) and Gene 

Expression Omnibus (GSE68465, GSE31210, and GSE 

30219; https://www.ncbi.nlm.nih.gov). ScRNA-seq data 

were collected from GEO-GSE171145. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Stratification analyses of overall survival between high- and low-risk patients in different subgroup. 
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Supplementary Figure 2. The univariate Cox regression analysis of risk score and clinical characteristics in (A) GEO set 1, (B) GEO set 2, 

(C) GEO set 3. The multivariate Cox regression analysis of risk score and clinical characteristics in (D) GEO set 1, (E) GEO set 2, (F) GEO set 3. 
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Supplementary Figure 3. Drug sensitivity analysis between high- and low-risk patients. 
 


