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INTRODUCTION 
 

Glioblastoma (GBM) is the deadliest and most aggressive 

tumor in the adult central nervous system. Standardized 

treatment combining surgical resection with maximum 

safety range, radiotherapy, adjuvant temozolomide (TMZ) 

chemotherapy and tumor-treating fields (TTF) results in 

median survival time of adult patients with GBM 18 
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ABSTRACT 
 

Glioblastoma (GBM) is the most malignant and prevalent primary brain tumor. In this study, weighted gene 
coexpression network analysis (WGCNA) was performed to analyze RNA binding protein (RBP) expression data 
from The Cancer Genome Atlas (TCGA) for the IDH-wild type GBM cohort. The CIBERSORT algorithm quantified 
the cellular composition of immune cells and was used to identify key modules associated with CD8+ T cell 
infiltration. Coexpression networks analysis and protein-protein interaction (PPI) network analysis was used to 
filter out central RBP genes. Eleven RBP genes, including MYEF2, MAPT, NOVA1, MAP2, TUBB2B, CDH10, TTYH1, 
PTPRZ1, SOX2, NOVA2 and SCG3, were identified as candidate CD8+ T cell infiltration-associated central genes. A 
Cox proportional hazards regression model and Kaplan-Meier analysis were applied to identify candidate 
biomarkers. MYEF2 was selected as a prognostic biomarker based on the results of prognostic analysis. Flow 
Cytometric Analysis indicated that MYEF2 expression was negatively correlated with dysfunctional CD8+ T cell 
markers. Kaplan–Meier survival analysis (based on IHC staining) revealed that GBM patients with elevated MYEF2 
expression have a better prognosis. Knockdown of MYEF2 in GBM cells via in vitro assays was observed to 
promote cell proliferation and migration. Our study suggests that MYEF2 expression negatively correlates with T 
cell exhaustion and tumor progression, rendering it a potentially valuable prognostic biomarker for GBM. 
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months after diagnosis [1]. The fifth edition of the WHO 

Classification of Tumors of the Central Nervous System 

(WHO CNS5) emphasizes the important role of molecular 

biomarkers in the diagnosis of GBM and defines GBM as 

an IDH-wild-type diffuse and astrocytic glioma in adults 

accompanied by microvascular proliferation or necrosis or 

TERT promoter mutation or EGFR gene amplification or 

+7/−10 chromosome copy number changes (GBM, IDH 

wildtype) to distinguish it from astrocytoma, IDH-mutant 

[2, 3]. In addition to these biomarkers, others, such as 

MGMT promoter methylation, have also been confirmed 

to be associated with the prognosis of GBM [4, 5]. 

However, more molecular biomarkers should be identified 

to benefit the diagnosis and treatment of GBM patients. 

 

The tumor microenvironment, which contains many 

different non-cancerous cell types in addition to cancer 

cells, has a crucial role in cancer growth, metastasis, 

and response to treatment. Despite general immuno-

suppression in the normal brain, glioma cells can 

secrete numerous chemokines, cytokines and growth 

factors that promote infiltration of various cells, 

including a range of immune cells into the tumor. The 

presence of T cells in cancer lesions has long been 

known to be correlated with better patient prognosis in 

various human malignancies, e.g., within primary 

GBM, elevated numbers of intratumoural cytotoxic T 

cells (CD3+CD8+) significantly correlated with a better 

survival [6]. However, researchers recently realized the 

existence of high diversity in the activation and 

dysfunctional states of the T cells in human cancer 

lesions. T cells can display features of ‘dysfunction’  

or ‘exhaustion’, that is a hallmark of GBM. 

Dysfunctionality of T cells in human tumor is 

characterized by the increased cell surface expression of 

inhibitory receptors, including PDCD1, LAG3, CTLA4, 

TIGIT and HAVCR2, and a reduced capacity of the 

cells to carry out classical CD8+ T cell effector 

functions [7, 8]. This may be one of the reasons that 

antagonizing or blocking PD-1 and CTLA-4, which is 

well-recognized FDA-approved anticancer strategies 

aimed at improving T cell function in multiple 

malignancies, have shown only limited efficacy in 

GBM [9]. Thus, identification of CD8+ T cell-related 

factors will help understanding its differentiation in 

human tumors, and offer new possibilities for patient 

stratification and therapeutic intervention. 

 

RNA-binding proteins (RBPs) have been verified to 

play important roles in tumor progression [10]. RBPs 

are involved in RNA posttranslational regulation, 

including RNA splicing, localization, stability, 

degradation, polyadenylation and translation [11, 12]. 
Alterations in RBP expression and activation contribute 

significantly to the development of various tumor, 

including GBM [13]. However, it has not yet been 

determined whether there are RBPs associated with 

GBM immune infiltration. 

 

In this study, we constructed an RBP gene network 

based on weighted gene coexpression network analysis 

(WGCNA) and recognized immune infiltration-related 

gene modules based on gene expression data from The 

Cancer Genome Atlas (TCGA) IDH-wild-type GBM 

cohort. We identified and validated CD8+ T cell-

associated hub genes using the TIMER and TISIDB 

databases. Furthermore, we applied the Cox pro-

portional hazards regression model and Kaplan–Meier 

analysis to filter prognostic biomarkers. These works 

contribute to the development of new biomarkers for 

immunotherapy and prognosis of GBM patients. 

 

MATERIALS AND METHODS 
 

Data acquisition and processing 

 

RNA sequencing profiles and clinic-pathological 

information of GBM samples were collected from TCGA 

(https://xenabrowser.net, accessed on 28th September, 

2020). Samples with IDH mutation were filtered out 

according to the SNP mutation information, while control 

samples were filtered out according to the sample 

information. Finally, only samples of IDH wildtype 

GBM were included (n = 164) (Supplementary Table 1). 

 

RNA sequencing data were normalized using R-package 

limma [14]. After excluding genes with missing values, 

20530 genes were finally obtained from the TCGA 

dataset. Among these, 3563 genes were identified as 

RBP genes according to the published research [15]. 

 

Evaluation of tumour-infiltrating immune cells 

 

The proportions of tumor-infiltrating immune cells in 

the TCGA IDH-wild-type GBM samples (n = 164) were 

estimated using the R-package CIBERSORT [16]. 

CIBERSORT employs a support vector regression and 

deconvolution algorithm to estimate the abundances of 

specific immune cell types based on gene expression 

data, utilizing a set of reference gene expression values 

(547 genes). 

 

Construction of the weighted gene coexpression 

network 

 

The weighted gene coexpression network was 

constructed using the expression values of the 3563 

RBP genes with the R-package WGCNA [17]. The 

GBM samples (n = 164) were clustered using average 

linkage and Pearson’s correlation coefficients. A soft 

threshold (power) was then determined to create the 

weighted adjacency matrix and topological matrix. 

https://xenabrowser.net/
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Next, a dynamic hybrid cutting method was applied, 

defining a module minimum size of 30 and a 

dissimilarity threshold between genes of less than 0.2. 

Gene significance (GS) was computed as the absolute 

correlation coefficients between genes and sample 

traits. Additionally, the module eigengene, representing 

the leading principal component of the module’s 

expression matrix, was extracted. The absolute 

correlation coefficient was utilized to assess its 

relationship with T cell infiltration levels (module 

significance, MS), enabling the selection of the hub 

module with the highest MS and a p-value below 0.05. 

 

Functional enrichment analysis 

 

The function of genes within the identified hub module 

was determined using the R-package clusterProfiler 

[18]. Gene Ontology (GO) [19] and Kyoto 

Encyclopedia of Genes and Genomes (KEGG) [20] 

were utilized. Significantly enriched functions were 

identified using an adjusted p-value threshold of <0.05 

(false discovery rate, FDR). 

 

Identification of hub genes in the hub module 

 

The selection of candidate hub genes in the hub module 

was based on their modular connectivity and relationship 

with clinical traits. Module connectivity was defined as 

the absolute value of the Pearson’s correlation coefficients 

between genes and the module eigengene (module 

membership). As mentioned earlier, the relationship 

between each gene and the clinical trait was indicated 

using gene significance (GS). Genes with a module 

membership >0.7 and a GS >0.2 were considered as 

candidate hub genes. Moreover, a protein-protein 

interaction (PPI) network was constructed using all the 

genes within the hub module. The Search Tool for the 

Retrieval of Interacting Genes (STRING; https://string-

db.org/) database [21] was employed to identify the 

central nodes in the PPI network based on node 

connectivity (>15). The PPI network was presented by 

Cytoscape (https://cytoscape.org, accessed on 28th 

September, 2020) [22]. For further analyses, a Venn 

analysis was conducted using an online tool 

(http://bioinformatics.psb.ugent.be/webtools/Venn) to 

extract hub genes in an overlap between candidate hub 

genes in the module and central nodes in the PPI network. 

 

Validation of hub genes’ relation with tumor-

infiltrating immune cells 

 

To further investigate the relationship between hub genes 

and tumor-infiltrating immune cells, Spearman 
correlations were performed on the expression data of the 

hub genes in the TIMER database (https://cistrome. 

shinyapps.io/timer) and in the TISIDB database 

(http://cis.hku.hk/TISIDB/index.php). Hierarchical 

cluster diagrams and scatter plots were created. P-

values < 0.05 indicates statistical significance. 

 

Survival analysis 

 

Univariate and multivariate Cox regressions (n = 164) 

were performed to assess the association of gene 

expression and patient prognosis, and Kaplan–Meier 

curve (n = 164) was created with log-rank test to detect 

difference of survival curves. The best cut-off value of 

gene expression was determined by the surv_cutpoint 

function in the R-package “survminer”. Two R packages, 

“survival” and “survminer”, were used to further visualize 

the risk curve during analysis and facilitate reading and 

analysis. P-values < 0.05 indicates statistical significance. 

 

Gene set enrichment analysis (GSEA) 

 

GSEA is an analytical method of determining whether a 

set of specific functional gene sets exhibits statistically 

significant differences between two groups [23]. See 

Supplementary Materials and Methods available online 

for details. 

 

Patients and tissue samples 

 

The study included patients who were independently 

diagnosed with primary GBM by two pathologists in a 

double-blinded manner, in accordance with the criteria 

of the 2021 WHO classification. These patients had 

undergone standard surgery at the Department of 

Neurosurgery, Nanfang Hospital, located in Guangzhou 

City, Guangdong Province, China, between 2016 and 

2021, without any prior radiotherapy or chemotherapy. 

The Ethics Committee of Southern Medical University 

approved the study, and all enrolled patients provided 

informed consent. 

 

RNA isolation and qRT-PCR 
 

14 cases of GBM tissues were used for qRT-PCR 

experiments to measure MYEF2 mRNA expression. 

See Supplementary Materials and Methods available 

online for details. 

 

GBM tissue single-cell dissociation 
 

See Supplementary Materials and Methods available 

online for details. 

 

Flow cytometric analyses 
 

The cells derived from GBM tissues (n = 14) were 

thoroughly washed and subsequently stained with a 

panel of antibodies for a duration of 15 minutes in a dark 

https://string-db.org/
https://string-db.org/
https://cytoscape.org/
http://bioinformatics.psb.ugent.be/webtools/Venn
https://cistrome.shinyapps.io/timer
https://cistrome.shinyapps.io/timer
http://cis.hku.hk/TISIDB/index.php
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environment. The stained cells were then assessed using 

flow cytometry. The antibody cocktail consisted of six 

different antibodies: CD45 BUV395 (BD Biosystems, 

Catalog No. 569489), CD3 Pe-Cy7 (eBioscience, 

Catalog No. 25–0037-42), CD8 Pacific Blue (BD 

Biosystems, Catalog No. 558207), PD-1 BV650 (BD 

Biosystems, Catalog No. 752738), HAVCR2 AF700 

(eBioscience, Catalog No. 56-3109-42), and LAG3 

AF647 (BD Biosystems, Catalog No. 565717). Each 

antibody was diluted to achieve a 1:40 ratio with the 

buffer. Subsequently, all the samples were analyzed 

using FACS Aria II (BD Bioscience), and the obtained 

data were further analyzed using FlowJo software. 

 

Immunohistochemistry (IHC) 

 

47 cases of GBM tissues with matching clinical data 

(Supplementary Table 2) were used for IHC 

experiments to study altered MYEF2 protein expression 

as previously described [24]. See Supplementary 

Materials and Methods available online for details. 

 

Cell lines and culture 

 

The U87MG human GBM cell line was obtained from 

American Type Culture Collection (ATCC: Rockville, 

MD, USA). The NFHGBM primary human GBM cell 

line was derived and cultured from a GBM patient at 

Nanfang Hospital [25]. 

 

Transient knockdown of MYEF2 in GBM cells 

 

Cells were transfected with chemosynthetic siRNAs 

(Gene Pharma Biotechnology Co., Shanghai) using 

Lipofectamine 2000 reagent (Invitrogen, Cat# 11668) 

according to the manufacturer’s protocol. The 

sequences of the siRNAs are shown in Supplementary 

Table 3. 

 

EdU assays 

 

EdU assays (n = 6 per group) were carried out as 

previously described [25]. See Supplementary Materials 

and Methods available online for details. 

 

In vitro migration assays 

 

In vitro migration assays (n = 5 per group) were carried 

out as previously described [26]. See Supplementary 

Materials and Methods available online for details. 

 

Statistical analysis 

 
All in vitro experiments were repeated at least 3 times. 

Statistical analyses were performed using R software 

version 3.5.0, SPSS statistical software version 20.0 and 

GraphPad Prism software version 7.0. To test the 

associations of clinical characteristics (i.e., gender and 

age) with survival status and MYER2 expression, chis-

square test was used. To detect the difference of 

expression of hub genes among different age groups 

(young, middle and old) and between females and 

males, Kruskal-Wallis test was conducted. With regard 

to in vitro experiments, mean and standard deviation 

(SD) were calculated in two cell lines before and after 

knockdown of MYEF2, and compared by Student’s 

t tests or one-way ANOVA. P < 0.05 was considered 

statistically significant. 

 

RESULTS 
 

Data preprocessing and evaluation of tumor-

infiltrating immune cells (TIICs) 

 

The research strategy is shown in Figure 1. 

 

In the GBM cohort from TCGA, 20530 genes of 164 

samples were finally retained. Furthermore, expression 

of 3563 RBP genes were screened in this cohort [15]. 

Based on CIBERSORT, proportions of 22 types of 

immune cells in the 164 samples were shown in Figure 

2A. 

 

Weighted coexpression network construction 

 

Using soft threshold = 4 (scale-free R2 = 0.85) 

(Supplementary Figure 1A), a coexpression network 

was constructed based on the 3563 RBP genes and 

thirteen modules were identified (Figure 2B). The 

previously calculated immune infiltration proportions of 

seven types of T cells were selected as trait data for 

WGCNA, and the clustering dendrogram of the 164 

IDH-wild-types GBM samples was shown in 

Supplementary Figure 1B. 

 

Identification of a hub key module related to T cell 

infiltration and GO enrichment analysis 

 

We constructed a correlation network according to the 

coexpression module constructed by WGCNA and the 

T cell infiltration proportions of the samples (Figure 

2C). Since we focused on CD8+ T cell infiltration, we 

selected the greenyellow module that showed the 

highest absolute correlation coefficient with CD8+ T 

cell infiltration (r = −0.38, P = 0.04) as the key module 

for follow-up research. Genes included in the 

greenyellow module were subsequently analyzed for 

functional enrichment in GO. The top five enrichment 

terms of biological process (BP) were regulation of 

biological quality, nervous system development, cell 

morphogenesis, cellular component morphogenesis and 

growth (Figure 2D). In the molecular function (MF) 
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category, the top ten enrichment terms were all 

associated with RNA binding and nucleic acid binding 

(Figure 2E). 

 

Identification and validation of hub genes 

 

According to the threshold criteria (module 

membership >0.7 and GS >0.2, q.weighted <0.01), 19 

candidate hub genes were identified from the 

greenyellow module (Figure 3A, Supplementary Table 

4). Furthermore, the PPI network of the coexpressed 

genes from the greenyellow module was built (Figure 

3B), and another 19 candidate hub genes were 

identified (connectivity >10). Finally, 11 hub genes 

(MYEF2, MAPT, NOVA1, MAP2, TUBB2B, CDH10, 

TTYH1, PTPRZ1, SOX2, NOVA2 and SCG3), which 

were both in the two hub gene sets, were obtained 

(Figure 3C). 

 

Further analyses in the TIMER database revealed negative 

correlations between the expression of all 11 hub genes 

and the level of CD8+ T cell infiltration (Figure 3D). As 

depicted in Figure 3E, we presented a scatter plot 

illustrating the correlation between MYEF2 expression 

and CD8+ T cell infiltration levels, while the remaining 

genes were depicted in Supplementary Figure 2. 

Additional analyses in the TISIDB database showed 

that the hub genes were negatively correlated with 

activated CD8+ T cells (Act CD8) and effector memory 

CD8+ T cells (TEM CD8) (Supplementary Figure 3A). 

 

 
 

Figure 1. Workflow of this research. 



www.aging-us.com 7765 AGING 

These findings supported that these 11 hub genes 

actively contribute to the immune microenvironment by 

strongly negatively associating with CD8+ T cell 

infiltration. 

Next, we analyzed the correlations between expression 

of hub gene and immune factors in the TISIDB 

database, including immune-inhibitory factors, immune-

stimulatory factors, chemokines and receptors 

 

 
 

Figure 2. Constructing the weighted co-expression network based on RBP genes and identifying key modules. (A) Infiltration 

ratio of 22 immune cells in DH wild-type GBM samples. (B) Hierarchical cluster analysis was conducted to detect co-expression clusters of 
the RBP genes. Each colour represents a module. (C) Correlation between different gene modules and T cell infiltration ratio. The upward 
numbers in the boxes represent Pearson R values, and the numbers in the brackets represent P-values. (D) Top ten enrichment items of 
GO_BP analysis. (E) Top ten enrichment items of GO_MF analysis. 
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(Supplementary Figure 3B–3D). Specifically, we 

observed a negative correlation between MYEF2 

expression and several immune-inhibitory factors, 

including LAG3, PDCD1, PDCD1LG2, CTLA4, TIGIT 

and HAVCR2, which were characteristics of 

dysfunctional CD8+ T cells (Figure 3F). Utilizing an 

 

 
 

Figure 3. Identification of hub genes and evaluation of correlation with immune infiltration of hub genes. (A) Scatter plot of 

the genes in the greenyellow module. Each green dot represents a gene, and dots within the red box indicate genes of Module Membership 
>0.7 and Gene Significance >0.2. (B) PPI network of genes from the greenyellow module. Larger size of the node means higher number of 
connected nodes. Green nodes represent central nodes with more than 15 connections. (C) Venn plot of the overlap genes between co-
expression and PPI networks. (D) Scatter plot of the correlation between 11 hub genes expression and CD8+ T cell infiltration level in TIMER 
database. (E) Scatter plot of the correlation between MYEF2 expression and CD8+ T cell infiltration level in TIMER database. (F) Heatmaps 
of spearman correlations between hub genes expression and expression of immune-inhibitory factors in TISIDB database. (G) PPI network 
of GBM immune microenvironment and the 11 hub genes. 
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average absolute Spearman correlation coefficient 

greater than 0.35, we identified 33 immune-related 

factors that exhibited strong associations with the 11 

hub genes. Based on these 33 immune-related factors 

and the 11 hub genes, an immune infiltration interaction 

network was constructed using STRING and visualized 

through Cytoscape (Figure 3G). Among these 33 

immune-related factors, HAVCR2, CTLA4 and 

PDCD1LG2 were also found to be highly correlated 

with the 11 hub genes including MYEF2. 

 

Determination of clinical characteristics 

 

Next, we investigated the association between 11 hub 

genes and GBM patient clinical characteristics in the 

TCGA database. In the TCGA IDH-wild-type GBM 

cohort, the expression of most of the hub genes showed 

no significant difference between patients of different 

ages. In contrast, MAP2 expression decreased with 

patient age, while SCG3 displayed the highest 

expression in middle-aged patients (Supplementary 

Figure 4A). In addition, none of the hub genes were 

correlated with patient sex (Supplementary Figure 4B). 

 

Identification of prognostic biomarkers 

 

Through univariate Cox model, we found that only 

MYEF2 was correlated with patient prognosis (HR = 

0.79, P < 0.05) (Figure 4A). However, multivariate Cox 

analysis showed that three genes, TTYH1 (HR = 0.66, 

P < 0.05), PTPRZ1 (HR = 1.43, P < 0.05) and NOVA2 

(HR = 2.08, P < 0.05), were associated with patient 

prognosis (Figure 4B). We analyzed these genes by 

Kaplan–Meier analysis and found that patients with 

higher MYEF2 expression exhibited better survival 

outcomes (P = 0.0064) (Figure 4C); likewise, those with 

higher TTYH1 expression exhibited better survival 

outcomes (P = 0.017) (Figure 4D). However, the 

expression levels of PTPRZ1 and NOVA2 were not 

correlated with the survival outcomes of patients 

(Figure 4E and 4F). Since MYEF2 showed the highest 

correlation coefficient with CD8+ T cells, as shown in 

Figure 3D, 3E, we selected MYEF2 as a candidate 

prognostic biomarker for further analysis. 

 

Gene set enrichment analysis (GSEA) of MYEF2 

 

According to the previously calculated expression 

threshold of MYEF2 (10.5924), the samples of the 

TCGA IDH-wild-type GBM cohort were divided into a 

high expression group and a low expression group for 

GSEA. The enrichment results showed that a total of 41 

immune-related pathways were statistically significantly 
enriched in the low MYEF2 expression group (p.adj < 

0.05). The top three enriched pathways were 

“chemokine signaling pathway”, “natural killer cell 

mediated toxicity” and “T cell receiver signaling 

pathway” (Figure 4G). We show the core genes in these 

three pathways in Figure 4H. 

 

MYEF2 expression negatively correlates with T cell 

exhaustion and tumor progression of GBM 

 

To explore the relationship between MYEF2 

expression, as determined by qRT-PCR, and T cell 

exhaustion, we utilized flow cytometric approaches to 

analyze the expression of biomarkers for dysfunctional 

CD8+ T cells, specifically PDCD1, HAVCR2, and 

LAG3, in 14 primary GBM tissues. Our analysis 

revealed that elevated MYEF2 expression was 

associated with reduced T cell exhaustion of GBM, as 

illustrated in Figure 5A. Next, we performed immuno-

histochemical staining in tumor specimens from 47 

GBM patients (Figure 5B). Patient survival analysis 

indicated a clear positive correlation between MYEF2 

protein expression level (according to IHC staining 

score) and the overall survival time in GBM patients 

(Figure 5C). Collectively, MYEF2 served as a 

favourable prognostic marker in GBM. 

 

Next, we used three distinct siRNAs to knock down 

MYEF2 expression in the GBM cell line U87MG and 

the primary GBM cell line NFHGBM. The knockdown 

efficiency was shown in Figure 5D. Three siRNAs 

effectively knocked down MYEF2 expression in both 

cell lines. Further in vitro cell biological experiments 

revealed that MYEF2 silencing by siRNAs transfection 

significantly elevated the proliferation of both U87MG 

and NFHGBM cells (Figure 5E), and promoted 

migration capacity of both cell lines (Figure 5F). 

 

DISCUSSION 
 

GBM is the most malignant primary tumor in the adult 

central nervous system. Although there are many 

significant research breakthroughs in the immuno-

therapy of GBM, it has not yet been effective enough in 

clinical GBM treatment applications. RBPs play crucial 

roles in GBM progression, but little is known about 

their association with immune infiltration and key genes 

in GBM progression. 

 

In this study, we constructed an RBP gene network by 

WGCNA based on the TCGA IDH-wild-type GBM 

cohort and identified a key gene module negatively 

associated with CD8+ T cell infiltration. Subsequently, 

we filtered out 11 hub genes (MYEF2, MAPT, 

NOVA1, MAP2, TUBB2B, CDH10, TTYH1, PTPRZ1, 

SOX2, NOVA2 and SCG3) from this gene module. 

Further analysis based on the TIMER and TISIDB 

databases revealed negative correlations between these 

hub genes and CD8+ T cells separately, indicating the 
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crucial role of these genes in shaping the GBM immune 

microenvironment and escaping immune surveillance. 

Moreover, the Cox proportional hazards regression 

model and Kaplan–Meier analysis demonstrated that the 

prognosis of patients with higher expression of MYEF2 

or TTYH1 was significantly better. Thus, MYEF2 and 

TTYH1 were selected as potential CD8+ T cell 

infiltration-related RBP biomarkers for the prognosis 

prediction of GBM. 

 

The MYEF2 gene encodes a protein mainly expressed 

in brain tissues. It binds to the promoter of the myelin 

 

 
 

Figure 4. Prognostic analysis of hub genes. (A) Forest plot of univariate Cox analysis of hub genes. (B) Forest plot of multivariate Cox 

analysis of hub genes. (C) Overall survival analysis of MYEF2. (D) Overall survival analysis of TTYH1. (E) Overall survival analysis of PTPRZ1. (F) 
Overall survival analysis of NOVA2. (G) Plot of the top three enriched pathways in GSEA analysis of MYEF2. (H) Circle diagram of core genes in 
the top three enriched pathways in GSEA analysis of MYEF2. Larger circle corresponding to each gene represents larger rank metric score value. 
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basic protein gene (MBP) and represses its 

transcription, leading to oligodendrocyte progenitor cell 

(OPC) differentiation disorder and demyelination 

disease [27, 28]. MYEF2 has also been reported to be 

associated with haematopoietic stem cell generation 

[29] and myocardial ischemia–reperfusion injury [30]. 

 

 
 

Figure 5. MYEF2 negatively correlates with GBM CD8+ T cells exhaustion and tumor progression. (A) Bar graph of the qRT-PCR 

of MYEF2 expression in GBM tissues (n = 14) and percent of PDCD1, HAVCR2 and LAG3 expression on CD8+ T cell from MYEF2-High and 
MYEF2-Low samples as measured by flow cytometry. *P < 0.05, **P ≤ 0.001. (B) Representative images of MYEF2 immunohistochemical 
staining of GBM tissues. (C) Kaplan–Meier survival curve of NFH-GBM patients stratified by MYEF2 expression (according to IHC data). (D) 
Western blot assays showing MYEF2 knockdown efficiency in U87MG and NFHGBM cells. (E) EdU assay showing different cell proliferation 
rates in siMYEF2- and siNC-treated U87MG and NFHGBM cells. Error bars represent the SD of repeats of each cell. **P < 0.01, ***P < 0.001. 
(F) Transwell assay showing cell migration capacity in siMYEF2- and siNC-treated U87MG and NFHGBM cells. Error bars represent the SD of 
repeats of each cell. **P < 0.01, ***P < 0.001. 
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However, little is known about the role of MYEF2 in 

tumor. MYEF2 has been confirmed to be a biomarker of 

smouldering subtypes in the adult T cell leukaemia/ 

lymphoma (ATLL) classification [31]. In addition, 

MYEF2 is assumed to bind to H1.0 histone mRNA and 

promote its packaging into extracellular vesicles in 

melanoma cells, which promotes tumourigenesis [32]. 

In our current research, we found that MYEF2 could 

also be a biomarker of GBMs. High expression of 

MYEF2 indicated better prognosis in GBM patients. 

Inhibition of MYEF2 expression through siRNA 

transfection caused promotion of GBM cell 

proliferation and migration. These findings suggest that 

MYEF2 might play an important role in GBM 

progression. Considering the role of MYEF2 in 

repressing MBP transcription, we inferred that low 

expression of MYEF2 promoted GBM proliferation and 

progression through elimination of MBP transcriptional 

repression. 

 

An increased number of proliferating tumor-reactive 

CD8+T cells is considered beneficial with respect to a 

glioblastoma patient’s survival [33]. In our research, 

along with a negative association between MYEF2 

expression and CD8+ T cells infiltration, survival 

analysis concluded that patients with a low expression of 

MYEF2 were at a higher risk of poor prognosis. 

Intriguingly, we observed a negative relation between 

MYEF2 and several immune-inhibitory factors, like 

LAG3, PDCD1, CTLA4 TIGIT and HAVCR2, which 

are characteristics of dysfunctional CD8+ T cells [7]. As 

a consequence, survival benefits of MYEF2 high 

expression may be due to the dysfunctional or exhausted 

states of the CD8+ T cells in GBM. This indicates a 

beneficial role of MYEF2 in the development of GBM. 

Thus, MYEF2 may be an effective indicator for the 

immune microenvironment of GBM. The increased 

dysfunctional CD8+ T cells was considered as one of the 

reasons that antagonizing or blocking PD-1 and CTLA-4 

have shown only limited efficacy in GBM. More 

research on the relationship between the decreased 

MYEF2 expression and resistance to anti-PD1 and 

CTLA4 therapy may help to improve the efficacy of 

anti-PD1 and CTLA4 therapy in GBM patients. 

 

CONCLUSION 

 

In this study, we used the WGCNA and CIBERSORT 

algorithms to identify CD8+ T cell infiltration-related 

RBP genes in GBMs. Among the eleven RBP genes 

being filtered out, we demonstrated that MYEF2 

expression was negatively correlated with dysfunctional 
CD8+ T cells infiltration, and high expression of 

MYEF2 was associated with better outcomes and lower 

malignant progression of GBMs. Further molecular, 

cellular, and animal model studies should be performed 

to achieve a comprehensive understanding of the 

mechanism of MYEF2 in immune infiltration and tumor 

progression in GBMs. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Materials and Methods 
 

Gene set enrichment analysis (GSEA) 

 

The samples (n = 164) were divided into two groups 

according to the best cut-off value of myelin expression 

factor 2 gene (MYEF2) expression (10.5924). The 

“c2.cp.kegg.v7.0.symbols” gene set was used to carry 

out enrichment analyses, and a P-value < 0.05 and a 

q value < 0.05 were considered statistically significant. 

The significant pathways were visualized using the R-

packages “ggplot2” and “clusterProfiler”. 

 

RNA isolation and qRT-PCR 

 

Total RNA was isolated from GBM tissues using 

TRIzol (Invitrogen), and RNA samples (800 ng per 

sample) were used to generate cDNA using a 

PrimeScript™ RT reagent Kit with gDNA Eraser 

(Takara, Cat. RR047A) according to the manufacturers’ 

instructions. The obtained cDNA samples were used as 

templates for qPCR amplifications using TB Green® 

Premix Ex Taq™ II (Tli RNaseH Plus) (Takara, Cat. 

RR820A). GAPDH was used as a corresponding 

internal control. All mRNA levels were quantified by 

the 2−ΔΔCT method. Each reaction was performed in 

triplicate. The primer sequences of MYEF2 were as 

follows: forward 5′-

CAGCTCCAATGGCGTTAAAATG-3′; reverse 5′-

TGGCCTTCTTACTTCCTGTAGAT-3′. The primer 

sequences of GAPDH were as follows: forward 5′-

TGACTTCAACAGCGACACCCA-3′; reverse 5′-

CACCCTGTTGCTGTAGCCAAA-3′. 

 

GBM tissue single-cell dissociation 

 

GBM tissues were washed with ice-cold Dulbecco’s 

phosphate-buffered saline (DPBS, without Mg2+ and 

Ca2+, Cat.PB180329, Procell, Wuhan) immediately 

after the operation. Briefly, the samples were 

dissociated using type IV collagenase (Cat. C8160, 

Solarbio, Beijing) for 10 min at 37°C. Then, the 

samples were washed with Dulbecco’s modified Eagle’s 

medium (DMEM glucose 4.5 g/L; Biological 

Industries) and centrifuged (4 min at 300 g, 18°C, 

minimal braking). The samples were then filtered 

through a 70 mm cell strainer with DPBS and washed 

with red blood cell (RBC) lysis buffer (Cat. R1010, 

Solarbio, Beijing). The dissociated cell suspension was 

then washed once with DPBS. The cell pellet was 

resuspended in 1 mL of staining buffer DPBS 

containing 5% fetal bovine serum (FBS; Biological 

Industries) and washed one more time. 

 

Immunohistochemistry (IHC) 

 

3 µm sections were mounted on amino propyl 

ethoxysilane (APES) slides. The slides were 

deparaffinized, rehydrated, immersed in 10 mM sodium 

citrate buffer (pH 6.0), pretreated in a microwave oven 

for 20 min, and then rinsed for 15 min with phosphate-

buffered saline (PBS). Endogenous peroxidase was 

quenched by incubation of the sections in 0.3 % 

hydrogen peroxide for 30 min at room temperature. 

Nonspecific binding was blocked by incubation with 

nonimmune serum (1 % bovine serum albumin for 15 

min at room temperature). The sections were incubated 

overnight with antibody against MYEF2 (rabbit anti-

MYEF2, 16051-1-AP, Proteintech, China) at a dilution 

of 1:200. The next day, the slides were stained with a 

two-step plus Poly-HRP Anti-Rabbit IgG Detection 

System (PV-6001; ZSGB-Bio, Beijing, China) to detect 

MYEF2. After visualization of the reaction with 3,3′-

diaminobenzidine, the slides were counterstained with 

hematoxylin and mounted with synthetic medium. 

 

EdU assays 

 

Cells were plated at a density of 20,000/dish in confocal 

dishes. After 24 h of incubation, cells were treated with 

EdU reagent (RiboBio, Cat. C10310-1) for 2 h 

according to the manufacturer’s instructions and then 

were fixed with 4 % paraformaldehyde. One hundred 

microliters of 1X Apollo®567 staining reaction solution 

and Hoechst 33,342 (RiboBio, Cat. C10310-1) was 

added to each dish and then was incubated for 30 min at 

room temperature on a decolorization shaker. Cells 

were then visualized using a BX63 automatic intelligent 

fluorescence microscope (Olympus, Tokyo, Japan). 

 

In vitro migration assays 

 

Transfected cells were resuspended in serum-free 

medium, and 200 μl of the cell suspension (5 × 104 

cells) was added to the upper millicell chambers 

(Millipore). The chamber was then cultivated in 5% 

CO2 at 37°C for 24 h. Then the cells in the upper 

chamber were removed, and the attached cells in the 

lower section were stained with 0.1% crystal violet. The 

migration rates were quantified by counting the 

migration cells in five random fields under a light 

microscope. 
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Supplementary Figures 
 

 
 

Supplementary Figure 1. Soft-thresholding power analysis and Hierarchical clustering tree of WGCNA analysis. (A) Soft-

thresholding power analysis including scale-free index and the mean connectivity. (B) Hierarchical clustering tree of the 164 TCGA IDH wild-
type GBM samples (Value of T cell gamma delta was 0 among all samples). 
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Supplementary Figure 2. (A–J) Scatter plot of the correlation between hub genes expression and CD8+ T cell infiltration level in TIMER 
database. 
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Supplementary Figure 3. Heatmaps of spearman correlations between hub genes expression and TIICs and expression of 
immune factors in TISIDB database. (A) TIICs. (B) Immune-stimulatory factors. (C) Chemokines. (D) Receptors. 
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Supplementary Figure 4. Determination of hub genes and clinical characteristics in TCGA database. (A) Box plots of hub gene 
expression in different ages. (B) Box plots of hub gene expression in different genders. 
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Supplementary Tables 
 

Supplementary Table 1. Clinical characteristics of IDH wild-type GBM cohort of TCGA database. 

 NA (n = 10) Deceased (n = 104) Living (n = 49) Total (n = 163) P-Value 

Gender 

Female 5 (50.0%) 40 (38.5%) 13 (26.5%) 58 (35.6%) 
0.2193 

Male 5 (50.0%) 64 (61.5%) 36 (73.5%) 105 (64.4%) 

Age 

Young-aged (≤30) 1 (10.0%) 1 (1.0%) 3 (6.1%) 5 (3.1%) 

0.2837 Middle-aged (30–60) 4 (40.0%) 49 (47.1%) 24 (49.0%) 77 (47.2%) 

Old-aged (>60) 5 (50.0%) 54 (51.9%) 22 (44.9%) 81 (49.7%) 

 

 

Supplementary Table 2. Clinical characteristics of the 47 glioblastoma specimens in IHC assay of MYEF2. 

Characteristics 

MYEF2 expression 

Total (n = 47)  P-Value (According to IHC staining score) 

High (n = 21) Low (n = 26) 

Gender 

Female 8 (38.1%) 12 (46.2%) 20 (42.6%) 
0.5785 

Male 13 (61.9%) 14 (53.8%) 27 (57.4%) 

Age 

Young-aged (≤30) 2 (9.5%) 3 (11.5%) 5 (10.6%) 

0.9716 Middle-aged (30–60) 11 (52.4%) 13 (50.0%) 24 (51.1%) 

Old-aged (>60) 8 (38.1%) 10 (38.5%) 18 (38.3%) 

 

 

Supplementary Table 3. Sequences of MYEF2siRNAs. 

Sequences of siRNAs 

 Sequence (5′–3′) 

siMYEF2 1# GCAACAUCCCAUAUGACAUTT 

siMYEF2 2# CCCUAGAAACUAUGAACAATT 

siMYEF2 3# CCUGAAGUCAUCAGUAAUUTT 

Negative control siRNA UUCUCCGAACGUGUCACGUTT 

 

 

Supplementary Table 4. List of candidate hub genes obtained from the green-yellow module of WGCNA. 

Candidate hub genes 

NOVA1 

RAB11FIP1 

SEC24D 

SOX2 

MAP2 

MAPT 

PTPRZ1 

ABCA3 

NOVA2 
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CDH10 

CKB 

DDR1 

MYEF2 

NEU4 

SCG3 

TPM3 

TUBB2B 

TTYH1 

BNC2 

 

 


