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ABSTRACT 
 

Objective: Pyroptosis is a form of programmed cell death that is essential for immunity. Herein, this study was 
conducted to uncover the implication of pyroptosis in immunomodulation and tumor microenvironment (TME) 
in gastric cancer. 
Methods: Prognostic pyroptosis-related genes were extracted to identify different pyroptosis phenotypes and 
pyroptosis genomic phenotypes via unsupervised clustering analysis in the gastric cancer meta-cohort cohort 
(GSE15459, GSE62254, GSE84437, GSE26253 and TCGA-STAD). The activation of hallmark gene sets was 
quantified by GSVA and immune cell infiltration was estimated via ssGSEA and CIBERSORT. Through PCA 
algorithm, pyroptosis score was conducted. The predictors of immune response (TMB and IPS) and genetic 
mutations were evaluated. The efficacy of pyroptosis score in predicting immune response was verified in two 
anti-PD-1 therapy cohorts. 
Results: Three different pyroptosis phenotypes with different prognosis, biological pathways and tumor 
immune microenvironment were established among 1275 gastric cancer patients, corresponding to three 
immune phenotypes: immune-inflamed, immune-desert, and immune-excluded. According to the pyroptosis 
score, patients were separated into high and low pyroptosis score groups. Low pyroptosis score indicated 
favorable survival outcomes, enhanced immune responses, and increased mutation frequency. Moreover, low 
pyroptosis score patients displayed more clinical benefits from anti-PD-1 and prolonged survival time. 
Conclusion: Our findings uncovered a nonnegligible role of pyroptosis in immunomodulation and TME 
multiformity and complicacy in gastric cancer. Quantifying the pyroptosis score in individual tumors may tailor 
more effective immunotherapeutic strategies. 
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INTRODUCTION 
 

Gastric cancer ranks the third leading cause of deaths 

and the fifth most common malignancy globally, which 

remains a considerable health burden [1]. This disease 

is a molecularly heterogeneous entity [2]. Highly 

complex molecular features such as gene mutations and 

differential gene expression contribute to unfavorable 

survival outcomes of gastric cancer [3]. Common 

therapeutic strategies contain chemotherapy, radio-

therapy, surgery resection as well as targeted therapies 

[4]. Immunotherapy has emerged as a new treatment 

strategy to eradicate malignant tumor cells and has 

received much attention after its successful clinical 

application [5]. Immune checkpoint inhibitors such as 

PD-1/PD-L1 monoclonal antibodies have prominently 

prolonged survival time of advanced gastric cancer [6–

8]. Nevertheless, immunotherapy for gastric cancer is 

still in the early phases. Hence, it is of importance to 

clarify the immune regulation mechanisms, thus 

tailoring more effective immunotherapeutic scheme for 

individual patients. 

 

Stromal and immune cells in the tumor micro-

environment (TME) constitute an important part of 

tumor tissues [9]. Evidence has elucidated their 

clinicopathologic implication in prediction of 

prognosis and therapeutic response [10]. Recently, the 

novel concept of “immune phenotypes” has been 

proposed, stratifying tumors into three main immune 

profiles (inflamed, excluded, and deserted) with 

diverse TME traits and therapy options [11]. Hence, 

comprehensive analysis of the TME’s heterogeneity 

and complexity as well as immune traits may guide 

and predict immunotherapeutic response [12, 13]. 

Pyroptosis, a programmed cell death modality, can be 

caused by perturbation of extra- or intracellular 

homeostasis associated with innate immunity [14]. In 

morphology, pyroptosis exhibits the characteristics of 

cell swelling, lysis as well as the release of various 

proinflammatory mediators, e.g., IL-1β/-18 [15]. At 

the molecular level, pyroptosis primarily contains the 

classical pathway dependent on caspase-1 and the non-

classical pathway involving caspase-4, 5 [16]. It has 

been confirmed that the targets and products of 

pyroptosis are involved in carcinogenesis, especially 

GSDM family members (GSDMs) [17]. Transforming 

immune “cold” tumors into “hot” tumors that more 

possibly respond to immunotherapy is the main 

strategy for cancer therapy [18]. Studies have found 

that pyroptosis may change the tumor immune 

microenvironment, ultimately enhancing response to 

immunotherapy [19]. Here, our study aimed at 

uncovering the implication of pyroptosis in immune 

modulation and diverse TME of gastric cancer, thus 

assisting therapeutic intervention plans. 

RESULTS 
 

Genetic and transcriptomic alterations of pyroptosis-

related genes across gastric tumors 

 

Here, we observed the functions of 33 pyroptosis-

relevant genes in gastric tumors. We firstly identified 

their chromosomal locations (Figure 1A). The mRNA 

expression levels of above genes were investigated in 

32 controls and 375 gastric tumors from TCGA-STAD 

cohort. The results showed that most of pyroptosis-

related genes had higher expression levels in tumors 

(Figure 1B). The incidence of somatic mutations of 

pyroptosis-related genes in gastric cancer was then 

summarized. Among 433 specimens, 117 occurred 

somatic mutations of pyroptosis-associated signatures, 

with frequency of 27.02% (Figure 1C). We investigated 

that PLCG1, CASP5, CASP8 and NLRP3 displayed the 

highest mutation frequencies in gastric cancer 

specimens. Further analysis exhibited the widespread 

CNV frequencies in 33 pyroptosis-related genes and 

most were focused on the amplification in CNV (Figure 

1D). These findings indicated that such genetic 

variations affected their instability in gastric tumors. 

The PPI network showed the extensive interplay of such 

pyroptosis-relevant genes (Figure 1E), indicative of the 

potential implication of their cross-talk in gastric cancer 

pathogenesis and progression. 

 

Identification of three distinct pyroptosis phenotypes 

in gastric cancer 

 

Four gastric cancer cohorts (GSE15459, GSE62254, 

GSE84437 and TCGA-STAD) were integrated and 

batch effects were removed (Figure 2A, 2B). Finally, 

1275 gastric cancer patients were integrated as the 

meta-cohort. Univariate-cox regression analysis of 33 

pyroptosis-related genes showed that GPX4 (HR: 1.24 

(1.06–1.46); p = 0.008), NLRP7 (HR: 0.86 (0.76–0.96; 

p = 0.009), CASP6 (HR: 0.87: (0.76–0.99); p = 0.032), 

NLRP6 (HR: 0.90 (0.82–0.99); p = 0.04), IL6 (HR: 

1.07 (1.00–1.13); p = 0.047), CASP5 (HR: 0.90 (0.82–

0.99); p = 0.023), CASP4 (HR: 0.84 (0.71–0.999); p = 

0.048) and TIRAP (HR: 0.73 (0.59–0.91); p = 0.004) 

had significant correlations to prognosis across 1275 

gastric cancer patients. Through the Consensus 

ClusterPlus package, we stratified gastric cancer 

specimens to three different pyroptosis phenotypes 

according to the expressions of above 8 prognostic 

pyroptosis-related genes with unsupervised clustering 

method (Figure 2C–2E; Supplementary Table 1). We 

named these phenotypes as pyroptosis cluster A (n = 

625), B (n = 352) and C (n = 298). There were 

remarkable differences in the transcriptional profiles 

of the prognostic pyroptosis-relevant gene set among 

three diverse pyroptosis phenotypes (Figure 2F). 
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Prognostic analysis for the three pyroptosis 

phenotypes showed the particularly prominent survival 

advantage in pyroptosis cluster-C, while pyroptosis 

cluster-B displayed the poorest survival outcomes 

(Figure 2G). The accuracy of this pyroptosis-related 

classification was externally proven in the GSE26253 

(Supplementary Figure 1A–1D). The differences in 

prognosis among three pyroptosis phenotypes  

were also confirmed in the GSE26253 cohort 

(Supplementary Figure 1E). 

 

 
 

Figure 1. Comprehensive characterization of genetic and expression alterations of pyroptosis-related genes in gastric cancer. 
(A) Circos 2D track plots showing the location of 33 pyroptosis-related genes on chromosomes. (B) The mRNA expression of 33 pyroptosis-
relevant genes in 32 normal and 375 gastric cancer tissue specimens from TCGA-STAD cohort. The asterisks indicated the statistical p-values 
(*p < 0.05; **p < 0.01; ***p < 0.001) and ns indicated no statistical significance. (C) The somatic mutation frequency of 33 pyroptosis-relevant 
genes in 433 gastric cancer samples in TCGA-STAD dataset. The upper barplot displayed somatic mutation. The stacked barplot exhibited the 
fractions of conversions of specimens. The number on the right showed the mutation frequency in each pyroptosis-related gene. The right 
barplot showed the proportion of each mutation type. (D) Summary of the CNV frequency of 33 pyroptosis-related genes. The column height 
indicated the mutation frequency. Amplification, red; deletion, blue. (E) The PPI network visualizing the interactions between 33 pyroptosis-
relevant genes. 



www.aging-us.com 8116 AGING 

Pyroptosis phenotypes with different immune profiles 

 

For uncovering potential biomolecular alterations in three 

different pyroptosis phenotypes, this study carried out 

GSVA on these 50 hallmark gene sets. We investigated 

that pyroptosis cluster-C owned distinct enrichment by 

stromal pathways (e.g., TGF-β signaling, epithelial 

mesenchymal transition and angiogenesis; Figure 2H). 

Pyroptosis cluster-B was highly enriched in carcinogenic 

activation pathways such as PI3K-AKT-mTOR 

 

 

 
Figure 2. Identification of three distinct pyroptosis phenotypes in gastric cancer. (A, B) Integration of four gastric cancer cohorts 

(GSE15459, GSE62254, GSE84437 and TCGA-STAD) into one meta-cohort and removal of batch effects. (C) Heat map showing the optimal 
clustering by k = 3 based on prognostic pyroptosis-related genes in the meta-cohort. (D) The consensus cumulative distribution function 
(CDF) for the cumulative distributive function of the consensus matrix for k = 2–9 identified by different colors. (E) The CDF plots of 
consensus clustering matrix for k = 2–9. (F) The t-SNE plots of the mRNA expression profiles of prognostic pyroptosis-related genes showing 
the three distinct subtypes indicated by different colors. (G) Kaplan–Meier survival curves for the three pyroptosis subtypes based on the 
1275 gastric cancer specimens in the meta-cohort (log-rank test). (H) Heatmap showing the GSVA score of the 50 hallmark pathways in 
three pyroptosis phenotypes. 
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signaling, Wnt-β-catenin signaling, glycolysis and KRAS 

signaling. Moreover, pyroptosis cluster-A markedly 

displayed the activation of immune-relevant processes 

like allograft rejection, interferon gamma response, 

inflammatory response, complement, IL2-STAT5 

signaling and IL6-JAK-STAT3 signaling. These data 

were indicative of the survival outcomes of the three 

pyroptosis phenotypes. Moreover, ssGSEA was adopted 

for estimating the abundant levels of 28 immune cell 

populations within the TME among distinct pyroptosis 

phenotypes. Immune-excluded phenotype is rich in 

immune cells that are reserved in the matrix ambient the 

tumor cell nest instead of penetrating its parenchyma 

[20]. Pyroptosis cluster-C could be categorized as 

immune-excluded tumors with innate immune cell 

infiltrations as well as stromal activation (Figure 3A). 

The cluster-B could be categorized as immune-desert 

tumors with low infiltration levels of nearly all immune 

cells, indicative of immunity suppression. Moreover, the 

cluster-A could be categorized as immune-inflamed 

tumors with rich adaptive immune cells as well as 

immune activation. The immune infiltration traits across 

three pyroptosis phenotypes were confirmed via 

CIBERSORT algorithm (Supplementary Figure 2). 

Figure 3B showed the prominent heterogeneity in 

immune checkpoints among pyroptosis phenotypes. 

Pyroptosis cluster-C exhibited the highest expression of 

LAG3, CTLA4, TNFRSF9, ICOS, CD80, TNFSF9, 

ICOSLG, KIR3DL1, PDCD-1, TNFRSF8, TNFRSF15, 

TNFRSF14, HHLA2, CD244, CD27, BTLA, LGALS9, 

TMIGD2, CD28, TNFRSF25, CD40LG, CD160, and 

CD200R1. Through ESTIMATE algorithm, we 

quantified the entire infiltrations of immune/stromal cells 

or tumor purity among the pyroptosis phenotypes. 

Our results showed that pyroptosis cluster-B had the 

highest stromal score, followed by pyroptosis cluster-A 

and pyroptosis cluster-C (Figure 3C). Inversely, 

pyroptosis cluster-B displayed the lower tumor purity, 

indicating that tumors in the cluster-B were potentially 

neighbored by rich non-cancer cells such as stromal/ 

immune cells (Figure 3D). In Figure 3E, pyroptosis 

cluster-B had the highest immune score, followed by 

pyroptosis cluster-A and pyroptosis cluster-C. 

Collectively, our data demonstrated that the different 

pyroptosis phenotypes had the features of distinct 

immune landscapes. 

 

Identification of pyroptosis phenotype-related gene 

signatures 

 

The pyroptosis phenotype-related transcriptional 

expression alterations across three pyroptosis phenotypes 

were detected in the gastric cancer meta-cohort. Through 
limma package, we identified 1629 overlapped 

pyroptosis phenotype-relevant DEGs among the 

three phenotypes (Figure 4A; Supplementary Table 2). 

These DEGs represented the key distinguishing 

indicators for three pyroptosis phenotypes. GO 

enrichment analyses of above DEGs suggested that 

immunity-relevant mechanisms presented the marked 

enrichment (Figure 4B, 4C). This indicated that such 

DEGs were pyroptosis phenotype-relevant genes. 

According to the 1629 pyroptosis phenotype-relevant 

gene signatures, this study established three reliable 

genomic phenotypes (Figure 4D–4G). Gastric cancer 

patients were clustered into three different pyroptosis 

genomic phenotypes, named as pyroptosis gene cluster-

A (n = 511), cluster-B (n = 510) and cluster-C (n = 

254). Moreover, Figure 4H shows the prominent 

heterogeneity in pyroptosis phenotype-associated genes 

and clinicopathological characteristics among three 

pyroptosis genomic phenotypes. 

 

Pyroptosis genomic phenotypes with distinct prognosis 

and immune landscapes 

 

Survival analysis showed the prominent prognostic 

differences among three pyroptosis genomic phenotypes 

in the gastric cancer meta-cohort. Pyroptosis gene 

cluster-C owned the poorest prognosis, while pyroptosis 

gene cluster-B exhibited a significant survival 

advantage (Figure 5A). Consistent with pyroptosis 

phenotypes, pyroptosis genomic cluster-C could be 

classified into immune-excluded tumors with innate 

immune cell infiltrations as well as stromal cells, with 

the genomic cluster-B categorized into immune-desert 

tumors with immunity suppression, and the genomic 

cluster-A categorized into immune-inflamed tumors 

with rich adaptive immune cells as well as immune 

activation (Figure 5B–5E). The heterogeneity in 

transcriptomic levels of immune checkpoints was also 

investigated across three pyroptosis genomic 

phenotypes (Figure 5F). 

 

Generation of the pyroptosis score and evaluation of 

its clinical implication 

 

To accurately quantify pyroptosis phenotypes in 

individual gastric cancer, this study proposed a scoring 

system named the pyroptosis score according to the 

pyroptosis phenotype-relevant gene signatures with 

PCA algorithm. Alluvial diagram showed the 

heterogeneity of the quantification of pyroptosis score 

among different pyroptosis phenotypes, pyroptosis 

genomic phenotypes and survival status (Figure 6A). 

Notably, pyroptosis cluster-B owned the strongest 

pyroptosis score, with subsequent cluster-A or cluster-C 

(Figure 6B). Moreover, pyroptosis genomic cluster-C 

displayed the strongest pyroptosis score, with 
subsequent cluster-A or cluster-B (Figure 6C). Next, 

gastric tumors in the meta-cohort were stratified as low 

or high pyroptosis score group. The efficiency of the 
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scoring system in inferring survival outcomes was then 

observed. In Figure 6D, high pyroptosis score displayed 

poorer survival. The pyroptosis score distribution across 

different clinical characteristics was also analyzed. 

Patients with advanced grade and stage had higher 

pyroptosis score (Figure 6E, 6F). Further analysis of 

 

 
 

Figure 3. Pyroptosis phenotypes with different immune landscapes in the gastric cancer meta-cohort. (A) The relative 

abundance of 28 immune cells in the TME among distinct pyroptosis phenotypes through ssGSEA. (B) The mRNA expression of the main 
immune checkpoints among three pyroptosis phenotypes. The asterisks indicated the statistical p-values (*p < 0.05; **p < 0.01; ***p < 0.001). 
(C–E) The stromal score, tumor purity and immune score in three pyroptosis phenotypes. 
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time-independent ROC curves confirmed the well 

performance of the scoring system (Figure 6G). Thus, 

the scoring system could be utilized for evaluating 

certain clinicopathological characteristics (grade and 

stage) of gastric cancer patients. 

Characteristics of the pyroptosis score in molecular 

subtypes and tumor genome somatic mutations 

 

GSEA results uncovered that high pyroptosis score was 

significantly connected to oncogenic or immune-related 

 

 
 

Figure 4. Identification of pyroptosis phenotype-related gene signatures in the gastric cancer meta-cohort. (A) Venn diagram 

showing the overlapped pyroptosis phenotype-related DEGs among three pyroptosis phenotypes. (B, C) GO and KEGG enrichment results 
of the overlapped pyroptosis phenotype-related DEGs. (D) Heat map showing the optimal clustering by k = 3 based on the overlapped 
pyroptosis phenotype-related DEGs. (E) The CDF for the cumulative distributive function of the consensus matrix for k = 2–9 identified by 
different colors. (F) The CDF plots of consensus clustering matrix for k = 2–9. (G) The t-SNE plots of the mRNA expression of pyroptosis 
phenotype-related gene signatures visualizing three distinct pyroptosis genomic phenotypes. (H) Heatmap showing the differences in the 
expression of pyroptosis phenotype-related gene signatures and clinicopathological characteristics among three pyroptosis genomic 
phenotypes. 
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pathways (Figure 7A), whereas low pyroptosis score 

exhibited significant associations with genetic 

mutations (Figure 7B). Significantly mutated genes 

were compared in two groups. As shown in mutational 

landscape, higher somatic mutational frequency was 

found in low pyroptosis score group (33.49% vs. 

36.26%; Figure 7C, 7D). TTN (17% vs. 20%), TP53 

(15% vs. 20%), MUC16 (11% vs. 12%), etc. exhibited 

increased genetic mutation frequencies for patients with 

low pyroptosis score. Somatic copy number alterations 

(SCNA) exhibit positive correlation to immune evasion 

as well as proliferative capacity of tumor cells. We 

 

 
 

Figure 5. Pyroptosis genomic phenotypes with distinct prognosis and immune landscapes in the gastric cancer meta-
cohort. (A) Kaplan-Meier survival curves for three pyroptosis genomic phenotypes (log-rank test). (B) The relative abundance of 28 

immune cells among three pyroptosis genomic phenotypes through ssGSEA. (C–E) The immune score, stromal score, and tumor purity 
across three genomic phenotypes. (F) The mRNA expression of immune checkpoints across three genomic phenotypes. The asterisks 
indicated the statistical p-values (*p < 0.05; ***p < 0.001) and ns indicated not significant. 
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observed an increased SCNA for patients with low 

pyroptosis score (Figure 7E). The high microsatellite 

instability (MSI-H) subtype, characterized by favorable 

survival outcomes exhibited distinct correlation to lower 

pyroptosis score, while low MSI (MSI-L) and micro-

satellite stable (MSS) status displayed higher pyroptosis 

score (Figure 7F, 7G). 

The pyroptosis score predicts immunotherapeutic 

responses and chemosensitivity 

 

We evaluated the interaction of the pyroptosis score 

with several signaling pathways by Spearman analyses. 

Consequently, the pyroptosis score presented negative 

correlations to DNA damage repair processes but was 

 

 
 

Figure 6. Generation of the pyroptosis score and evaluation of its clinical implication in the gastric cancer meta-cohort. 
(A) Alluvial diagram of pyroptosis phenotypes with different pyroptosis genomic phenotypes, pyroptosis score and survival status. 
(B) Distribution of pyroptosis score in three pyroptosis phenotypes. (C) Distribution of pyroptosis score in three pyroptosis genomic 
phenotypes. (D) Kaplan-Meier survival curves for high and low pyroptosis score groups (log-rank test). (E) Distribution of pyroptosis score in 
different grades (G1-3). (F) Distribution of pyroptosis score in different stages (stage I–IV). (G) Time-independent ROC curves showing the 
predictive performance of the pyroptosis score, age, gender, grade, and stage in gastric cancer prognosis. 
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positively correlated to stromal-related signatures in the 

meta-cohort (Figure 8A). Immunotherapies like CTLA-

4/PD-1 blockage have strictly made progress for anti-

cancer treatment. Tumor mutation burden (TMB) has 

become an effective biomarker for predicting immuno-

therapeutic response. Low pyroptosis score presented 

notable connection to increased TMB in TCGA-STAD 

cohort (Figure 8B). IPS is also recommended as an 

estimator of immunotherapeutic efficacy. The analysis 

revealed that IPS score of CTLA-4/PD-1 inhibitor 

treatment was distinctly elevated in low pyroptosis 

score in TCGA-STAD cohort (Figure 8C–8F). 

 

 
 

Figure 7. Characteristics of the pyroptosis score in molecular subtypes and tumor genome somatic mutations. (A, B) GSEA 

showing the activated signaling pathways in samples with high and low pyroptosis scores in the gastric cancer meta-cohort. (C, D) Mutational 
landscape in TCGA-STAD cohort clustered by high and low pyroptosis score subgroups. (E) Relative distribution of SCNA in high and low 
pyroptosis score groups from TCGA-STAD cohort. (F) Relative distribution of pyroptosis score in different molecular subtypes (MSI-H, MSI-L and 
MSS) in TCGA-STAD cohort. (G) Relative distribution of MSI status in patients with high and low pyroptosis scores from TCGA-STAD cohort. 
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The response to common chemotherapeutic agents was 

estimated in each sample from the meta-cohort (Figure 

8G–8J). We observed that high pyroptosis score 

exhibited markedly reduced IC50 values of cisplatin 

and docetaxel as well as low pyroptosis score had 

significantly increased IC50 value of paclitaxel. Thus, 

patients with high pyroptosis score could be more 

sensitive to cisplatin and docetaxel as well as low 

pyroptosis score was more likely to benefit from 

paclitaxel. Due to the close association between the 

pyroptosis score and immune response, this study 

further observed the predictive performance of the 

pyroptosis score in immunotherapeutic responses in two 

anti-PD-1 cohorts. The prominent therapeutic benefits 

 

 
 

Figure 8. The roles of the pyroptosis score in predicting immunotherapeutic responses and chemosensitivity. (A) Interactions 

of the pyroptosis score with several signaling pathways through Spearman analyses. Red, positive correlation and blue, negative 
correlation. (B) Distribution of TMB score in high and low pyroptosis score groups in TCGA-STAD cohort. (C–F) Distribution of IPS score of 
CTLA-4/PD-1 in high and low pyroptosis score groups in TCGA-STAD cohort. (G–J) The estimated IC50- values of cisplatin, docetaxel, 
gemcitabine, and paclitaxel in patients with high and low pyroptosis scores in the meta-cohort. 
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and immune responses to PD-1 inhibitor therapy were 

confirmed in low pyroptosis score group (79%) than 

another group (21%) in the GSE78220 cohort 

(Figure 9A). Patients with low pyroptosis score 

displayed prominent survival advantages (Figure 9B). 

The consistent results also confirmed that low 

 

 
 

Figure 9. Validation of the predictive efficacy of the pyroptosis score for immunotherapeutic responses in two anti-PD-1 
cohorts. (A) The fraction of patients with clinical response to anti-PD-1 therapy in high and low pyroptosis score groups from the 
GSE78220 cohort. (B) Kaplan-Meier curves for patients with high and low pyroptosis scores in the GSE78220 cohort (log-rank test). (C) The 
fractions of patients who presented therapeutic responses to anti-PD-1 therapy in high and low pyroptosis score groups from the Liu 
cohort. (D) Kaplan-Meier curves of patients with high and low pyroptosis scores in the Liu cohort (log-rank test). Abbreviations: CR: 
complete response; PR: partial response; SD: stable disease; PD: progressive disease. 
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pyroptosis score was distinctly correlated to clinical 

benefits and prolonged survival time in another anti-

PD-1 therapy (Liu et al. study; Figure 9C, 9D). 

Collectively, above data prominently demonstrated that 

the pyroptosis score could estimate immunotherapeutic 

efficiency. 

 

Validating prognostic pyroptosis-relevant genes in 

gastric tumors 

 

Through western blot, we validated the transcriptomic 

levels of such prognostic pyroptosis-relevant genes in 

three paired gastric cancer tissues and normal tissues 

(Figure 10A). Our results confirmed that the expression 

of GPX4 (Figure 10B), CASP6 (Figure 10C), IL-6 

(Figure 10D), CASP5 (Figure 10E), CASP4 (Figure 

10F), and TIRAP (Figure 10G) was greatly up-regulated 

in gastric tumors relative to normal tissues. Meanwhile, 

the expression of NLRP7 (Figure 10H) and NLRP6 

(Figure 10I) was greatly attenuated in gastric cancer 

tissues than controls. Above evidence confirmed the 

abnormal expression of the prognostic pyroptosis-

related genes in gastric cancer. 

 

DISCUSSION 
 

Pyroptosis is a programmed cell death form, triggered 

by perturbation of extra- or intracellular homeostasis 

linked to innate immunity [21]. Transforming immune 

“cold” tumors into “hot” tumors is a main strategy to 

improve the responses to immunotherapy. Accumulated 

evidence has demonstrated that pyroptosis may change 

the tumor immune microenvironment, ultimately 

enhancing response to immunotherapy [19]. Although 

many findings have suggested the modulation of 

pyroptosis in tumoral immunity, the overall TME traits 

regulated by pyroptosis don’t remain fully understood. 

Hence, identification of different pyroptosis phenotypes 

in the tumor immune microenvironment may offer an 

insight into the roles of pyroptosis on anti-cancer 

immune responses as well as boost more favorable 

immunotherapeutic schemes. 
 

Herein, our research established three different 

pyroptosis phenotypes with diverse survival outcomes 

and immune phenotypes. Pyroptosis cluster-C owned 

the prominent survival advantage, with subsequent 

pyroptosis cluster-A as well as cluster-B. The cluster-A 

presented the features of adaptive immune cell 

infiltrations and immune activation, which corres-

ponded to an immune-inflamed tumor; the cluster-B had 

the characteristics of immunity suppression, which 

corresponded to an immune-desert phenotype; the 

cluster-C exhibited innate immune cell infiltrations as 

well as stromal activation, which corresponded to an 

immune-excluded phenotype. This work showed that 

pyroptosis cluster-C possessed correlations to stromal 

pathway activation (like TGF-β signaling, epithelial 

mesenchymal transition and angiogenesis) [22]. It has 

been suggested that the activation of TGF-β- and 

epithelial mesenchymal transition-related pathways 

prevents lymphocytes from penetrating the tumor 

parenchyma [23]. Targeting TGF-β can reshape the 

TME and enhance the anti-tumor immunity [24]. Thus, 

we inferred that gastric cancer patients in pyroptosis 

cluster-C could benefit from the combination of 

immunotherapy and TGF-β inhibitors. Pyroptosis 

cluster-A presented the activation of immune-related 

processes. Pyroptosis cluster-B was significantly 

correlated to carcinogenic activation pathways such as 

PI3K-AKT-mTOR signaling, Wnt-β-catenin signaling, 

glycolysis and KRAS signaling, indicating poor 

prognosis of patients in pyroptosis cluster-B. 

 

Totally, we identified 1629 overlapped pyroptosis 

phenotype-relevant genes across pyroptosis phenotypes, 

which were significantly associated with immunity-

related biological processes and pathways, 

demonstrating that above genes were pyroptosis 

phenotype-relevant genes. Consistently, we constructed 

three different pyroptosis genomic phenotypes 

characterized by different prognosis and immune 

landscape. Although this clustering algorithm based 

upon the prognostic pyroptosis-associated gene set 

stratified gastric cancer specimens to different 

pyroptosis phenotypes, genetic changes as well as 

expression perturbation across above clusters remained 

unclear. Thus, we further developed the pyroptosis 

scoring system to define different pyroptosis 

phenotypes. We observed that pyroptosis cluster-B 

(immune-desert phenotype) presented the strongest 

pyroptosis score, followed by the cluster-A (immune-

inflamed tumors) as well as the cluster-C (immune- 

excluded tumors). Such pyroptosis score served as a 

reliable prognostic biomarker for gastric cancer. Low 

pyroptosis score exhibited significant associations with 

increased somatic mutations, SCNA as well as MSI-H 

subtype. In our study, pyroptosis score was a preferred 

indicator of genome alterations. Several findings 

suggest that chemotherapy agents elicit tumor cell 

deaths through inducing pyroptosis activation [25, 26]. 

Pyroptosis-based chemotherapy strategy may enhance 

immunological effects of chemotherapeutic agents 

[27]. Experimental evidence suggests that activation of 

pyroptotic cell death can enhance cisplatin-sensitivity 

in gastric cancer [28]. However, the relationships 

between pyroptosis and sensitivity to docetaxel and 

paclitaxel remain unclear in gastric cancer. Due to the 

heterogeneity of gastric cancer individuals, the subset 
with increased pyroptosis score potentially responded 

to cisplatin/docetaxel and the subset with low 

pyroptosis score was more likely to benefit from 
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paclitaxel. Thus, the performance of pyroptosis score in 

predicting chemotherapeutic response (cisplatin, 

docetaxel or paclitaxel) should be further investigated. 

Moreover, the pyroptosis score presented distinct 

correlation to predictors of the immunotherapeutic 

response such as TMB and IPS, suggesting  

that pyroptosis may affect the immunotherapeutic 

effects. In actual, this study confirmed the reliable 

predictive efficacy of the pyroptosis score in the 

immune response through two anti-PD-1 cohorts, 

 

 

 

 
Figure 10. Validation of the expression of prognostic pyroptosis-related genes. (A–I) Western blot for the expression of (B) GPX4, 

(C) CASP6, (D) IL-6, (E) CASP5, (F) CASP4, (G) TIRAP, (H) NLRP7 and (I) NLRP6 in three paired gastric cancer tissues and normal tissues. The 
asterisks indicated the statistical p-values (*p < 0.05; **p < 0.01; ***p < 0.001). 
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suggesting that pyroptosis may be utilized for selecting 

the immunophenotypes as well as guide treatment 

regimens. 

 

In clinical practice, the pyroptosis score can be applied 

for comprehensively evaluating the pyroptosis pheno-

types and the corresponding TME immune cell 

infiltrations for individual patients, which can also infer 

the immune phenotypes. Moreover, it enabled to assess 

patients’ stages and grades, molecular subtypes, genetic 

mutation, etc. The pyroptosis score potentially serves as a 

reliable prognostic indicator for predicting clinical 

outcomes. Furthermore, this score showed the well 

performance in predicting the responses to adjuvant 

chemotherapy and immunotherapy. Especially, our 

findings yielded a few novel insights into immunotherapy 

for altering the pyroptosis phenotypes as well as further 

reshaping the adverse TME, thereby transforming “cold 

tumors” into “hot tumors”. Thus, our findings might 

provide innovative ideas for ameliorating the clinical 

responses to immunotherapeutic regimens, selecting 

distinct immune phenotypes as well as facilitating 

personalized immunotherapeutic regimen. 

 

Nevertheless, several limitations should be pointed out. 

Firstly, there is still a lack of suitable immunotherapy-

based gastric cancer cohorts. Hence, we combined two 

immunotherapy cohorts of metastatic melanoma cases 

receiving PD-1 blockade for proving the effects of the 

pyroptosis scoring system. Therefore, our results 

provided the modest evidence that pyroptosis score 

potentially estimates the responses to anti-PD-1 therapy 

for gastric cancer patients. Secondly, the pyroptosis 

phenotypes and pyroptosis scoring system were 

determined based upon retrospective datasets. Hence, 

prospective datasets should be applied to verify our 

conclusion. Thirdly, our study focuses on gastric cancer 

patients and their TME, and it is not clear whether our 

findings can be generalized to other cancer types. We 

will investigate the generalizability of these findings to 

pan-cancers in our future studies. Finally, the study only 

investigated the strong correlations between pyroptosis 

and immunomodulation in gastric cancer, but did not 

establish their causality. Other factors, e.g., genetic 

mutations or environmental factors, might contribute to 

both pyroptosis and immune responses. Our future 

studies will solve these limitations. Moreover, we 

investigated that pyroptosis score owned negative 

connections with DNA damage repair mechanisms, 

with positive connections with stromal-related 

signatures. In our future studies, we will investigate the 

molecular mechanisms underlying pyroptosis affecting 

DNA damage repair and stromal activation in the TME. 

 

Collectively, this study comprehensively assessed the 

pyroptosis phenotypes across 1275 gastric cancer 

patients. The three pyroptosis phenotypes were 

characterized by distinct survival outcomes and 

immunophenotypes, proving pyroptosis exerts a 

prominent implication in the modulation of tumor 

immunity. Moreover, evaluation of the pyroptosis score 

of individual tumors might more precisely guide 

therapeutic strategies for individual patients. 

 

MATERIALS AND METHODS 
 

Sample curation and preprocessing 

 

Transcriptome data or complete patient information of 

gastric cancer were collected from the Cancer Genome 

Atlas (TCGA) or Gene Expression Omnibus (GEO; 

https://www.ncbi.nlm.nih.gov/geo/). In total, five 

gastric cancer cohorts (GSE15459, GSE62254, 

GSE84437, GSE26253 and TCGA-stomach 

adenocarcinoma (STAD)) were ultimately included for 

further analysis. RNA-seq profiles (FPKM value) of 32 

controls and 375 gastric tumors were retrieved from 

TCGA-STAD through the Genomic Data Commons 

(https://portal.gdc.cancer.gov/) with TCGAbiolinks 

package, with subsequent conversion of FPKM to TPM 

value [29]. The original “CEL” files of microarrays on 

the Affymetrix platform were obtained, with subsequent 

background adjustment and quantile standardization. 

Furthermore, the standardized matrix of microarrays on 

the Illumina platform was acquired. Utilizing “ComBat” 

function from sva tool, log2 (TPM + 1) was constructed 

[30], and the negative values that represented abnormal 

values were removed, and thus batch effects of 

integrated GSE15459, GSE62254, GSE84437 and 

TCGA-STAD datasets were removed. Somatic 

mutations or copy number variations (CNVs) were 

curated from TCGA. The maftools package was 

employed for analyzing and visualizing the somatic 

mutation data. Figure 11 shows the workflow diagram 

of this study. 

 

Unsupervised clustering for pyroptosis-related genes 

 

Thirty-three pyroptosis-related genes were curated from 

the published studies. Their chromosomal locations were 

drawn via Rcircos tool [31]. Protein-protein interactions 

(PPIs) of 33 pyroptosis-related genes were conducted 

with the STRING (https://string-db.org/) [32]. 

Univariate cox regression analysis was applied to screen 

prognostic pyroptosis-related genes. By unsupervised 

clustering analysis, different pyroptosis phenotypes 

based upon prognostic pyroptosis-associated gene set 

were established and gastric cancer cases were classified 

for subsequent exploration. The amount and reliability of 

clustering were evaluated with consensus clustering 

algorithm. Through ConsensuClusterPlus tool, such 

steps as well as 1000 times repetitions were carried out 

https://www.ncbi.nlm.nih.gov/geo/
https://portal.gdc.cancer.gov/
https://string-db.org/
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for insuring the clustering reliability [33]. The number 

of clusters k was set as 2~9. Moreover, 80% of the 

samples were sampled utilizing a re-sampling approach. 

T-distributed stochastic neighbor embedding (t-SNE) 

was run for proving the subtype assignment utilizing 

above ferroptosis genes. 

 

Gene set variation analysis (GSVA) 

 

The 50 hallmark gene sets were curated from the 

Molecular Signatures Database (MSigDB) [34]. GSVA 

enrichment analysis was then presented to estimate the 

activity of these pathways and biological processes in 

gastric cancer samples with GSVA package [35]. 

 

Estimation of immune cell infiltration 

 

Through single sample gene set enrichment analysis 

(ssGSEA), the relative abundance of 28 immune cells 

was quantified in the TME. Immune cell markers were 

curated from previous research [36, 37]. The relative 

abundance of each immune cell was normalized to 

ssGSEA score, ranging from 0 to 1. CIBERSORT, a 

deconvolution approach based upon linear support 

vector regression, was also applied for estimating the 

abundance of 22 immune cell populations [38]. 

Quantifying immune response predictors 

 

The mRNA expression levels of the main immune 

checkpoints (IDO1, LAG3, CTLA4, TNFRSF9, ICOS, 

CD80, PDCD1LG2, TIGIT, CD70, TNFSF9, ICOSLG, 

KIR3DL1, CD86, PDCD1, LAIR1, TNFRSF8, 

TNFSF15, TNFRSF14, IDO2, CD276, CD40, TNFRSF4, 

TNFSF14, HHLA2, CD244, CD274, HAVCR2, CD27, 

BTLA, LGALS9, TMIGD2, CD28, CD48, TNFRSF25, 

CD40LG, ADORA2A, VTCN1, CD160, CD44, 

TNFSF18, TNFRSF18, BTNL2, C10orf54, CD200R1, 

TNFSF4, CD200 and NRP1) were quantified in each 

gastric cancer sample. The ESTIMATE algorithm was 

employed for calculating immune/stromal score, thus 

inferring immune/stromal cell infiltration levels as well as 

tumor purity based upon the transcriptional profiling [39]. 

Tumor mutation burden (TMB) score was calculated as 

the amount of mutations/length of exons (30 Mb). 

Immunophenoscore (IPS), an indicator in predicting 

response of CTLA-4 or anti-PD-1 blockade, quantifies 

determining factors of cancer immunogenic charac-

teristics as well as characterizes the immune profiles 

within the tumor and cancer antigenome [37]. IPS was 

calculated based on the MHC-associated signatures, 

checkpoint or immunomodulatory molecules, effector 

or suppressor cell populations. 

 

 
 

Figure 11. The workflow diagram in this study. 
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Identification of pyroptosis phenotype-related 

differentially expressed genes (DEGs) 

 

Through limma package, DEGs (adjusted p < 0.05) 

between distinct pyroptosis phenotypes were determined 

[40]. Then, overlapped pyroptosis phenotype-related 

DEGs were extracted for further analysis. 

 

Construction of the pyroptosis score 

 

The consensus clustering algorithm was adopted to 

define genomic clustering number and reliability 

according to the expression of overlapped pyroptosis 

phenotype-related DEGs. Prognostic analysis of each 

pyroptosis phenotype-related DEG was carried out 

utilizing univariate cox regression models. The DEGs 

with p < 0.05 were chosen for subsequent exploration. 

Principal component analysis (PCA) was adopted for 

constructing the pyroptosis score. Principal component 

(PC) 1 and 2 were extracted to define the pyroptosis 

score. Such method possessed the advantages of 

focusing the score on the set with the most block of well 

correlated (or anticorrelated) genes in the set, and 

down-weighting contributions from genes that don’t 

track with other set members. The pyroptosis score was 

calculated utilizing an approach like GGI [41, 42], as 

follows: pyroptosis score = ∑(PC1i+PC2i), of which i 

indicated prognostic pyroptosis phenotype-associated 

DEG expression. 

 

Functional enrichment analyses 

 

Gene Ontology (GO) or Kyoto Encyclopedia of Genes 

and Genomes (KEGG) enrichment on pyroptosis 

phenotype-related DEGs was run with clusterProfiler 

package [43]. Gene set enrichment analysis (GSEA) 

was presented to observe the biological pathways 

involved in pyroptosis score based upon the 

“c2.cp.kegg.v6.2.symbols” set. 

 

Relationship of pyroptosis score with well-established 

biological signatures 

 

The gene sets of several well-established biological 

signatures were collected according to the published 

literature [44–46]. Spearman correlation was carried out 

for assessing interactions between pyroptosis score and 

above biological pathways. 

 

Assessment of the sensitivity of chemotherapeutics 

 

Cisplatin, docetaxel, gemcitabine, and paclitaxel were 

selected as candidate chemotherapeutic agents. To 

predict the sensitivity of these chemotherapeutic agents, 

IC50 of each sample was measured utilizing 

pRRophetic tool [47]. 

Transcriptome and follow-up data of immunotherapy 

cohorts 

 

Two immunotherapy cohorts were collected for our 

analysis: metastatic melanoma patients receiving PD-1 

blockade treatment (GSE78220 cohort) [48] and Liu 

et al. [49]. Gene expression profiles were curated and 

converted to TPM values for further analysis. 

 

Patients and specimens 

 

Three gastric cancer cases who had surgically proven 

primary gastric cancer and received D2 radical 

gastrectomy were recruited from Xiamen Haicang 

Hospital. Tumors and adjacent normal tissue specimens 

of three cases were collected during surgery, which 

were immediately placed in liquid nitrogen and stored at 

−80°C. This study gained the approval of the Medical 

Ethics Committee of Xiamen Haicang Hospital  

(KY-2020014). All patients provided written informed 

consent. 

 

Western blot 

 

Radioimmunoprecipitation assay (RIPA; Beyotime, 

China) buffer was applied for protein extraction from 

tissues. The supernatants were run on 8%–12% 

acrylamide gels via SDS-PAGE and then transferred 

onto polyvinylidene difluoride membranes (Millipore, 

USA). Antibodies against GPX4 (#P36969; 

RayBiotech, USA; 1:1000), NLRP7 (#AB117732; 

Abcam, USA; 1:1000), CASP6 (#AB108335; Abcam; 

1:1000), NLRP6 (#P59044; RayBiotech; 1:1000), IL-6 

(#AB271042; Abcam; 1:2000), CASP5 (#AB40887; 

Abcam; 1:3000), CASP4 (#AB238124; Abcam; 

1:1500), TIRAP (#P58753; RayBiotech; 1:1000), and 

GAPDH (#60004-1-Ig; Proteintech, China; 1:20000) 

and HRP-conjugated secondary antibodies (#ab97080 

or ab47827; Abcam; 1:2000) were employed for 

western blot. The chemiluminescence western blot 

detection system (Bio-Rad, USA) was utilized for 

protein detection. 

 

Statistical analysis 

 

Statistical analysis was generated by R 3.6.1. Kaplan-

Meier survival analysis was run through Survminer and 

survival packages. Statistical significance between 

groups was estimated through student’s t or Wilcoxon 

test. Meanwhile, three groups were compared with 

Kruskal-Wallis test or one-way analysis of variance. 

The receiver operating characteristic (ROC) curve was 

conducted to investigate the predictive efficacy of 
pyroptosis score and common clinical features (age, 

gender, grade and stage) in gastric cancer prognosis, 

with subsequent estimation of area under the curve 



www.aging-us.com 8130 AGING 

(AUC) utilizing timeROC package. P values were two-

side, with p < 0.05 as statistical difference. 

 

Availability of data and materials 

 

The data used to support the findings of this study are 

included within the supplementary information files. 

 

Abbreviations 
 

STAD: stomach adenocarcinoma; TME: tumor micro-

environment; TCGA: the Cancer Genome Atlas; GEO: 

Gene Expression Omnibus; CNV: copy number variation; 

PPI: protein-protein interaction; STRING: Search Tool 

for the Retrieval of Interacting Genes; t-SNE: t-

distributed stochastic neighbor embedding; GSVA: Gene 

set variation analysis; MSigDB: Molecular Signatures 

Database; ssGSEA: single sample gene set enrichment 

analysis; ESTIMATE: Estimation of Stromal and 

Immune Cells in Malignant Tumors using Expression 

Data; TMB: tumor mutation burden; IPS: Immuno-

phenoscore; DEGs: differentially expressed genes; PCA: 

principal component analysis; PC: principal component; 

GO: Gene Ontology; KEGG: Kyoto Encyclopedia of 

Genes and Genomes; GSEA: Gene set enrichment 

analysis; pan-F-TBRS: pan-fibroblast TGF-β response 

signature; EMT: epithelial-mesenchymal transition; IC50: 

half-maximal inhibitory concentration; ROC: receiver 

operating characteristic; AUC: area under the curve. 

 

AUTHOR CONTRIBUTIONS 
 

Shuitu Feng, Fanghong Luo, Jianmin Zhuang and 

Wenhui Zheng conceived and designed the study. Kaida 

Huang, Yubiao Lin, Guoqin Qiu and Shengyu Wang 

conducted most of the experiments and data analysis, 

and wrote the manuscript. Lihua Feng, Zhigao Zheng, 

Yingqin Gao and Xin Fan participated in collecting data 

and helped to draft the manuscript. All authors reviewed 

and approved the manuscript. 

 

CONFLICTS OF INTEREST 
 

The authors declare no conflicts of interest related to 

this study. 

 

ETHICAL STATEMENT AND CONSENT 
 

The study was approved by the Ethics Committee of 

Xiamen Haicang Hospital (KY-2020014). All patients 

provided written informed consent. 

 

FUNDING 
 

This research was sponsored by Natural Science 

Foundation of Xiamen, China (3502Z20227423, 

3502Z20227426, 3502Z20227307); Fujian Natural 

Science Foundation Project (No. 2023D007); The Fujian 

provincial health technology project (2022QNB031); 

The science and technology program of Xiamen city 

(3502Z20209252 and 3502Z20209164); The science 

and technology planning project of Haicang District 

Bureau of industry and information technology 

(350205Z20202006, 350205Z20212001, 350205z2021 

2003, 350205Z20222004, 350205Z20222005). 

 

Editorial note 
 
&This corresponding author has a verified history of 

publications using a personal email address for 

correspondence. 

 

REFERENCES 
 
1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, 

Jemal A. Global cancer statistics 2018: GLOBOCAN 
estimates of incidence and mortality worldwide for 
36 cancers in 185 countries. CA Cancer J Clin. 2018; 
68:394–424. 
https://doi.org/10.3322/caac.21492 
PMID:30207593 

2. Qiu XT, Song YC, Liu J, Wang ZM, Niu X, He J. 
Identification of an immune-related gene-based 
signature to predict prognosis of patients with gastric 
cancer. World J Gastrointest Oncol. 2020; 12:857–76. 
https://doi.org/10.4251/wjgo.v12.i8.857 
PMID:32879664 

3. Wang X, Cheng G, Miao Y, Qiu F, Bai L, Gao Z, Huang 
Y, Dong L, Niu X, Wang X, Li Y, Tang H, Xu Y, Song X. 
Piezo type mechanosensitive ion channel component 
1 facilitates gastric cancer omentum metastasis. J Cell 
Mol Med. 2021; 25:2238–53. 
https://doi.org/10.1111/jcmm.16217 
PMID:33439514 

4. Gambardella V, Castillo J, Tarazona N, Gimeno-Valiente 
F, Martínez-Ciarpaglini C, Cabeza-Segura M, Roselló S, 
Roda D, Huerta M, Cervantes A, Fleitas T. The role of 
tumor-associated macrophages in gastric cancer 
development and their potential as a therapeutic 
target. Cancer Treat Rev. 2020; 86:102015. 
https://doi.org/10.1016/j.ctrv.2020.102015 
PMID:32248000 

5. Zhao J, Zhong S, Niu X, Jiang J, Zhang R, Li Q. The MHC 
class I-LILRB1 signalling axis as a promising target in 
cancer therapy. Scand J Immunol. 2019; 90:e12804. 
https://doi.org/10.1111/sji.12804 
PMID:31267559 

6. Kawazoe A, Fukuoka S, Nakamura Y, Kuboki Y, 
Wakabayashi M, Nomura S, Mikamoto Y, Shima H, 
Fujishiro N, Higuchi T, Sato A, Kuwata T, Shitara K. 

https://doi.org/10.3322/caac.21492
https://pubmed.ncbi.nlm.nih.gov/30207593
https://doi.org/10.4251/wjgo.v12.i8.857
https://pubmed.ncbi.nlm.nih.gov/32879664
https://doi.org/10.1111/jcmm.16217
https://pubmed.ncbi.nlm.nih.gov/33439514
https://doi.org/10.1016/j.ctrv.2020.102015
https://pubmed.ncbi.nlm.nih.gov/32248000
https://doi.org/10.1111/sji.12804
https://pubmed.ncbi.nlm.nih.gov/31267559


www.aging-us.com 8131 AGING 

Lenvatinib plus pembrolizumab in patients with 
advanced gastric cancer in the first-line or second-line 
setting (EPOC1706): an open-label, single-arm, phase 
2 trial. Lancet Oncol. 2020; 21:1057–65. 
https://doi.org/10.1016/S1470-2045(20)30271-0 
PMID:32589866 

 7. Kim ST, Cristescu R, Bass AJ, Kim KM, Odegaard JI, Kim 
K, Liu XQ, Sher X, Jung H, Lee M, Lee S, Park SH, Park 
JO, et al. Comprehensive molecular characterization 
of clinical responses to PD-1 inhibition in metastatic 
gastric cancer. Nat Med. 2018; 24:1449–58. 
https://doi.org/10.1038/s41591-018-0101-z 
PMID:30013197 

 8. Wang F, Wei XL, Wang FH, Xu N, Shen L, Dai GH, Yuan 
XL, Chen Y, Yang SJ, Shi JH, Hu XC, Lin XY, Zhang QY, 
et al. Safety, efficacy and tumor mutational burden as 
a biomarker of overall survival benefit in chemo-
refractory gastric cancer treated with toripalimab, a 
PD-1 antibody in phase Ib/II clinical trial 
NCT02915432. Ann Oncol. 2019; 30:1479–86. 
https://doi.org/10.1093/annonc/mdz197 
PMID:31236579 

 9. Alptekin A, Parvin M, Chowdhury HI, Rashid MH, 
Arbab AS. Engineered exosomes for studies in tumor 
immunology. Immunol Rev. 2022; 312:76–102. 
https://doi.org/10.1111/imr.13107 
PMID:35808839 

10. Kong X, Fu M, Niu X, Jiang H. Comprehensive Analysis 
of the Expression, Relationship to Immune Infiltration 
and Prognosis of TIM-1 in Cancer. Front Oncol. 2020; 
10:1086. 
https://doi.org/10.3389/fonc.2020.01086 
PMID:33014768 

11. Zhang B, Wu Q, Li B, Wang D, Wang L, Zhou YL. m6A 
regulator-mediated methylation modification 
patterns and tumor microenvironment infiltration 
characterization in gastric cancer. Mol Cancer. 2020; 
19:53. 
https://doi.org/10.1186/s12943-020-01170-0 
PMID:32164750 

12. Segal BH, Giridharan T, Suzuki S, Khan ANH, Zsiros E, 
Emmons TR, Yaffe MB, Gankema AAF, Hoogeboom 
M, Goetschalckx I, Matlung HL, Kuijpers TW. 
Neutrophil interactions with T cells, platelets, endo-
thelial cells, and of course tumor cells. Immunol Rev. 
2023; 314:13–35. 
https://doi.org/10.1111/imr.13178 
PMID:36527200 

13. Bousso P. Diving into the mechanism of action of 
tumor immunotherapies with intravital imaging. 
Immunol Rev. 2022; 306:218–23. 
https://doi.org/10.1111/imr.13032 
PMID:34713901 

14. Neel DV, Basu H, Gunner G, Chiu IM. Catching a killer: 
Mechanisms of programmed cell death and immune 
activation in Amyotrophic Lateral Sclerosis. Immunol 
Rev. 2022; 311:130–50. 
https://doi.org/10.1111/imr.13083 
PMID:35524757 

15. Tang R, Xu J, Zhang B, Liu J, Liang C, Hua J, Meng Q, Yu 
X, Shi S. Ferroptosis, necroptosis, and pyroptosis in 
anticancer immunity. J Hematol Oncol. 2020; 13:110. 
https://doi.org/10.1186/s13045-020-00946-7 
PMID:32778143 

16. Wu D, Wang S, Yu G, Chen X. Cell Death Mediated by 
the Pyroptosis Pathway with the Aid of 
Nanotechnology: Prospects for Cancer Therapy. 
Angew Chem Int Ed Engl. 2021; 60:8018–34. 
https://doi.org/10.1002/anie.202010281 
PMID:32894628 

17. Ju X, Yang Z, Zhang H, Wang Q. Role of pyroptosis in 
cancer cells and clinical applications. Biochimie. 2021; 
185:78–86. 
https://doi.org/10.1016/j.biochi.2021.03.007 
PMID:33746064 

18. Siska PJ, Singer K, Evert K, Renner K, Kreutz M. The 
immunological Warburg effect: Can a metabolic-
tumor-stroma score (MeTS) guide cancer 
immunotherapy? Immunol Rev. 2020; 295:187–202. 
https://doi.org/10.1111/imr.12846 
PMID:32157706 

19. Rosenbaum SR, Wilski NA, Aplin AE. Fueling the Fire: 
Inflammatory Forms of Cell Death and Implications 
for Cancer Immunotherapy. Cancer Discov. 2021; 
11:266–81. 
https://doi.org/10.1158/2159-8290.CD-20-0805 
PMID:33451983 

20. Chen DS, Mellman I. Elements of cancer immunity 
and the cancer-immune set point. Nature. 2017; 
541:321–30. 
https://doi.org/10.1038/nature21349 
PMID:28102259 

21. Dubyak GR, Miller BA, Pearlman E. Pyroptosis in 
neutrophils: Multimodal integration of 
inflammasome and regulated cell death signaling 
pathways. Immunol Rev. 2023; 314:229–49. 
https://doi.org/10.1111/imr.13186 
PMID:36656082 

22. Zhu X, Chen L, Liu L, Niu X. EMT-Mediated Acquired 
EGFR-TKI Resistance in NSCLC: Mechanisms and 
Strategies. Front Oncol. 2019; 9:1044. 
https://doi.org/10.3389/fonc.2019.01044 
PMID:31681582 

23. Tauriello DVF, Palomo-Ponce S, Stork D, Berenguer-
Llergo A, Badia-Ramentol J, Iglesias M, Sevillano M, 

https://doi.org/10.1016/S1470-2045(20)30271-0
https://pubmed.ncbi.nlm.nih.gov/32589866
https://doi.org/10.1038/s41591-018-0101-z
https://pubmed.ncbi.nlm.nih.gov/30013197
https://doi.org/10.1093/annonc/mdz197
https://pubmed.ncbi.nlm.nih.gov/31236579
https://doi.org/10.1111/imr.13107
https://pubmed.ncbi.nlm.nih.gov/35808839
https://doi.org/10.3389/fonc.2020.01086
https://pubmed.ncbi.nlm.nih.gov/33014768
https://doi.org/10.1186/s12943-020-01170-0
https://pubmed.ncbi.nlm.nih.gov/32164750
https://doi.org/10.1111/imr.13178
https://pubmed.ncbi.nlm.nih.gov/36527200
https://doi.org/10.1111/imr.13032
https://pubmed.ncbi.nlm.nih.gov/34713901
https://doi.org/10.1111/imr.13083
https://pubmed.ncbi.nlm.nih.gov/35524757
https://doi.org/10.1186/s13045-020-00946-7
https://pubmed.ncbi.nlm.nih.gov/32778143
https://doi.org/10.1002/anie.202010281
https://pubmed.ncbi.nlm.nih.gov/32894628
https://doi.org/10.1016/j.biochi.2021.03.007
https://pubmed.ncbi.nlm.nih.gov/33746064
https://doi.org/10.1111/imr.12846
https://pubmed.ncbi.nlm.nih.gov/32157706
https://doi.org/10.1158/2159-8290.CD-20-0805
https://pubmed.ncbi.nlm.nih.gov/33451983
https://doi.org/10.1038/nature21349
https://pubmed.ncbi.nlm.nih.gov/28102259
https://doi.org/10.1111/imr.13186
https://pubmed.ncbi.nlm.nih.gov/36656082
https://doi.org/10.3389/fonc.2019.01044
https://pubmed.ncbi.nlm.nih.gov/31681582


www.aging-us.com 8132 AGING 

Ibiza S, Cañellas A, Hernando-Momblona X, Byrom D, 
Matarin JA, Calon A, et al. TGFβ drives immune 
evasion in genetically reconstituted colon cancer 
metastasis. Nature. 2018; 554:538–43. 
https://doi.org/10.1038/nature25492 
PMID:29443964 

24. Desbois M, Wang Y. Cancer-associated fibroblasts: 
Key players in shaping the tumor immune 
microenvironment. Immunol Rev. 2021; 302:241–58. 
https://doi.org/10.1111/imr.12982 
PMID:34075584 

25. Zeng QZ, Yang F, Li CG, Xu LH, He XH, Mai FY, Zeng CY, 
Zhang CC, Zha QB, Ouyang DY. Paclitaxel Enhances 
the Innate Immunity by Promoting NLRP3 
Inflammasome Activation in Macrophages. Front 
Immunol. 2019; 10:72. 
https://doi.org/10.3389/fimmu.2019.00072 
PMID:30761140 

26. Wu M, Wang Y, Yang D, Gong Y, Rao F, Liu R, Danna Y, 
Li J, Fan J, Chen J, Zhang W, Zhan Q. A PLK1 kinase 
inhibitor enhances the chemosensitivity of cisplatin 
by inducing pyroptosis in oesophageal squamous cell 
carcinoma. EBioMedicine. 2019; 41:244–55. 
https://doi.org/10.1016/j.ebiom.2019.02.012 
PMID:30876762 

27. Fan JX, Deng RH, Wang H, Liu XH, Wang XN, Qin R, Jin 
X, Lei TR, Zheng D, Zhou PH, Sun Y, Zhang XZ. 
Epigenetics-Based Tumor Cells Pyroptosis for 
Enhancing the Immunological Effect of 
Chemotherapeutic Nanocarriers. Nano Lett. 2019; 
19:8049–58. 
https://doi.org/10.1021/acs.nanolett.9b03245 
PMID:31558023 

28. Li C, Qiu J, Xue Y. Low-dose Diosbulbin-B (DB) 
activates tumor-intrinsic PD-L1/NLRP3 signaling 
pathway mediated pyroptotic cell death to increase 
cisplatin-sensitivity in gastric cancer (GC). Cell Biosci. 
2021; 11:38. 
https://doi.org/10.1186/s13578-021-00548-x 
PMID:33579380 

29. Colaprico A, Silva TC, Olsen C, Garofano L, Cava C, 
Garolini D, Sabedot TS, Malta TM, Pagnotta SM, 
Castiglioni I, Ceccarelli M, Bontempi G, Noushmehr H. 
TCGAbiolinks: an R/Bioconductor package for 
integrative analysis of TCGA data. Nucleic Acids Res. 
2016; 44:e71. 
https://doi.org/10.1093/nar/gkv1507 
PMID:26704973 

30. Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. 
The sva package for removing batch effects and other 
unwanted variation in high-throughput experiments. 
Bioinformatics. 2012; 28:882–3. 
https://doi.org/10.1093/bioinformatics/bts034 

PMID:22257669 

31. Zhang H, Meltzer P, Davis S. RCircos: an R package for 
Circos 2D track plots. BMC Bioinformatics. 2013; 
14:244. 
https://doi.org/10.1186/1471-2105-14-244 
PMID:23937229 

32. Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, 
Simonovic M, Santos A, Doncheva NT, Roth A, Bork P, 
Jensen LJ, von Mering C. The STRING database in 
2017: quality-controlled protein-protein association 
networks, made broadly accessible. Nucleic Acids Res. 
2017; 45:D362–8. 
https://doi.org/10.1093/nar/gkw937 
PMID:27924014 

33. Wilkerson MD, Hayes DN. ConsensusClusterPlus: a 
class discovery tool with confidence assessments and 
item tracking. Bioinformatics. 2010; 26:1572–3. 
https://doi.org/10.1093/bioinformatics/btq170 
PMID:20427518 

34. Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, 
Mesirov JP, Tamayo P. The Molecular Signatures 
Database (MSigDB) hallmark gene set collection. Cell 
Syst. 2015; 1:417–25. 
https://doi.org/10.1016/j.cels.2015.12.004 
PMID:26771021 

35. Hänzelmann S, Castelo R, Guinney J. GSVA: gene set 
variation analysis for microarray and RNA-seq data. 
BMC Bioinformatics. 2013; 14:7. 
https://doi.org/10.1186/1471-2105-14-7 
PMID:23323831 

36. Jia Q, Wu W, Wang Y, Alexander PB, Sun C, Gong Z, 
Cheng JN, Sun H, Guan Y, Xia X, Yang L, Yi X, Wan YY, 
et al. Local mutational diversity drives intratumoral 
immune heterogeneity in non-small cell lung cancer. 
Nat Commun. 2018; 9:5361. 
https://doi.org/10.1038/s41467-018-07767-w 
PMID:30560866 

37. Charoentong P, Finotello F, Angelova M, Mayer C, 
Efremova M, Rieder D, Hackl H, Trajanoski Z. Pan-
cancer Immunogenomic Analyses Reveal Genotype-
Immunophenotype Relationships and Predictors of 
Response to Checkpoint Blockade. Cell Rep. 2017; 
18:248–62. 
https://doi.org/10.1016/j.celrep.2016.12.019 
PMID:28052254 

38. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, 
Xu Y, Hoang CD, Diehn M, Alizadeh AA. Robust 
enumeration of cell subsets from tissue expression 
profiles. Nat Methods. 2015; 12:453–7. 
https://doi.org/10.1038/nmeth.3337 
PMID:25822800 

39. Yoshihara K, Shahmoradgoli M, Martínez E, Vegesna 

https://doi.org/10.1038/nature25492
https://pubmed.ncbi.nlm.nih.gov/29443964
https://doi.org/10.1111/imr.12982
https://pubmed.ncbi.nlm.nih.gov/34075584
https://doi.org/10.3389/fimmu.2019.00072
https://pubmed.ncbi.nlm.nih.gov/30761140
https://doi.org/10.1016/j.ebiom.2019.02.012
https://pubmed.ncbi.nlm.nih.gov/30876762
https://doi.org/10.1021/acs.nanolett.9b03245
https://pubmed.ncbi.nlm.nih.gov/31558023
https://doi.org/10.1186/s13578-021-00548-x
https://pubmed.ncbi.nlm.nih.gov/33579380
https://doi.org/10.1093/nar/gkv1507
https://pubmed.ncbi.nlm.nih.gov/26704973
https://doi.org/10.1093/bioinformatics/bts034
https://pubmed.ncbi.nlm.nih.gov/22257669
https://doi.org/10.1186/1471-2105-14-244
https://pubmed.ncbi.nlm.nih.gov/23937229
https://doi.org/10.1093/nar/gkw937
https://pubmed.ncbi.nlm.nih.gov/27924014
https://doi.org/10.1093/bioinformatics/btq170
https://pubmed.ncbi.nlm.nih.gov/20427518
https://doi.org/10.1016/j.cels.2015.12.004
https://pubmed.ncbi.nlm.nih.gov/26771021
https://doi.org/10.1186/1471-2105-14-7
https://pubmed.ncbi.nlm.nih.gov/23323831
https://doi.org/10.1038/s41467-018-07767-w
https://pubmed.ncbi.nlm.nih.gov/30560866
https://doi.org/10.1016/j.celrep.2016.12.019
https://pubmed.ncbi.nlm.nih.gov/28052254
https://doi.org/10.1038/nmeth.3337
https://pubmed.ncbi.nlm.nih.gov/25822800


www.aging-us.com 8133 AGING 

R, Kim H, Torres-Garcia W, Treviño V, Shen H, Laird 
PW, Levine DA, Carter SL, Getz G, Stemke-Hale K, et 
al. Inferring tumour purity and stromal and immune 
cell admixture from expression data. Nat Commun. 
2013; 4:2612. 
https://doi.org/10.1038/ncomms3612 
PMID:24113773 

40. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, 
Smyth GK. limma powers differential expression 
analyses for RNA-sequencing and microarray studies. 
Nucleic Acids Res. 2015; 43:e47. 
https://doi.org/10.1093/nar/gkv007 
PMID:25605792 

41. Zeng D, Li M, Zhou R, Zhang J, Sun H, Shi M, Bin J, Liao 
Y, Rao J, Liao W. Tumor Microenvironment 
Characterization in Gastric Cancer Identifies 
Prognostic and Immunotherapeutically Relevant Gene 
Signatures. Cancer Immunol Res. 2019; 7:737–50. 
https://doi.org/10.1158/2326-6066.CIR-18-0436 
PMID:30842092 

42. Sotiriou C, Wirapati P, Loi S, Harris A, Fox S, Smeds J, 
Nordgren H, Farmer P, Praz V, Haibe-Kains B, 
Desmedt C, Larsimont D, Cardoso F, et al. Gene 
expression profiling in breast cancer: understanding 
the molecular basis of histologic grade to improve 
prognosis. J Natl Cancer Inst. 2006; 98:262–72. 
https://doi.org/10.1093/jnci/djj052 
PMID:16478745 

43. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R 
package for comparing biological themes among gene 
clusters. OMICS. 2012; 16:284–7. 
https://doi.org/10.1089/omi.2011.0118 
PMID:22455463 

44. Şenbabaoğlu Y, Gejman RS, Winer AG, Liu M, Van 
Allen EM, de Velasco G, Miao D, Ostrovnaya I, Drill E, 
Luna A, Weinhold N, Lee W, Manley BJ, et al. Tumor 
immune microenvironment characterization in clear 
cell renal cell carcinoma identifies prognostic and 
immunotherapeutically relevant messenger RNA 
signatures. Genome Biol. 2016; 17:231. 
https://doi.org/10.1186/s13059-016-1092-z 
PMID:27855702 

 
 
 
 
 
 
 
 
 
 
 

45. Rosenberg JE, Hoffman-Censits J, Powles T, van der 
Heijden MS, Balar AV, Necchi A, Dawson N, O'Donnell 
PH, Balmanoukian A, Loriot Y, Srinivas S, Retz MM, 
Grivas P, et al. Atezolizumab in patients with locally 
advanced and metastatic urothelial carcinoma who 
have progressed following treatment with platinum-
based chemotherapy: a single-arm, multicentre, 
phase 2 trial. Lancet. 2016; 387:1909–20. 
https://doi.org/10.1016/S0140-6736(16)00561-4 
PMID:26952546 

46. Mariathasan S, Turley SJ, Nickles D, Castiglioni A, 
Yuen K, Wang Y, Kadel EE III, Koeppen H, Astarita JL, 
Cubas R, Jhunjhunwala S, Banchereau R, Yang Y, et al. 
TGFβ attenuates tumour response to PD-L1 blockade 
by contributing to exclusion of T cells. Nature. 2018; 
554:544–8. 
https://doi.org/10.1038/nature25501 
PMID:29443960 

47. Geeleher P, Cox N, Huang RS. pRRophetic: an R 
package for prediction of clinical chemotherapeutic 
response from tumor gene expression levels. PLoS 
One. 2014; 9:e107468. 
https://doi.org/10.1371/journal.pone.0107468 
PMID:25229481 

48. Hugo W, Zaretsky JM, Sun L, Song C, Moreno BH, Hu-
Lieskovan S, Berent-Maoz B, Pang J, Chmielowski B, 
Cherry G, Seja E, Lomeli S, Kong X, et al. Genomic and 
Transcriptomic Features of Response to Anti-PD-1 
Therapy in Metastatic Melanoma. Cell. 2016; 165:35–
44. 
https://doi.org/10.1016/j.cell.2016.02.065 
PMID:26997480 

49. Liu D, Schilling B, Liu D, Sucker A, Livingstone E, Jerby-
Arnon L, Zimmer L, Gutzmer R, Satzger I, Loquai C, 
Grabbe S, Vokes N, Margolis CA, et al. Integrative 
molecular and clinical modeling of clinical outcomes 
to PD1 blockade in patients with metastatic 
melanoma. Nat Med. 2019; 25:1916–27. 
https://doi.org/10.1038/s41591-019-0654-5 
PMID:31792460 

 

 

https://doi.org/10.1038/ncomms3612
https://pubmed.ncbi.nlm.nih.gov/24113773
https://doi.org/10.1093/nar/gkv007
https://pubmed.ncbi.nlm.nih.gov/25605792
https://doi.org/10.1158/2326-6066.CIR-18-0436
https://pubmed.ncbi.nlm.nih.gov/30842092
https://doi.org/10.1093/jnci/djj052
https://pubmed.ncbi.nlm.nih.gov/16478745
https://doi.org/10.1089/omi.2011.0118
https://pubmed.ncbi.nlm.nih.gov/22455463
https://doi.org/10.1186/s13059-016-1092-z
https://pubmed.ncbi.nlm.nih.gov/27855702
https://doi.org/10.1016/S0140-6736(16)00561-4
https://pubmed.ncbi.nlm.nih.gov/26952546
https://doi.org/10.1038/nature25501
https://pubmed.ncbi.nlm.nih.gov/29443960
https://doi.org/10.1371/journal.pone.0107468
https://pubmed.ncbi.nlm.nih.gov/25229481
https://doi.org/10.1016/j.cell.2016.02.065
https://pubmed.ncbi.nlm.nih.gov/26997480
https://doi.org/10.1038/s41591-019-0654-5
https://pubmed.ncbi.nlm.nih.gov/31792460


www.aging-us.com 8134 AGING 

SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. External validation of pyroptosis phenotypes in the GSE26253 cohort. (A) Heat map for the optimal 

clustering by k = 3 based on prognostic pyroptosis-related genes in the GSE26253 cohort. (B) The consensus matrix for k = 2–9 identified by 
different colors. (C) The CDF plots of consensus clustering matrix for k = 2–9. (D) The t-SNE plots of the mRNA expression profiles of 
prognostic pyroptosis-related genes showing the three distinct subtypes indicated by different colors. (E) Kaplan–Meier survival curves for 
the three pyroptosis subtypes. 
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Supplementary Figure 2. Validation of immune cell infiltrations across pyroptosis phenotypes in the gastric cancer meta-
cohort through CIBERSORT. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1 and 2. 

 

Supplementary Table 1. Identification of three distinct pyroptosis phenotypes in gastric cancer. 

 

Supplementary Table 2. The list of 1629 overlapped pyroptosis phenotype-related DEGs among three pyroptosis 
phenotypes. 

 

 


