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INTRODUCTION 
 

Breast cancer is the most commonly diagnosed cancer 

and the leading cause of cancer-related death among 

females worldwide. According to 2020 worldwide 

cancer statistics, female breast cancer had surpassed 

lung cancer as the leading contributor to global cancer 

incidence; it accounts for an estimated 2.3 million new 

cases and 685,000-related deaths, representing 11.7% of 

all cancer cases and 15.5% of cancer-related deaths in 
females [1–3]. Management of breast cancer is 

multidisciplinary. It includes locoregional therapy 

(surgery and radiation therapy) and systemic therapy 

(endocrine therapy, chemotherapy and immunotherapy). 

Due to the high heterogeneity of breast cancer, patients 

with similar clinical characteristics may have different 

prognoses [4, 5]. This means that a high proportion of 

patients present with late-stage disease and a poor 

prognosis. Therefore, it is important to generate robust 

tools for prognosis prediction and therapeutic response 

assessment because these would further facilitate 

precise and individualized treatment. 

 
Rapid advancements in transcriptome sequencing 

technologies enabled the development of prognostic 

tools based on gene expression levels in breast cancer 
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ABSTRACT 
 

Breast cancer (BC) is a heterogeneous disease characterized by significant differences in prognosis and therapy 
response. Numerous prognostic tools have been developed for breast cancer. Usually these tools are based on bulk 
RNA-sequencing (RNA-Seq) and ignore tumor heterogeneity. Consequently, the goal of this study was to construct 
a single-cell level tool for predicting the prognosis of BC patients. In this study, we constructed a stemness-risk gene 
score (SGS) model based on single-sample gene set enrichment analysis (ssGSEA). Patients were divided into two 
groups based on the median SGS. Patients with a high SGS scores had a significantly worse prognosis than those 
with a low SGS, and these groups exhibited differences in several tumor characteristics, such as immune 
infiltration, gene mutations, and copy number variants. Our results indicate that the SGS is a reliable tool for 
predicting prognosis and response to immunotherapy in BC patients. 
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[6]. Bulk RNA-Seq, which is based on RNA extracted 

from tissue homogenates or cells, can only represent the 

average expression of genes and cannot capture 

heterogeneity in complex tissues or cell populations  

[7, 8]. To overcome this limitation, single-cell RNA 

sequencing (scRNA-seq) technology was proposed by 

Tang et al. [9]. ScRNA-seq is a powerful tool for 

characterizing the transcriptomic profile of individual 

cells. In recent years, significant improvements in the 

sensitivity and accuracy of scRNA-seq technology have 

led to a better understanding of tumor heterogeneity 

[10, 11]. Nevertheless, since scRNA-seq data for 

patients usually lack prognostic information and the 

number of patients is limited, a research gap remains in 

the study of breast cancer prognosis. 

 

Cancer stem cells (CSCs) represent a subpopulation of 

cancer cells with the ability to self-renew and drive 

tumor growth, recognized as tumor initiating cells [12]. 

CSC has a critical role in tumorigenesis, metastasis and 

resistance to therapy, also been regarded as an attractive 

target for cancer treatment [13]. Growing evidence 

showed that breast cancer stem cells (BCSCs) play a 

pivotal role in breast cancer development and 

progression [14, 15]. Therefore, a comprehensive 

understanding of CSCs can significantly improve 

treatment recommendations and facilitate the develop-

ment and personalization of targeted therapies for breast 

cancer. 

 

In this study, we employed ssGSEA based on 36 

publicly available stemness gene sets to obtain a 

comprehensive view of the genetic landscape of breast 

cancer by analyzing gene expression profiles across 

multiple datasets. Our results indicated that breast 

cancer patients with a high SGS had a worse prognosis 

than those with a low SGS. Further analyses revealed 

that these patients exhibited significant deviations in 

PAM50 and immunohistochemistry (IHC) subtypes 

tended toward the HER2+ and TNBC subtypes, both of 

which are associated with a poor prognosis. Taken 

together, our findings suggest that the SGS can serve as 

an independent and reliable prognostic factor for breast 

cancer.  

 

RESULTS 
 

The SGS identifies two subclasses in BRCA 

 

A flow diagram for the present analysis is shown in 

Extended Data Supplementary Figure 1. First, we used 

ssGSEA to calculate the normalized enrichment score 

(NES) of 36 stemness-related gene sets in the TCGA-

BRCA and METABRIC integrated datasets. Then, the 

prognostic value of these NES values was evaluated by 

univariate Cox regression analysis. We identified 18 

gene sets with the P-value <0.05 as prognostic factors 

(Supplementary Figure 2A, 2B) and drew a prognostic 

network of stemness genes (Figure 1A). We calculated 

he SGS for each patient by subtracting the risk factor 

score from the protective factor score and stratified all 

patients into high SGS group and low group by using 

the median SGS as the cutoff. Kaplan-Meier (KM) 

survival analysis showed that the high SGS group had a 

worse prognosis than the low SGS group (Figure 1B). 

 

Patient characteristics 

 

By analyzing the IHC subtypes of the study population, 

we found that TNBC and HER2+ patients, two subtypes 

with a poor prognosis, were more common in the high 

SGS group. ER+ subtype patients with a better 

prognosis tended to be in the low SGS group (Figure 

1C, 1D). We also observed that among PAM50 

classifications of the study population, luminal-B 

(LumB), HER2-enriched (HER2-E) and basal-like 

subtypes patients with a poor prognosis were mainly 

distributed the high SGS group. Luminal-A (LumA) and 

normal-like subtype patients with better prognosis were 

mainly distributed in the low SGS group (Figure 1E). 

Other clinical features, including clinical tumor stage 

and TNM stage, did not differ significantly between the 

high SGS group and the low SGS group (Figure 1F). 

 

Correlation of immune mechanisms with the SGS in 

breast cancer 

 

To identify mechanisms associated with a poor 

prognosis, we performed differential gene expression 

analysis between the two groups. Differentially 

expressed genes were split into up-regulated and down-

regulated genes. Numerous genes associated with the 

cell cycle, including UBE2C and CCNE2, were up-

regulated in the high SGS group (Figure 2A). Then, we 

performed analysis of up-regulated genes and down-

regulated genes separately. We performed functional 

enrichment analysis on the differentially up-regulated 

genes using Gene Ontologies (GO) analysis and found 

that organelle fission, nuclear division and chromosome 

segregation-related pathways were highly enriched in the 

high SGS group (Figure 2B). Hallmark gene set 

enrichment analysis revealed that a series of signaling 

pathways related to cell proliferation, such as the E2F 

target,G2M checkpoint and mitotic spindle, were 

significantly up-regulated in the high SGS group  

(Figure 2C). GO analysis (Figure 2D) showed that down-

regulated genes were mainly enriched in extracellular 

matrix organization and external encapsulating structure 

organization-related pathway. Hallmark gene set 
enrichment analysis showed that down-regulated  

genes were mainly enriched in epithelial-mesenchymal 

transition-related pathway. Gene set enrichment 
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analysis (GSEA) analysis indicated similar pathway 

enrichment (Figure 2F). 

 

We estimated the infiltration of immune cell types using 

CIBERSORT. We displayed only the 10 immune cells 

with high content; M0 and M1 macrophages levels were 

significantly higher in the high SGS group than in the 

low SGS group, while M2 macrophage levels was 

slightly less abundant than in the low SGS group. The 

levels of resting mast cells and resting memory CD4 

 

 
 

Figure 1. (A) Landscape plot of the effect of 18 prognosis-related stem gene sets in breast cancer on survival of BC patients. Cluster 1, 

orange; cluster 2, blue; HR>1 is Cluster 1, HR<1 is Cluster 2; circle size represents significance. The lines connecting gene sets represent 
cellular interactions. The thickness of the line represents the strength of correlation. Positive correlation is indicated in red and negative 
correlation in light blue. (B) KM curves for OS of breast cancer patients from TCGA and METABRIC cohort. (C) Sankey plot showing the 
relationship between SGS grouping and IHC typing as well as PAM50 molecular typing. (D) Box plot showing the correlation between SGS and 
IHC subtypes of breast cancer patients. (E) Box plot showing the correlation between SGS and PAM50 molecular typing of breast cancer 
patients. (F) Heatmap manifesting the relationship between SGS groupings and clinical pathological parameters in the TCGA. 
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Figure 2. (A) Volcano plot of difference analysis between high and low SGS group. Top10 up- and down-regulated genes were tagged. (B) GO 
enrichment analysis of the high SGS group. (C) Hallmark gene set enrichment analysis of the high SGS group. (D) GO enrichment analysis of 
the low SGS group. (E) Hallmark gene set enrichment analysis of the low SGS group. (F) Gene set enrichment analysis of SGS high and low 
group. (G, H) Radar charts showing the immune cell infiltration abundances in high (G) and low (H) stemness-risk groups. (I) Boxplot showing 
differences of some representative immune cells between the high SGS and low SGS group. 
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cells were significantly lower in the high SGS group 

than in the low SGS group, while the levels of follicular 

helper T cells (Tfh) and regulatory T cells (Tregs) were 

higher than in the low SGS group (Figure 2G, 2H). 

Among the four immune cells with the most significant 

differences, activated CD4 T cells were more abundant 

in the high SGS group than in the low SGS group, while 

mast cells, dendritic cells and central memory CD8 T 

cells were less abundant in the high SGS group than in 

the low SGS group (Figure 2I). 

 

Validation of the SGS model using two independent 

datasets 

 

To further verify the accuracy of SGS in predicting the 

prognosis of breast cancer patients, we employed two 

independent datasets included the SCAN-B dataset and 

integrated datasets for multiple breast cancer obtained 

from the GEO database (GEO-combined dataset) as 

validation datasets. We found that SCAN-B and GEO-

combined dataset, breast cancer patients with high SGS 

also had a poor prognosis (Figure 3A, 3B), and the 

LumB, HER2-E and basal-like subtypes were the 

dominant molecular subtypes (Figure 3C, 3D). 

Similarly, patients with these subtypes also had high 

SGS (Figure 3E, 3F). We also calculated SGS for breast 

cancer cell lines from the Cancer Cell Line 

Encyclopedia (CCLE) database. LumB, HER2-E and 

basal-like type breast cancer cell lines had a higher SGS 

(Figure 3G). Immune infiltration analysis also showed 

that the content of macrophage, Tfh and Tregs in the 

high SGS group in the validation set was comparable to 

that in the test set (Figure 3H, 3I). 

 

The immune infiltration analysis also indicated that the 

majority of immune cells in the high and low SGS groups 

had the same trend in SCAN-B and GEO-combined 

dataset as the training set (Supplementary Figure 3A–3C). 

The differentially expressed genes in the test set also had a 

very strong correlation with prognosis in these two 

validation sets (Supplementary Figure 3D, 4E). All these 

results indicate that the SGS has a strong generalizability 

and is applicable for different sequencing methods and 

different sources of data. 

 

Correlation of gene mutations with the SGS in 

breast cancer 

 

Therefore, we wanted to investigate whether there were 

differences in gene mutations between patients in the 

SGS high and low group. Although the two groups had 

approximately 80% of mutations observed in all genes, 

the two groups differed in the pattern of gene mutations. 
P53 and PI3KCA are the most frequently mutated genes 

in breast cancer. The high SGS group had a higher P53 

mutations rate, while the low SGS group had a higher 

PI3KCA mutation rate. TTN gene mutations were  

also more common in patients in the high SGS group 

than in those in the low SGS group. For RYR family 

genes, the high SGS group was more likely to have 

RYR2 gene mutations, while the low SGS group was 

more likely to have RYR3 gene mutations (Figure 4A, 

4B).  

 

The SGS could predict therapeutic benefit 

 

Currently, chemotherapy is still the mainstay treatment 

for most BC patients, so we performed IC50 prediction 

of common chemotherapy drugs for patients. We  

found significant differences in sensitivity to 

chemotherapeutic agents in patients with different SGS 

subgroups (Figure 4C). We found lower IC50 scores 

for osimertinib (OSI), fluvestrant and navitoclax in the 

SGS high group, which means that these chemo-

therapy drugs have significant clinical efficacy in 

patients with a high SGS. The results suggest that we 

can predict sensitivity to targeted therapies, but further 

study is required. 

 

SGS application for scRNA-seq data 

 

ScRNA-seq is a new technique that allows trans-

criptome analysis of individual cells. We selected the 

largest single-cell data cohort of breast carcinoma in 

situ newly published in 2021 [16]; it contains data for a 

total of 20 ER+, 6 HER2+ and 8 TNBC breast cancer 

patients. After data integration and cluster analysis, 

major cell clusters, including epithelial cells, immune 

cells, fibroblasts and endothelial cells, were identified 

(Figure 5A). We computed the SGS value for each 

epithelial cell, calculated the mean SGS of each patient, 

and divided patients into high and low SGS groups 

based on the median SGS. Seven of the eight TNBC-

type patients were classified in the high SGS group 

(Figure 5B). Overall, the SGS of epithelial cells in 

TNBC-type patients were greater than that in HER2+-

type patients, and the SGS of epithelial cells in HER2+-

type patients was greater than that in ER+-type patients 

(Figure 5C), which is consistent with the bulk sample 

data. In addition, we selected the top 6 specific marker 

gene expressed by high SGS group cells for survival 

analysis in three bulk sample breast cancer data, and all 

of these genes were associated with a poor prognosis 

(Figure 5D). These results suggest that SGS is 

applicable to breast cancer classification and prognosis 

prediction based on scRNA-seq. 

 

Intercellular interactions  

 
Cell communication analysis was performed on patients 

in the high and low SGS groups. More interactions were 

found in the high SGS group than in the low group 
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(Figure 5E). In addition, the two groups had different 

types of intercellular interactions. Multiple intercellular 

interactions were stronger in the high SGS group vs. the 

low group (Figure 5F). Many signaling pathways, such 

as WNT, VEGF, and TGF-β, reported to be associated 

with the development of cancer [17–19], were found to 

be up-regulated in the high SGS group (Figure 5G). 

Cellular interactions in which the recipient cells are 

tumor epithelial cells were screened out. We found that 

the signaling differences between the two groups were 

 

 
 

Figure 3. (A, B) KM curves for OS of BC patients from GEO-combined (A) and SCAN-B (B) cohort. (C, D) Sankey plot of PAM50 subtypes in SGS 

high and SGS low group of GEO-combined (C)and SCAN-B (D) cohort. (E, F) Boxplot showing the distribution of SGS among PAM50 subtype in 
GEO-combined (E) and SCAN-B (F) cohort. (G) Boxplot showing the distribution of SGS among PAM50 subtype of breast cancer cell lines from 
the CCLE database. (H, I) Boxplot showing differences of some representative immune cells between SGS high and SGS low group in GEO-
combined (H) and SCAN-B (I) cohort.  
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mainly in endothelial cells and tumor-associated 

fibroblasts (Supplementary Figure 4). Endothelial cells 

and fibroblasts in the high SGS group expressed high 

amounts of collagen and released some growth factors 

such as IGF1 and FGF7, as well as NOTCH ligands, 

including JAG1 and DLL4. NOTCH signaling has been 

reported to be associated with the maintenance of 

stemness in breast cancer stem cells [20]. 

 

Correlation of the SGS with macrophage infiltration 

 

After differentiating patient prognosis at the single-cell 

level, further analysis was performed to characterize the 

immune microenvironment of patients. Macrophages 

plays an important role in tumor progression. The 

proportion of M1 and M2 co-expressing macrophage 

was found to be higher in the high SGS group than in 

the low SGS group. The proportion of macrophages not 

expressing either M1or M2 marker genes was found to 

be lower in the high SGS group than in the low SGS 

group. The proportion of M1-high, M2-low or M1-low, 

M2-high macrophages was comparable in both groups 

(Figure 5H). 

 

SGS application for clinical research 

 

One-way cox regression analyses were performed in 

several datasets to determine whether SGS could be 

used as an independent prognostic factor in the clinic. 

The results suggested that SGS could be used as a risk 

factor and was associated with prognosis. Next, 

multivariate Cox regression analysis of SGS with 

clinical information were performed in SCAN-B dataset 

and METABRIC dataset. The results were consistent 

with the univariate analysis results (Figure 6A, 6B). 

These results indicate that the SGS can be used as an 

independent prognostic factor in clinical studies. Some 

clinical methods for calculating breast cancer prognosis 

that are widely used and clinically validated, such  

as GENE70 and genomic grade index (GGI), were 

compared with the SGS (Figure 6C). The SGS  

was found to have a strong correlation with these 

 

 
 

Figure 4. (A, B) Oncoplot of landscape of mutation signatures between high SGS group (A) and low SGS group (B) in TCGA. (C) Boxplot of 

some representative of predicted IC50. 
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Figure 5. (A) Cluster analysis and dimension reduction used non-linear dimensional reduction (t-SNE) in breast cancer scRNA-seq. (B) Bar 

graph of patient proportion (SGS high/SGS low) with different immunohistochemical typing. (C) Boxplot showing distribution of SGS among 
different IHC typing. (D) KM curves of top6 differential genes for high and low SGS groups of the SCAN-B cohort. (E) Number of intercellular 
interactions for high and low SGS groups in breast cancer scRNA-seq. (F) A landscape plot of intercellular interactions strengths differences 
compared SGS high group to SGS low group. Red represents positive correlation and blue represents negative correlation. The thickness of 
the lines represents the degree of difference. (G) Bar plot of overall information flow of some signaling pathway between high and low SGS 
group. (H) Scatter plot of M1 and M2 signature gene score of per macrophage in SGS high and low patients. Black lines indicate median 
scores of characteristic genes. 
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algorithms. Our results demonstrate that SGS have 

important clinical application value. 

 

DISCUSSION 
 

In this study, BC patient samples were downloaded 

from the TCGA-BRCA and METABRIC datasets. We 

used ssGSEA to calculate the NES for each sample and 

scored individual sample to obtain a stable SGS.  

No normalization process was required. Our results 

indicated that the SGS was a stable and reliable 

prognostic tool that was significantly associated with 

overall survival (OS) for BC patients. Currently, several 

breast cancer prognosis-prediction models are available. 

Generally, these tools have been developed based on the 

selection of prognostic genes based on bulk RNA-seq 

data and internal validation [21–23]. Typically, internal 

validation is not sufficient to fully validate a model. 

Compared to these tools, the SGS is applicable to single 

cell data and is a powerful tool for predicting breast 

 

 
 

Figure 6. (A, B) Forest plot of multifactorial cox regression of clinical information and SGS in the SCAN-B (A) and TCGA (B) datasets.  

(C) Scatter plot of correlation between SGS and some common prognostic calculations.  
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cancer prognosis at the single-cell level. Moreover, we 

performed external validation using two independent 

datasets to evaluate the prediction accuracy of the 

prognosis tool instead of internal validation, thus 

making the results more reliable and useful. These 

factors give SGS an advantage over other tools. 

 

We perform GSEA to detect the difference between 

groups. At the bulk level, the enriched pathways in the 

two groups presented a very different landscape. For 

example, E2F target and G2M checkpoint genes were 

significantly up-regulated in the high SGS group. This 

suggests that the cancer cells of BC patients in the high 

SGS group may have a higher proliferation capacity and 

higher malignant potential [24, 25]. Some pathways, 

such as mTOR and MYC pathways, were also found to 

be significantly upregulated in the high SGS group. 

These pathways have been reported to be associated 

with breast cancer malignancy [26, 27]. At the single 

cell level, cell communication analysis also suggested 

that the signaling pathways such as WNT, VEGF, and 

TGF-β, which are widely known associated with tumor 

malignancy, were up-regulated in the high SGS group 

[17–19] NOTCH signaling has also been reported to be 

associated with the maintenance of stemness in breast 

cancer stem cells [20]. Our findings may be correlate 

with high tumor progression and metastasis. These 

results may explain the hyperactivated state of tumor 

progression and metastasis in patients with a high SGS. 

The tumour microenvironment (TME) plays a critical 

role in cancer growth and metastasis [28]. Recent 

studies have revealed that TME in breast cancer patients 

is highly heterogeneous and that the heterogeneity of 

the TME may also indirectly contribute to poor survival 

status. Specific TME characteristics have been 

implicated in the development of treatment resistance 

[29–31]. To understand the differences in immune 

patterns between the two groups of patients, we 

performed immune infiltration analysis and found 

differences in the abundance of various immune cells, 

such as macrophages, Tfh, and mast cells, between the 

two groups. Current studies have found that tertiary 

lymphoid structures (TLSs) in the TME correlate with 

patient survival in multiple cancer types and that Tfh, 

Tregs and other TLS cells play a regulatory role in the 

development of cancer [32–35]. Gobert et al. reported 

that Tregs in breast cancer can selectively aggregate via 

CCR4, preventing effector T-cell activation and 

ultimately leading to immune escape and tumor prog-

ression, indicating that Tregs infiltration may associated 

with a poor prognosis [36]. Our results of immune 

infiltration suggest that the difference in prognosis 

between the two groups may be due to the difference in 

immune cell compositions in the TME, as the TME can 

be immunosuppressive and promote immune escape and 

tumor progression. 

Typically, the phenotypes of macrophages are classified 

into M1 and M2 types; M1 macrophages display 

tumoricidal activity, while M2 macrophages promote 

tumor progression [37]. In the tumor microenvironment 

of breast cancer patients, M2-type macrophages 

predominate [38, 39]. With the rise of single-cell 

sequencing technologies, Zhang Zeming et al. proposed 

that macrophage cannot be simply classified into M1 

and M2 types [40]. Single-cell sequencing confirmed 

that co-expression of M1 and M2 markers in individual 

cells. Recent work by Fanjia et al. supports this view 

[41]. Therefore, there is still much unknown about the 

relationship between macrophage polarization and 

cancer prognosis. Our study also found that the 

proportion of M1 and M2 marker-co-expressed macro-

phage in the TME was much higher in the high SGS 

group than in the low SGS group. This implies that the 

co-expression of M1 and M2 macrophage markers may 

be pro-cancer phenotype in breast cancer. This study 

differs from previous studies and may provide new 

insight into the development of breast cancer immuno-

therapy in the future. 

 

In conclusion, SGS is closely related to prognosis. Our 

findings suggest the feasibility of the clinical 

application of SGS (Figure 6A, 6B). Moreover, SGS is 

a marker associated with immune infiltration, providing 

new ideas for immunotherapy in BC patients. Several 

study limitations need to be acknowledged. First, the 

data in our study were obtained from public databases 

that were not generated by us, and the quality of the 

data could not be well appraised. Second, our study 

used the median of the SGS to classify breast cancer 

samples into the high SGS group and low SGS group. 

More precise cut-off points may exist for classifying BC 

patients. Third, although immune cell types in the TME 

of patients between different groups were found to be 

significant different by immune infiltration analysis, the 

biological mechanisms behind these immune cell types 

are unclear. More studies are needed to specify the role 

of the immune contexture in breast cancer. 

 

MATERIALS AND METHODS 
 

Datasets acquisition and pre-processing 

 

TCGA-BRCA data were downloaded using 

TCGAbiolinks (TCGA-BRCA, n=1049) [42] and 

transformed to transcripts per million (TPM). Then, we 

used the ‘removeBatchEffect’ function in the limma R 

package [43] to integrate the TCGA-BRCA and 

METABRIC breast cancer datasets. 

 

SCAN-B(GSE96058) data was obtained using the R 

package GEOquary. The other microarray datasets 

(including GSE1456-GPL96 (n=159), GSE16446 (n = 



www.aging-us.com 8195 AGING 

107), GSE20685 (n = 327), GSE20711 (n = 88), 

GSE42568 (n = 104), GSE45255 (n=134),  

GSE58812 (n=107), GSE65194 (n=130), GSE69031 

(n=129), GSE7390 (n=198)) were also obtained  

from the Gene Expression Omnibus (GEO, 

http://www.ncbi.nlm.nih.gov/geo/) database. Raw data 

(CEL files) were normalized by robust multichip 

average (RMA) using the affy R package [44]. 

Subsequently, probe annotations were performed using 

the idmap1 R package. For each gene, the probeset with 

the highest expression was kept. Batch effects were 

removed using the limma package. 

 

GSE161529 is the single cell dataset of normal breast 

and breast cancer with the largest sample size at present 

[16]. Seurat package was used for quality control [45], 

leaving approximately 150 thousand high-quality cells. 

Then, the batch effects were removed by harmony R 

package [46].  

 

SGS construction and validation 

 

Thirty-six stemness gene sets were recruited from the 

website: StemChecker (http://stemchecker.sysbiolab.eu/), 

which contains many stemness-associated genes of 

murine and human origin [47]. Then, ssGSEA [48] was 

implemented to quantitatively elucidate the NES of the 

36 stemness gene sets in each BC sample. The NES was 

designed to estimate the immune infiltration level of an 

stemness gene set for each sample. Univariable Cox 

proportional hazards regression analysis was used to 

assess the association of NES values with OS in the 

breast cancer cohort datasets and screen OS-associated 

gene sets. Gene sets with P-values less than 0.05 were 

retained. Finally, we determined 18 OS-associated gene 

sets (shown in the results). The hazard ratio (HR) was 

computed by univariate Cox regression analysis. An HR 

greater than 1 indicated gene sets whose Cox coefficient 

was negative, while an HR less than 1 indicated gene sets 

whose Cox coefficient was positive. Based on the NES 

value and HR, the SGS for each breast cancer sample 

was calculated as follows: 
 

1 1

n m

i j

SGS NES NES
= =

= −   

 

Where NESi is the NES with an HR more than 1 and 

NESj is the NES with an HR less than 1. 

 

Tumor microenvironment infiltration imputation 
 

The CIBERSORTx deconvolution algorithm could 

robustly quantify the relative proportion of various cell 

types through gene expression profiling [49]. It also 

provides 22 kinds of processed immune cells that can be 

directly used in the algorithm. We also used ssGSEA to 

calculate the infiltration scores of 28 kinds of stromal 

cells [50]. 

 

Chemotherapy sensitivity predictions 

 

The half-maximum inhibitory concentration (IC50) 

values of several drugs in each BC sample were 

computed for the prediction of chemical sensitivity via 

the oncoPredict R package [51], and the prediction 

accuracy was evaluated by 10-fold cross-validation 

based on the Genomics of Drug Sensitivity in Cancer 

(GDSC, https://www.cancerrxgene.org/) training set 

[52]. 

 

Differential gene expression analyses and gene set 

enrichment analyses 

 

Bulk samples’ differential gene expression analysis 

was performed using R package limma [53]. Single-

cell differential expression analysis was determined 

using the FindMarkers function from the R package 

Seurat [45], with the logFC threshold parameter  

set to 0.1. 

 

GSEA, KEGG pathway analysis and Gene Ontology 

(GO) analysis was performed using the clusterProfiler R 

package [54]. Cancer hallmark gene set were 

downloaded from msigdbr R package. Univariate Cox 

regression, multivariate Cox regression analyses, and 

Kaplan–Meier survival analysis were conducted by the 

survminer and survival R packages. 

 

The genefu R package was used to classify all samples 

into PAM50 molecular subtypes [55]. Single-cell 

clustering was performed using the Seurat R package 

[45]. After cell clustering, specific marker genes were 

used to define each cell population. For the cell type 

annotation of a single cell subpopulation, the R package 

SingleR was used [56], thus distinguishing the myeloid 

cell population into three cell types, monocytes, 

macrophage, and dendritic cells (DCs). Cell-cell 

communication analysis was carried out using the 

CellChat R package [57]. 

 

Statistical analyses 

 

All statistical analyses were performed in R software 

(v4.1.0). The Wilcoxon test was used for pairwise 

comparisons between two groups, and the Kruskal–

Wallis test was used for multiple group comparisons. 

The Kaplan–Meier method and log-rank test were 

performed for survival analysis. The optimal cutoff 

value of the stemness-risk score was determined by the 

“surv_cutpoint” function of the survminer R package 

(v0.4.6). A P value < 0.05 was considered to indicate 

statistical significance. 

http://www.ncbi.nlm.nih.gov/geo/
http://stemchecker.sysbiolab.eu/
https://www.cancerrxgene.org/
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Supplementary Figure 1. Workflow of this study. 
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Supplementary Figure 2. (A) Univariate COX regression analysis of ssGSEA scores and OS for prognosis-related stemness gene sets.  

(B) ssGSEA scores of 18 prognosis-associated stemness gene sets. 
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Supplementary Figure 3. (A–C) Immune infiltration analysis of TCGA and METABRIC combined dataset (A) GEO-combined dataset (B) and 
SCAN-B dataset (C). (D, E) KM survival analysis of top6 up-and down-regulated genes in the GEO -combined dataset (D) and SCAN-B dataset (E). 
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Supplementary Figure 4. Dot plot with ligand-receptor interactions between stromal cells and endothelial cells. Point size 

indicates P value. Color indicates the strength of the interaction. 


