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INTRODUCTION 
 

Coronavirus disease 2019 (COVID-19) induced by 

severe acute respiratory syndrome coronavirus 2 

(SARS-CoV-2) has caused significant morbidity and 

mortality around the world since December 2019. 

COVID-19 is mainly a respiratory illness that may 

present as an acute upper and/or lower airway 

syndrome of various severity. The onset of symptoms 

of COVID-19 is more likely to occur gradually than the 

onset of flu. Patients may present with asymptomatic 

viral shedding or self-limiting symptoms such as fever, 

fatigue, myalgia, arthralgia, rhinorrhea, sore throat, 

and/or conjunctivitis [1]. But it can also develop into 

persistent fever, cough, hemoptysis, silent hypoxia, 
chest pain, respiratory failure, and even multi-organ 

failure [2]. Impaired sense of smell (hyposmia, anosmia 

and parosmia) or taste (dysgeusia) have been identified 
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ABSTRACT 
 

Background: Since December 2019, Coronavirus disease 2019 (COVID-19) induced by severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2) has resulted in significant morbidity and mortality worldwide. There is 
an increased risk of ischemic stroke (IS) associated with COVID-19. However, few studies have been reported 
to explain the potential correlation between COVID-19 and IS. 
Methods: We investigated the relationship and relevant mechanisms between COVID-19 and IS using single-
cell RNA sequencing and multiple bioinformatics approaches. 
Results: By intersecting differentially expressed genes and WGCNA critical module genes, we obtained 73 
COVID-19-related IS genes. According to the KEGG pathway analysis, the COVID-19-related IS disease genes 
were significantly enriched in the hematopoietic cell lineage pathway, ribosome pathway, COVID-19 pathway 
and primary immunodeficiency pathway. Finally, three genes associated with immunity (B4GALT5, CRISPLD2, 
F5) and two genes associated with ferroptosis (ACSL1, CREB5) were identified up-regulated in COVID-19- 
related IS. Significantly, it was found that all five genes were highly expressed in monocytes by single cell 
RNA sequencing. 
Conclusion: We believe these genes (B4GALT5, CRISPLD2, F5, ACSL1, CREB5) may regulate the immune response 
and ferroptosis of multiple immune cells, mainly including monocytes, which may contribute to the 
development of COVID-19-related IS. In addition, these genes may be potential targets for the treatment of 
COVID-19-related IS. 
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as important chemosensory disorders in COVID-19 [3]. 

Recently, a study has reported a potential association 

between COVID-19 and the development of idiopathic 

pulmonary fibrosis and chronic obstructive pulmonary 

disease in patients [4]. In addition, SARS-CoV-2 

infection significantly increases mortality in patients 

with idiopathic pulmonary fibrosis [5]. A recent study 

reported that COVID-19 may increase the short-term 

incidence of ischemic stroke [6]. Other extrapulmonary 

manifestations include diarrhoea, lymphopenia, 

thrombocytopenia, impaired hepatic and renal function, 

rhabdomyolysis, meningoencephalitis, stroke, con-

vulsions, cardiac arrhythmia or cardiac block, 

pancreatitis, Kawasaki disease such as multisystemic 

vasculitis, skin rash, thromboembolism, and acute 

thyroiditis [7]. Importantly, recent studies have shown 

COVID-19 increases the risk of ischemic stroke (IS) by 

approximately 5%, according to a World Stroke 

Organization panel review [8]. Ferroptosis is an iron-

related form of programmed cell death [9]. It has been 

reported that ferroptosis plays an important role in 

COVID-19-induced brain injury [10, 11]. In 2012, 

ferroptosis was defined as an iron-dependent form of 

cancer cell death that differs from apoptosis, necrosis, 

and autophagy. This is a form of regulated cell death 

characterized by iron-dependent oxidative damage and 

subsequently ruptures of the plasma membrane and 

release of damage-associated molecules. To determine 

the sensitivity of ferroptosis, translational regulation of 

iron homeostasis is integrated with transcriptional 

regulation [12]. 

 

However, the relationship between COVID-19 and IS 

has been poorly studied. It is important to identify a 

common genetic signature between COVID-19 and IS 

which may provide useful guidance for the treatment of 

COVID-19-related IS. Here, using scRNA-seq and 

multiple bioinformatics methods, we have revealed the 

possible biological processes of COVID-19-related IS. 

 

MATERIALS AND METHODS 
 

Data download and processing 

 

The single-cell dataset GSE165182 was obtained from 

the GEO (https://www.ncbi.nlm.nih.gov/geo/) database, 

which contained a total of 19 samples from patients 

with COVID-19 [13]. We downloaded the gene 

expression profile dataset GSE171110 containing 10 

healthy tissues and 44 patients with COVID-19 [14]. A 

gene expression profile dataset GSE16561 containing 

24 healthy tissues and 39 patients with IS was also 

downloaded [15]. Validation was conducted on the 

cohorts GSE157103, which included 26 normal 

samples, 100 COVID-19 patients, and GSE22255, 

which included 20 normal samples and 20 IS patients 

[16, 17]. We analyzed the quality of the single cell data 

set GSE165182 with the R-package Seurat after 

downloading the original data. We started by getting the 

annotation information of the probes, mapping them to 

the genes, removing multiple matches, and taking the 

median as the gene expression. Lastly, we obtained the 

gene expression profile. 

 

Single-cell quality control and dimensions reduction 

 

We found cells expressing more than 200 genes, but 

fewer than 10,000 genes. Moreover, 20% of mito-

chondrial genes and 20% of ribosome genes were set as 

cut off values for further filtering. Using the “UMAP” 

diagram, we displayed and annotated cell clusters 

generated from 2000 hypervariable genes. All genes 

were scaled using the ScaleData function, and Principal 

Component Analysis (PCA) was performed. By using 

the “FindAllmarkers” function from Seurat R Package, 

we selected the ten genes with the highest expression 

levels in each cluster. In total, 30 clusters were 

discovered. 

 

Differential gene analysis and cell type annotation 

 

Each cell subpopulation was identified using the 

FindAllMarkers function of the R package, and the gene 

expression profile data set was re-evaluated based on 

the CIBERSORT and ssGSEA [18] to identify the 

components of each subpopulation in the expression 

profile [19]. 

 

Weighted co-expression network analysis in 

GSE148389 

 

GSE171110 was analyzed using WGCNA, and we 

excluded outliers by selecting genes with SD >0. In 

addition to separating the data into different modules, 

we identified the modules most closely related to 

COVID-19 by setting the optimum soft threshold. 

Finally, to obtain more COVID-19-related genes after 

WGCNA analysis, we selected the blue and brown 

modules with the highest correlation for subsequent 

analysis. 

 

Differentially expressed genes (DEGs) identification 

 

Differential analysis was performed on GSE171110 and 

GSE16561. After normalization, the “limma” R 

Package was used to examine the differences between 

the disease and normal sample groups. In order to 

obtain more differentially expressed genes, the value of 

logFC was set to 0.5. By applying a filter (logFC > 0.5 
and adjusted p < 0.05), we finally obtained the 

intersection of the most significant module genes of 

WGCNA and DEGs. 

https://www.ncbi.nlm.nih.gov/geo/
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Functional and pathway enrichment analysis of 

intersect genes of COVID-19 and IS 

 

A functional enrichment analysis was conducted on 

intersect genes. We selected the most enriched term as 

representative of the key terms based on their similarity 

of membership. Gene Ontology (GO) and Kyoto 

Encyclopedia of Genes and Genomes (KEGG) analyses 

were carried out using the ClusterProfiler R package 

(v4.0) to explore intersect genes’ functions and 

pathways. P < 0.05 was determined as the statistical 

significance. 

 

Machine learning for the diagnostic hub genes 

 

In order to function the disease status predictions, two 

machine learning algorithms were employed. Using the 

“glmnet” R package, a least absolute shrinkage and 

selection operator (LASSO)-based algorithm was used 

to identify marker genes. In order to identify the set of 

genes with the highest discriminative power, support 

vector machine-recursive feature elimination (SVM-

RFE) was applied using the “e1071” R package. And  

9 marker genes have been acquired through the 

intersection genes between the two algorithms. The 

expression stages of 9 marker genes were further 

examined in the validation cohort. To investigate 

COVID-19-related pro-disease factors in IS, we 

identified up-regulated genes. Finally, three genes were 

selected from nine genes that were highly expressed in 

both COVID-19 and IS. 

 

Identification of key genes for ferroptosis in COVID-

19-related IS 

 

Ferroptosis-related genes were downloaded from 

FerrDb, [20] a web-based consortium providing a 

comprehensive and up-to-date database for ferroptosis 

markers, their regulatory molecules and associated 

diseases. A total of 728 ferroptosis-related genes were 

identified (Supplementary Table 1). We finally 

identified 2 ferroptosis genes associated with COVID-

19-related IS. 

 

Immune infiltration analysis 

 

CIBERSORT and ssGSEA were used to analyze the 

infiltration of hub genes, COVID-19, and normal 

samples. Bar plots were also used to visualize the 

percentages of each immune cell type in the samples 

and the relationship between COVID-19 and fifty 

significant immune pathways. The “pheatmap” 

package was used to create a heat map of immune 
cells, and the “vioplot” package was used to illustrate 

abundance. By using the “corrplot” package, we 

created a correlation heatmap to visualize the 

relationship between hub genes and different 

infiltrating immune cells. 

 

Statistical analysis 

 

R was used for all statistical analyses. A student’s t-test 

was used to compare COVID-19, IS and normal 

samples. ROC analysis was conducted for the 

estimation of hub genes. Unless otherwise stated, 

statistical significance was set at p < 0.05. 

 

Data availability statement  

 

The datasets generated in this study can be found in 

online repository. The names of the repository/ 

repositories and accession number(s) can be found in 

the article/supplementary material. 

 

RESULTS 
 

Identification of DEGs in COVID-19 and IS 

 

To explore the biological mechanism of COVID-19- 

related IS, we conduct a comprehensive analysis based 

on GEO database (GSE171110. GSE16561) as showed 

in Figure 1. GEO dataset (GSE171110) contains 54 

samples, including 10 normal samples and 44 COVID-

19 samples. As a result of preprocessing and removing 

batch effects from the COVID-19 samples, 7047 DEGs 

were identified, including 3190 upregulated genes and 

3857 downregulated genes (Supplementary Table 2), 

and heatmap (Figure 2A) and volcano map (Figure 2B) 

showed remarkable differences. There are 63 samples in 

the GEO dataset (GSE16561), including 24 normal 

samples and 39 IS samples. The heatmap (Figure 2C) 

and volcano map (Figure 2D) showed remarkable 

differences after the IS samples were preprocessed and 

batch effects removed. 

 

Weighted co-expression network analysis 

 

As a first step, we identified 29302 genes with 

expression standard deviations greater than zero. We 

used the “flashClust” tool kit to perform cluster analysis 

with a threshold of 70 samples; cluster 2 contained 40 

samples, which we kept (Figure 3A). To further filter 

out the entire power parameter range from 1 to 20, we 

set up a network with a soft threshold of b = 5 (R2 = 9) 

in the “WGCNA” package (Figure 3B). The threshold 

for merging similar module groups is 0.25; the 

minimum number of modules is 50. Genes that co-

expressed with each other were produced in seven 

modules (Figure 3C). These findings suggested that 

multiple modules were associated with COVID-19. The 

blue and brown modules were the most significant, 

containing 5096 genes (Figure 3D). 
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Identification of COVID-19-related IS genes and 

functional enrichment analysis 

 

By intersecting DEGs and WGCNA critical module 

genes, we obtained 73 COVID-19-related IS genes 

(Figure 4A). In order to investigate the potential 

biological functions of COVID-19-related IS genes, GO 

and KEGG pathway functional enrichment analyses were 

conducted. The GO results revealed that the BP primarily 

associated with the immune response, lymphocyte 

differentiation, mononuclear cell differentiation, cyto-

plasmic translation and regulation of T cells. For CC 

enrichment analysis, the results showed that COVID-19-

related IS disease genes significantly took part in 

ribosome and secretory granule membrane. In the 

enrichment analysis of MF, the COVID-19-related IS 

disease genes mainly revolved in carbohydrate binding, 

structural constituent of ribosome, and immune 

 

 

 
Figure 1. The research flow chart. 
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receptor activity (Figure 4B). According to the KEGG 

pathway analysis, the COVID-19-related IS disease 

genes were significantly enriched in the hematopoietic 

cell lineage pathway, ribosome pathway, COVID-19 

pathway and primary immunodeficiency pathway 

(Figure 4C, 4D). Finally, we also constructed GSEA 

analysis, and the results showed cell cycle, ECM 

receptor interaction, oocyte meiosis, P53 signaling 

pathway and system lupus erythematosus were enriched 

in the COVID-19 group (Figure 4E), while allograft 

rejection, antigen processing and presentation, asthma, 

graft versus host disease and ribosome were enriched in 

the control group (Figure 4F). 

Identification of hub genes in COVID-19-related IS 

 

In order to identify potential biomarkers of COVID-19-

related IS, two bioinformatic algorithms were used. 

Based on LASSO regression, 11 intersect genes were 

identified as diagnostic biomarkers for COVID-19-

related IS (Figure 5A). SVM-RFE was used to identify 

a subset of 40 genes (Figure 5B). We finally selected 

the 9 overlapping characteristic genes (B4GALT5, 

CRIP2, CRISPLD2, F5, ITM2C, OGFRL1, RPL4, 

RPL13A, RPL22) using LASSO and SVM-RFE 

algorithm (Figure 5C). We then analyzed the mRNA 

expression of 9 genes (Supplementary Figures 1, 2), and 

 

 

 

 
Figure 2. Visualization and analysis of the differentially expressed genes (DEGs) in COVID-19 and IS. (A) Heatmap clustering of 

genes with markedly different expression in COVID-19 compared with normal samples in GSE171110. (B) DEGs volcano map in COVID-19 
compared with normal samples in GSE171110. (C) Heatmap clustering of genes with markedly different expression in IS compared with 
normal samples in GSE16561. (D) DEGs volcano map in IS compared with normal samples in GSE16561. |log2Foldchange|> 0.5 and 
adjusted P-value < 0.05 were used to define statistically significant DEGs. 
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3 genes (B4GALT5, CRISPLD2, F5) were found up-

regulated in both COVID-19 and IS (p < 0.001, Figure 

5D–5I). In the validation cohort GSE157103 and 

GSE22255, the levels of the three biomarkers 

(B4GALT5, CRISPLD2, F5) have been further 

investigated to produce more precise and reproducible 

results, which were found to be significantly up-

regulated in disease group than control group, (p < 

0.001; Supplementary Figure 3). 

 

Diagnostic effectiveness and single gene ssGSEA 

analysis of the hub genes 

 

Using the identified genes, a logistic regression 

algorithm was used to construct the diagnosis model. In 

addition, we used AUC to quantify the capability of 

discrimination. As shown in Supplementary Figure 4, 

characteristic biomarkers showed high diagnostic 

efficacy in distinguishing COVID-19-related IS from 

control samples, with an AUC of 0.984 (95% CI 0.950–

1,000) for B4GALT5, 0.966 (95% CI 0.914–0.998) for 

CRISPLD2, and 0.991 (95% CI 0.966 to 1.000) for F5. 

This further strengthens the diagnostic capability of 

these three characteristic genes as potential biomarkers 

for the diagnosis of COVID-19-related IS. Single gene 

analysis of ssGSEA was performed, and the results 

showed glycosphingolipid biosynthesis, phenylalanine 

metabolism, and PPAR signaling pathway were 

enriched in B4GALT5 high expression samples, while 

allograft rejection, autoimmune thyroid disease, graft–

versus–host disease, intestinal immune network and 

primary immunodeficiency were enriched in B4GALT5 

low expression samples (Figure 6A). As for 

CRISPLD2, the high expression group contained fatty 

 

 
 

Figure 3. Analysis of the weighted co-expression network in GSE171110. (A) Sample clustering of dataset GSE171110. (B) The 

relationship between the scale-free fit index and various soft-thresholding powers; the relationship between the mean connectivity and 
various soft-thresholding powers. (C) Clustering dendrogram of genes, various colors represent different modules. (D) Analysis of correlations 
between modules and COVID-19. The blue module and brown module were significantly correlated with COVID-19 and normal samples. 
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acid biosynthesis, glycosaminoglycan biosynthesis, 

phenylalanine metabolism, starch and sucrose 

metabolism and tyrosine metabolism pathway, while 

low expression group contained allograft rejection, 

graft–versus–host disease, primary immunodeficiency, 

asthma and ribosome pathway (Figure 6B). High 

F5 expression group was involved in ascorbate and 

aldarate metabolism, beta–Alanine metabolism, glyco-

saminoglycan degradation, pantothenate and CoA 

biosynthesis, renin–angiotensin system pathway, while 

low F5 expression group was involved in DNA 

replication, graft–versus–host disease, primary immuno-

deficiency, proximal tubule bicarbonate reclamation and 

ribosome pathway (Figure 6C). In addition, we 

analyzed the relationship of 50 signature functional 

pathways with COVID-19 and hub genes using 

ssGSEA. The results showed many biological 

functional processes were closely related to the 

occurrence of COVID-19 including spermatogenesis, 

allograft rejection, peroxisome, coagulation, angio-

genesis, p53 pathway, reactive oxygen species pathway, 

glycolysis, fatty acid metabolism, xenobiotic 

metabolism, inflammatory response, epithelial mesen-

chymal transition, E2F targets, mtorc1 signaling, 

complement, hedgehog signaling, apical, interferon 

response, myogenesis, estrogen response late, 

adipogenesis, apoptosis, g2m checkpoint, il6 jak stat3 

signaling, TGF beta signaling, WNT beta catenin 

signaling, mitotic spindle, cholesterol homeostasis, 

hypoxia and TNFA signaling via NFKB (p < 0.05, 

Figure 6D). Importantly, as shown in Figure 6E, 

B4GALT5 was found to have a positive correlation with 

xenobiotic metabolism, TNFA signaling via NFKB, 

reactive oxygen species pathway, p53 pathway, 

myogenesis, inflammatory response, IL6 JAK STAT3 

signaling, hypoxia, heme metabolism, estrogen response 

early, epithelial mesenchymal transition, coagulation, 

cholesterol homeostasis, angiogenesis and adipogenesis 

(p < 0.05), and a negative correlation with WNT beta 

catenin signaling, unfolded protein response, MYC 

targets, DNA repair and allograft rejection (p < 0.05). 

CRISPLD2 was found to have a positive correlation 

with xenobiotic metabolism, peroxisome, p53 pathway, 

IL6 JAK STAT3 signaling, hypoxia, coagulation, 

cholesterol homeostasis, bile acid metabolism and 

adipogenesis (p < 0.05), while a negative correlation 

with WNT beta catenin signaling, unfolded protein 

response, PI3k AKT mTOR signaling, MYC targets, 

IL2 STAT5 signaling, apoptosis and allograft rejection 

(p < 0.05). F5 was found to have a positive correlation 

with TNFA signaling via NFKB, TGF beta signaling, 

protein secretion, notch signaling, KRAS signaling up, 

inflammatory response, IL6 JAK STAT3 signaling, 

epithelial mesenchymal transition, coagulation, 

cholesterol homeostasis and angiogenesis (p < 0.05), 

and a negative correlation with DNA repair, apical 

surface and allograft rejection (p < 0.05). Finally, gene 

correlation analysis indicated that the three genes were 

positively correlated with each other (p < 0.05, 

Figure 6F). 

 

 

Figure 4. Intersect genes and functional enrichment analysis. (A) Venn diagram of the intersect genes of DEGs of COVID-19, IS and 

WGCNA hub genes of COVID-19. (B) Gene Ontology (GO) analyses for intersect genes. (C, D) Kyoto Encyclopedia of Genes and Genomes 
(KEGG) analysis of intersect genes. (E, F) Gene set enrichment analyses (GSEA) of GSE171110. 
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Immune cell infiltration 

 

First, we summarized the results from 10 normal and 44 

COVID-19 samples using the CIBERSORT algorithm 

(Figure 7A). In addition, we used ssGSEA algorithm to 

analyze immune cells subtypes between COVID-19 

samples and normal samples (Figure 7B). As illustrated 

in Figure 7C, COVID-19 patients showed high 

infiltration of plasma cells, CD4+ T cells memory 

activated, M0 macrophages, dendritic cells activated 

and neutrophils than normal samples, while normal 

patients showed high level of B cells memory, CD8+ T 

cells and CD4+ T cells memory resting than COVID-19 

patients. We also analyzed the relationship between the 

3 hub genes and immune cells subtypes via a correlation 

heatmap, which indicated B4GALT5 had strong 

positive correlation with neutrophils, mast cells and 

Macrophages (p < 0.05), and had negative correlation 

with Th follicular cells, Th2 cells, memory B cells, 

MDSC, immature B cells, effector memory CD8+ 

T cells, effector memory CD4+ T cells, central memory 

CD8+ T cells, central memory CD4+ T cells, CD56- 

natural killer cells, activated CD8+ T cells, activated 

CD4+ T cells and activated B cells (p < 0.05). 

 

 
 

Figure 5. Identification of the hub genes using machinery methods. (A) Fine-tuning the least absolute shrinkage and selection 
operator (LASSO) model’s feature selection. LASSO regression was used to narrow down the DEGs, resulting in the discovery of 11 variables 
as potential markers. The ordinate represents the value of the coefficient, the lower abscissa represents log (λ), and the upper abscissa 
represents the current number of non-zero coefficients in the model. (B) A plot illustrating the process of selecting biomarkers using the 
support vector machine-recursive feature elimination (SVM-RFE) technique. The SVM-RFE technique was used to identify a subset of 40 
characteristics. (C) Intersection LASSO and SVM-RFE analysis was displayed in a Venn diagram. B4GALT5, CRISPLD2 and F5 were chosen as 
hub genes which up-regulated in both COVID-19 and IS. (D–F) B4GALT5, CRISPLD2 and F5 mRNA expression in COVID-19 compared to 
normal samples in GSE171110. (G–I) B4GALT5, CRISPLD2 and F5 mRNA expression in IS compared to normal samples in GSE16561. 
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CRISPLD2 had strong positive correlation with 

neutrophil, and had negative correlation with Th1 cells, 

Th2 cells, Th follicular cells, MDSC, immature B cells, 

effector memory CD4+ T cells, central memory CD8+ 

T cells, central memory CD4+ T cells, CD56- natural 

killer cells, activated CD8+ T cells and activated CD4+ 

T cells (p < 0.05). F5 had strong positive correlation 

with neutrophils, macrophages, immature dendritic cells 

and eosinophils (p < 0.05), and had negative correlation 

with effector memory CD8+ T cells, effector memory 

CD4+ T cells, central memory CD8+ T cells, central 

memory CD4+ T cells and activated CD8+ T cells 

(p < 0.05, Figure 7D). 

Definition of clusters and dimensionality reduction 

analysis 

 

The single cell data set was subjected to quality control 

procedures. In Figure 8B, 8C, we removed some cells 

and controlled mitochondrial and ribosomal genes to 

ensure the quality of the samples. Then we identified 

2000 highly variable genes and labeled the top 10. 

Hypervariable genes are highlighted in red in Figure 

8D. Using UMAP, the cells are grouped into 30 

clusters, which can be classified into monocytes, NK 

cells, platelets, pre-B cells, CD34+ T cells, B cells, and 

HSC–G–CSF (Figure 8E, 8F). 

 

 
 

Figure 6. Gene set enrichment analyses (GSEA) analysis of 3 hub genes and the relationship between COVID-19 and 50 
significant pathways. (A) Gene set enrichment analyses (GSEA) analysis of B4GALT5. (B) Gene set enrichment analyses (GSEA) analysis of 

CRISPLD2. (C) Gene set enrichment analyses (GSEA) analysis of F5. (D) Analysis of the relationship between COVID-19 and 50 significant 
pathways. (E) Analysis of the relationship between 3 hub genes and 50 significant pathways. (F) Correlation heat map showing the 
correlation between 3 hub genes. 
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Ferroptosis-related genes and hub genes-related 

scRNA-seq 

 

The possible potential role of ferroptosis mechanism 

between COVID-19 and IS was considered. As a result 

of intersecting 73 COVID-19-related IS genes with 

ferroptosis genes, we obtained two ferroptosis genes 

(ACSL1, CREB5) that were relevant to COVID-19-

related IS (Figure 8A). Next, we analyzed the 

distribution of these two ferroptosis genes and three 

previous hub genes at the cellular level in COVID-19 

patients using scRNA-seq. The heat map displayed the 

distribution of the five genes in different cell types 

(Figure 8G). As shown in Figure 8H, 8I, B4GALT5Z 

was mainly distributed in monocytes, NK cells, T cells 

and HSC-G-CSF cells. F5 was mainly distributed in 

monocytes, T cells and HSC-G-CSF cells. CRISPLD2 

was mainly distributed in monocytes. While the 

ferroptosis gene ACSL1 and CREB5 were mainly 

distributed in monocytes, HSC-G-CSF cells and pre-B 

CD34− cells. Importantly, all five genes were highly 

expressed in monocytes from COVID-19 patients. 

 

Drug prediction for COVID-19 

 

We queried the CMAP database with DEGs from the 

filtered COVID-19 gene expression profile. The 

compounds producing expression changes which were 

the reverse of those seen in our COVID-19 profile are 

shown in Supplementary Table 3. Among the drugs 

with the lowest connectivity scores, ten compounds 

were selected from the list using the criteria previously 

 

 
 

Figure 7. The composition of immune cells was analyzed and displayed. (A) Heat map of the 22 immune cell subpopulations in 

GSE171110 using CIBERSORT. (B) Heat map of immune cell infiltration in GSE171110 using ssGSEA. (C) Violin diagram illustrating the 
proportion of different kinds of immune cells in COVID-19 and normal samples using ssGSEA. (D) Correlation heat map showing the 
correlation between 28 different kinds of immune cells and 3 hub genes. The stronger the connection, the redder the hue. (P-values < 0.05 
were considered as statistically significant. *P < 0.05; **P < 0.01; ***P < 0.001. Red indicates a positive correlation, while blue indicates a 
negative correlation). 
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described. These compounds included inhibitors of 

EGFR, MEK, topoisomerase, HDAC, tubulin and CDK 

(Supplementary Figure 5). Finally, we used a schematic 

diagram to illustrate the research (Supplementary  

Figure 6). 
 

DISCUSSION 
 

It is vital to study the complications associated with 

COVID-19. A growing number of studies have reported 

a strong association between COVID-19 and the 

nervous system [21, 22]. One study has even reported 

that COVID-19 causes changes in the cerebrospinal 

fluid of patients [23]. However, there is little research 

on the relationship between COVID-19 and IS. In this 

study, an innovative approach was developed to 

combine scRNA-seq analysis with a variety of bio-

informatic approaches to determine the potential 

mechanisms in COVID-19-related IS. 

 

We first identified 73 critical genes of COVID-19-

related IS (Figure 4A). In addition, functional 

enrichment analysis results showed that these genes of 

COVID-19-related IS were mainly enriched in 

 

 
 

Figure 8. Single cell RNA sequencing in COVID-19 based on GSE165182. (A) Venn diagram of the intersect genes of intersect genes 

and ferroptosis genes. (B, C) The proportion of mitochondrial and ribosome genes is adjusted to ensure the quality of cell samples. (D) 2000 
highly variable genes are indicated in red, with the 10 most important emphasized. (E, F) Reduced dimensionality and cluster analysis using 
UMAP. (G) Heat map showing the 5 hub genes in different cell types annotated by scRNA-seq. (H) Distribution of 5 hub genes in cell 
clusters. (I) Bubble diagram showing the distribution of the 5 hub genes in different cell types. 
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immune-related pathways (Figure 4B–4F). Then we 

screened 3 hub genes (B4GALT5, CRISPLD2, F5) 

which were up-regulated in both COVID-19 and IS by 

multiple machine learning methods combined with the 

mRNA expression of genes (Figure 5). B4GALT5, also 

known as galactosyltransferase V, is one of seven 

members of the -1,4 galactosyltransferase family. The 

B4GALT glycosyltransferase has been extensively 

studied in recent years. During glycoconjugate 

synthesis, these enzymes shift galactosyl groups from 

UDP galactosides to N-acetylglucosamine or another 

glycosyl acceptor. Studies have shown that 1, 4 

galactosyltransferases play a role in embryonic 

development, neurological development, immune and 

inflammatory responses, tumor formation, and many 

other life processes [24]. However, the role of 

B4GALT5 in COVID-19 and IS was not known. There 

has been evidence that CRISPLD2 plays a role in anti-

inflammatory responses and tissue remodeling. There 

has been evidence that CRISPLD2 plays a role in anti-

inflammatory responses and tissue remodeling [25]. 

LCCL domain-containing cysteine-rich secretory 

protein containing 2 (CRISPLD2), a novel LPS-binding 

protein, binds directly to LPS in bloodstream and 

inhibits its binding to its original target receptor, TLR4, 

reducing inflammation caused by LPS. A fascinating 

aspect of the study is that LPS itself can induce the 

release of CRISPLD2 in vitro and in vivo via TLR4-

mediated signaling. Furthermore, immunological cells 

could be enhanced to secrete CRISPLD2 when they 

had access to an anti-hTLR4 specific antibody (anti-

hTLR4-IgAmA), which had been used to block LPS-

induced inflammation [26]. Coagulation factor V (F5) 

is a high-molecular-weight procofactor (330 kDa) that 

plays a critical role in blood coagulation. By activating 

coagulation factor X, it converts prothrombin to 

thrombin as a cofactor [27]. Here, a positive correlation 

was found between B4GALT5 and xenobiotic 

metabolism, TNFA signaling via NFKB, reactive 

oxygen species, p53 signaling, myogenesis, 

inflammation, IL6 JAK STAT3 signaling, hypoxia, 

heme metabolism, estrogen response early, epithelial 

mesenchymal transition, coagulation, cholesterol 

homeostasis, angiogenesis and adipogenesis (p < 0.05). 

A positive correlation was found between CRISPLD2 

and xenobiotic metabolism, peroxisomes, the p53 

pathway, IL6 JAK STAT3 signaling, hypoxia, 

coagulation, cholesterol homeostasis, bile acid 

metabolism, and adipogenesis (p 0.05). TNFA 

signaling via NFKB, TGF beta signaling, protein 

secretion, notch signaling, KRAS signaling up, 

inflammatory response, IL6 JAK STAT3 signaling, 

epithelial mesenchymal transition, coagulation, 
cholesterol homeostasis and angiogenesis were found 

to be positively correlated with F5 (p < 0.05). 

Furthermore, gene correlation analysis revealed that the 

three genes were positively correlated (p < 0.05, 

Figure 6). The results of immune cell infiltration 

analysis showed that three genes are closely related to 

multiple immune cells (p < 0.05, Figure 7). Therefore, 

B4GALT5, CRISPLD2 and F5 may be potent targets 

for the treatment of COVID-19-associated IS. 

 

Importantly, we also obtained 2 ferroptosis genes 

(ACSL1, CREB5) of COVID19-related IS. And we 

found seven major cell types, such as monocytes, NK 

cells, platelets, CD34− pre-B cells, T cells, B cells and 

HSC-G-CSF in patients with COVID19. The majority 

of B4GALT5Z was found in monocytes, NK cells, T 

cells, and HSC-G-CSF cells. There was a high 

concentration of F5 in monocytes, T cells, and HSC-G-

CSF cells. In monocytes, CRISPLD2 was mainly found. 

The ferroptosis genes ACSL1 and CREB5 were mainly 

present in monocytes, HSC-G-CSF cells, and pre-B 

CD34− cells. The monocytes of COVID-19 patients 

showed high levels of expression of all five genes 

(Figure 8). As a result of excessive lipid peroxidation 

and subsequent cell membrane damage, ferroptosis is a 

newly identified iron-dependent necrotic cell death [28]. 

As a result of esterification by acyl-CoA synthetase 

long-chain member 4 (ACSL4), polyunsaturated fatty 

acids (PUFAs) can rupture the cell membrane at the 

execution stage [29]. ACSL1 has recently been 

identified as a ferroptosis promoter [30]. Ferroptosis 

was induced by ACSL1-induced eleostearic acid (ESA). 

In contrast, ESA-triggered, ACSL1-dependent ferrop-

tosis differed significantly from that induced by GPX4 

inhibitor ML160 and FSP1 inhibitor iFSP1 inhibitors, 

which are canonical inducers of ferroptosis [31]. 

Recently, a study indicated that ferroptosis inhibition 

can protect hosts from MHV-A59 infection. Targeting 

ferroptosis may serve as a potential treatment approach 

for dealing with hyper-inflammation induced by 

coronavirus infection [32]. As for CREB5, gene CREB5 

encodes a transcription activator found in eukaryotic 

cells and is located on chromosome 7 (7p15.1). As a 

member of the ATF/CREB family, CREB5 has a high 

affinity for cAMP-responsive elements (CREs). There 

are a number of genes in the ATF/CREB family that 

are targeted, including transcriptional regulators 

(chromatin-modifying enzymes, coactivators, and 

corepressors), mitochondrial homeostasis genes, protein 

import genes, proteases, transporters, chaperones, 

metabolism, and cell cycle entry. In addition to 

containing zinc finger domains at its N-terminus and a 

leucine zipper domain at its C-terminus, the CREB5 

protein is an ATF/CREB family member. An essential 

transcription factor, CREB5 functions as a CRE-

dependent trans-activator in a homodimer or hetero-

dimer with c-Jun and CRE-BP1 [33–36]. Significantly, 

a research revealed CREB5 gene was highly expressed 
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in SARS-CoV-2 infected patients and was associated 

with prognosis in patients with coronavirus infection, 

which was consistent with the results of our study [37]. 

During inflammation, monocytes are heterogeneous 

cells that circulate in the blood and play a key role in 

the innate immune response. Depending on the local 

cytokine environment, these cells can be differentiated 

into macrophages or dendritic cells (DCS) after 

transporting antigens to lymph nodes and aggregating at 

sites of inflammation [38]. Some studies have reported 

that monocytes play an important role in the COVID-19 

process [39, 40]. Study findings indicate that COVID-

19 viral load declines with NK cell status, and NK cells 

are capable of controlling SARS-CoV-2 replication by 

recognizing infected cells [41]. In addition, several 

studies have confirmed that B and T cells can mediate 

COVID-19 immunity [42, 43]. However, it remains 

unclear why CD34− pre-B cells and HSC-G-CSF are 

related to COVID-19 and IS. 

 

In our study, five disease marker genes were all 

confirmed to be highly expressed in monocytes, and 

these five genes could be potential targets for the 

treatment of COVID-19-related IS. 

 

Limitations and future directions 

 

This study was limited by the clinical case samples and 

the limited depth to explore the specific association 

mechanism between IS and COVID-19. In the future, 

we hope to collect more COVID-19-related IS samples 

and explore the potential association between these two 

diseases in a deeper level. 

 

CONCLUSIONS 
 

In summary, this study explored the potential 

correlation between COVID-19 and IS using single-

cell RNA sequencing and multiple bioinformatics 

methods. We identified three immune-related genes 

(B4GALT5, CRISPLD2, F5) and two ferroptosis 

genes (ACSL1, CREB5), all five genes were highly 

expressed in monocytes. Our results suggested that 

these genes may be involved in the development of 

COVID-19-related IS by regulating the immune 

response and ferroptosis of multiple immune cells, 

mainly including monocytes. Importantly, these genes 

may be potential targets for the treatment of COVID-

19-related IS. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Expression of hub genes in COVID-19 train cohort GSE171110. (A) The expression of ACSL1 in 

GSE171110. (B) The expression of CREB5 in GSE171110. (C) The expression of CRIP2 in GSE171110. (D) The expression of ITM2C in 
GSE171110. (E) The expression of OGFRL1 in GSE171110. (F) The expression of RPL4 in GSE171110. (G) The expression of RPL13A in 
GSE171110. (H) The expression of RPL22 in GSE171110. 

 

 

 
 

Supplementary Figure 2. Expression of hub genes in IS train cohort GSE16561. (A) The expression of ACSL1 in GSE16561. (B) The 

expression of CREB5 in GSE16561. (C) The expression of CRIP2 in GSE16561. (D) The expression of ITM2C in GSE16561. (E) The expression of 
OGFRL1 in GSE16561. (F) The expression of RPL4 in GSE16561. (G) The expression of RPL13A in GSE16561. (H) The expression of RPL22 in 
GSE16561. 
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Supplementary Figure 3. Expression of hub genes in COVID-19 validation cohort GSE157103 and IS validation cohort 
GSE22255. (A) The expression of B4GALT5 in GSE157103. (B) The expression of CRISPLD2 in GSE157103. (C) The expression of F5 in 

GSE157103. (D) The expression of B4GALT5 in GSE22255. (E) The expression of CRISPLD2 in GSE22255. (F) The expression of F5 in GSE22255. 

 



www.aging-us.com 8255 AGING 

 
 

Supplementary Figure 4. ROC curves for hub genes in COVID-19 train cohort GSE171110. (A) The ROC curve of B4GALT5 in 
GSE171110. (B) The ROC curve of CRIP2 in GSE171110. (C) The ROC curve of CRISPLD2 in GSE171110. (D) The ROC curve of F5 in 
GSE171110. (E) The ROC curve of ITM2C in GSE171110. (F) The ROC curve of OGFRL1 in GSE171110. (G) The ROC curve of RPL4 in 
GSE171110. (H) The ROC curve of RPL13A in GSE171110. (I) The ROC curve of RPL22 in GSE171110. 
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Supplementary Figure 5. Potential drugs for COVID-19 predicted by CMAP database. 

 

 
 

Supplementary Figure 6. Schematic diagram of the research.  
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1–3. 

 

Supplementary Table 1. 728 ferroptosis-related genes downloaded from FerrDb. 

 

Supplementary Table 2. DEGs including 3190 upregulated genes and 3857 downregulated genes in GSE171110. 

 

Supplementary Table 3. The compounds producing results analyzed by CMAP database. 

 

 


