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ABSTRACT 
 

Background: Numerous types of research revealed that long noncoding RNAs (lncRNAs) played a significant role 
in immune response and the tumor microenvironment of bladder cancer (BLCA). Dysregulated lipid metabolism 
is considered to be one of the major risk factors for BLCA, the study aimed to detect the lipid metabolism-
related lncRNAs (LMRLs) along with their potential prognostic values and immune correlations in BLCA. 
Methods: We collected lipid metabolism-related genes, expression profiles, and clinical information on BLCA 
from the Molecular Signature Database (MSigDB) and the TCGA database, respectively. Differentially expressed 
lipid metabolism genes (DE-LMRGs) and differentially expressed long non-coding RNAs (DE-lncRNAs) were 
selected using the limma package. Spearman correlation analysis was employed to explore the correlations 
between DE-lncRNAs and DE-LMRGs and to further develop protein-protein interaction (PPI) networks and 
perform mutational analysis. The least absolute shrinkage and selection operator (LASSO) and univariate Cox 
analysis were then employed to construct a prognostic risk model. The performance of the model was 
evaluated using Kaplan-Meier survival analysis, receiver operating characteristic (ROC) curves, and consistency 
indices. In addition, we downloaded the GSE31684 dataset for external validation of the prognostic signature. 
Moreover, we explored the association of the risk model with immune cell infiltration and chemotherapy 
response analysis to reveal the tumor immune microenvironment of BLCA. Finally, RT-qPCR was utilized to 
validate the expression of prognostic genes. 
Results: A total of 48 DE-LncRNAs and 33 DE-LMRGs were found to be robustly correlated, and were used to 
construct a lncRNA-mRNA co-expression network, in which ACACB, ACOX2, and BCHE showed high mutation 
rates. Then, a risk model based on three LMRLs (RP11-465B22.8, MIR100HG, and LINC00865) was constructed. 
The risk model effectively distinguished between the clinical outcomes of BLCA patients, with high-risk scores 
indicating a worse prognosis and with substantial prognostic prediction accuracy. The model's results were 
consistent in the GSE31684 dataset. In addition, a nomogram was constructed based on the risk score, age, 
pathological T-stage, and pathological N-stage, which showed robust predictive power. Immune landscape 
analysis indicated that the risk model was significantly associated with T-cell CD4 memory activation, M1 
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INTRODUCTION 
 

More than 90% of cases of bladder cancer (BLCA), one 

of the most prevalent urological malignancies, originate 

from the uroepithelium. Each year, it is predicted that 

over 200,000 people die and over 550,000 new cases 

are diagnosed [1]. Currently, it ranks as the fourth most 

common malignancy in men and the tenth most 

common in women [2]. Non-muscle-invasive bladder 

cancer (NMIBC) and muscle-invasive bladder cancer 

(MIBC) are the two primary pathological subtypes of 

BLCA. A diagnosis of NMIBC is made in about 75% of 

patients, while MIBC is made in the remaining 25% [3]. 

For individuals with high-risk NMIBC or MIBC, 

according to evidence-based advice, the primary course 

of treatment should be radical cystectomy along with 

pelvic lymphadenectomy [4]. Despite the rigorous 

treatment that patients receive, the 5-year overall 

survival (OS) rate is still below average, with a median 

OS of just over 14 months [5]. Delay in diagnosis and 

ineffective treatment are two factors contributing to this 

poor prognosis. What’s more, the aggressiveness and 

extreme propensity of cancer cells to proliferate are 

directly associated with an unsatisfactory prognosis. 

Therefore, it appears that a deeper comprehension of the 

intricate interactions and molecular mechanisms 

involved in tumorigenesis is of utmost importance for 

BLCA. 

 

Metabolic reprogramming is a hallmark of cancer, 

induced by numerous genetic or epigenetic alterations 

that can promote the proliferation of cancer cells [6]. It 

has attracted growing attention since the discovery of the 

Warburg effect, tumor cells can select the appropriate 

metabolic reprogramming to adapt to the dynamic 

landscape [7]. In tumorigenesis, lipids are an essential 

source of energy, increasing evidence points to lipid 

metabolism is the most noteworthy of metabolic changes 

ever observed [8, 9]. It is an intermediate in various 

metabolic activities, providing energy stores for tumor 

proliferation, metastasis, and progression. For example, 

Seo J et al. discovered that hepatocellular carcinoma 

progression is fueled by fatty-acid-induced FABP5 

overexpression through HIF-1-driven lipid metabolism 

reprogramming [10]. Moreover, blocking adipogenesis 

inhibits the growth of glioblastoma [11]. Furthermore, 

lipids facilitate cell-to-cell communication in the tumor 

microenvironment. Su P et al. demonstrated that 

enhanced lipid accumulation and metabolism are 

imperative for tumor-associated macrophage differen-

tiation and activation [12]. However, there is an absence 

of information describing how lipid metabolism is 

regulated in BLCA. Therefore, the discovery of genes 

involved in lipid metabolism may unlock novel 

treatment regimens for BLCA. 

 

Long non-coding RNAs (lncRNAs) were long believed 

to be a component of the genome’s “dark matter” that 

had no biological purpose [13]. Recently, numerous 

studies have shown that lncRNAs interact with many 

substances to promote the development of tumors [14]. 

It controls the expression of target genes by competing 

with the shared miRNAs of those genes, functioning as 

competing endogenous RNAs. For example, lncRNA 

RP11-89 could promote carcinogenesis and ferroptosis 

resistance by sponging miR-129-5p in BLCA through 

PROM2-activated iron export [15]. Through the 

sponging of miR-490-3p and the upregulation of 

AURKA, LINC00958 can promote cell invasion, 

proliferation, and survival while suppressing apoptosis 

[16]. However, there is a dearth of information on the 

function of lipid metabolism-related lncRNAs (LMRLs) 

in BLCA. 

 

In this work, comprehensive bioinformatics analyses 

were conducted to discover LMRGs that are 

predictive of the prognosis for BLCA patients using 

the Cancer Genome Atlas (TCGA) and Gene 

Expression Omnibus (GEO) datasets. The landscape 

of immune infiltration is described, and whether  

and how lipid metabolism plays a role in BLCA 

development is determined. To comprehend the 

potential molecular immunity process that might take 
place as BLCA progresses, we also thought carefully 

about the connection between lipid metabolism and 

invading immune cells. In conclusion, this study 

macrophage, M2 macrophage, dendritic cell activation, and T-cell regulatory. We predicted that 49 drugs would 
perform satisfactorily in the high-risk group. Additionally, we found five m6A regulators associated with the 
high- and low-risk groups, suggesting that upstream regulation of LncRNA could be a novel target for BLCA 
treatment. Finally, RT-qPCR showed that RP11-465B22.8 was highly expressed in BLCA, while MIR100HG and 
LINC00865 were downregulated in BLCA. 
Conclusion: Our findings suggest that the three LMRLs may serve as potential prognostic and immunotherapeutic 
biomarkers in BLCA. In addition, our study provides new ideas for understanding the pathogenic mechanisms 
and developing therapeutic strategies for BLCA patients. 
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offers a fresh understanding that can help with the 

medical treatment of individuals with BLCA. 

 

MATERIALS AND METHODS 
 

Data source 

 

We downloaded transcriptome information about 

BLCA from the GEO and TCGA databases. The 

TCGA-BLCA dataset had 19 normal samples, 414 

BLCA samples, and 402 BLCA samples with 

information on survival. The GSE31684 dataset had 58 

BLCA samples with survival information. Additionally, 

we were able to gather 776 genes related to lipid 

metabolism (LMRGs) from the Molecular Signature 

Database (MSigDB) [17]. 

 

LncRNA-mRNA co-expression network construction 

 

We used the “limma” R package (version 3.48.3) to 

identify differentially expressed LMRGs (DE-LMRGs) 

and differentially expressed lncRNAs (DE-lncRNAs) 

based on the expression levels of 776 LMRGs and 

lncRNAs in 19 normal and 414 BLCA samples from the 

TCGA cohort with the screening criteria of |log2FC| > 1 

and adj. P.Val < 0.05 [18]. We then conducted 

Spearman correlation analysis to investigate the 

correlations among the DE-LMRGs and DE-LncRNAs. 

We selected lncRNA-LMRG relationship pairs with |R| 

> 0.3 and P < 0.05 to establish a network of lncRNA-

mRNA co-expression. 

 

Identification of key genes, tumor mutation burden, 

and enrichment analysis 

 

In this study, the STRING database was used for 

establishing a protein-protein interactions (PPI) network 

based on LMRGs in the lncRNA-LMRG co-expression 

network with a combined score greater than 0.4, and the 

LMRGs with stronger interaction strength were 

considered as key genes. To analyze the somatic point 

mutations in BLCA samples, with the help of the 

“maftools (2.12.0)” R package, waterfall plots were 

produced. Additionally, the “clusterProfiler” (Version 

4.0.2) R package [19] was used to carry out the Kyoto 

Encyclopedia of Genes and Genomes (KEGG) and 

Gene Ontology (GO) enrichment analysis. 

 

Establishment and assessment of a risk model 
 

Based on DE-LncRNAs in the lncRNA-LMRG 

network, the “survival” (version 3.2–7) R package was 

employed to do the univariate Cox analysis on the 402 

BLCA samples in the TCGA-BLCA dataset. Then, 

regression analysis using the least absolute shrinkage 

and selection operator (Lasso) was used to screen key 

lncRNAs for factors with P < 0.05, and a Sanberry plot 

was constructed using key genes and key lncRNAs to 

demonstrate the lncRNA-LMRG co-expression 

relationship. Next, each sample’s risk score was 

determined using the formula: risk score = ∑β gene(i) × 

Exp gene(i) (i = 1-n), in which β represents the 

regression coefficient. BLCA samples in the TCGA 

dataset were divided into high and low-risk groups 

according to the median risk score. “ggplot2” (version 

3.3.5) R package [20] was used to plot the risk curves 

for high and low-risk groups. To determine the 

difference in survival, Kaplan-Meier (K-M) survival 

curves for the two groups were plotted using the 

“survminer” (version 0.4.9) R package. The validity of 

the risk model was assessed by plotting 1-, 3-, 5- year 

survival Receiver operating characteristic (ROC) curves 

with the “survivalROC” (version 1.0.3) package. 

Similarly, we used the GSE31684 dataset to validate the 

risk model. Finally, clinical factors and risk scores were 

evaluated by ROC curves to analyze the correlation 

between clinicopathological factors, risk score, and 

prognostic survival of BLCA samples. Moreover, the 

risk model obtained from this study was compared with 

the published lncRNA risk model. 

 

Relationship between risk scores and clinical 

characteristics 

 

To examine the correlations between risk scores and 

several clinicopathological traits, heat maps of key 

lncRNAs expression in clinicopathological factors were 

drawn. Then, risk score, age, gender, and other 

clinicopathological factors were included in the risk 

model, and independent prognostic analysis was 

performed by univariate Cox and multivariate Cox 

analysis. K-M analysis was also carried out for different 

clinical traits based on independent prognostic factors. 

 

Functional enrichment analysis between high and 

low-risk groups 

 

To analyze the signaling pathway enrichment of DEGs 

in patients of high and low-risk groups, DEGs between 

two groups were screened by “limma” (version 3.48.3) 

R package [18]. Screening conditions were |log2FC| > 1, 

adj. P.Val < 0.05. The “ggplot2” package (version 

3.3.5) [20] and “pheatmap” package (version 1.0.12) 

[21] were used to map the volcanoes and heat maps of 

DEGs. Ingenuity pathway analysis (IPA) was then 

performed on DEGs between two groups. 

 

Analysis of immunotherapy response and immune 

cell infiltration status 

 

In this study, utilizing the Cell type Identification by 

Estimating Relative Subsets of RNA Transcripts 
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(CIBERSORT) algorithm, the association between risk 

scores and immune cells was examined. The immune 

cell percentage was calculated using the CIBERSORT 

method, and the relationship between the risk scores 

and the 22 immune cells was discovered using Pearson 

correlation analysis. Via the Gene set variation analysis 

(GSVA) algorithm, the immune enrichment scores  

were obtained based on biomarkers expression in  

the IMvigor210 dataset which was generated from 

Charoentong’s research (IMvigor210CoreBiology 

package), and the samples were divided into high and 

low-risk groups based on the score, and the survival 

differences between the high and low-risk groups were 

compared. Then, according to the trait of treatment 

response of the samples (R: remission, NR: non-

remission), it was evaluated how NR samples and R 

samples differed in the two groups. 

 

Analysis of the sensitivity to chemotherapy drugs 

 

The treatment response of chemotherapeutic protocols 

was investigated between low- and high-risk groups 

using the Genomics of Drug Sensitivity in Cancer 

(GDSC) online website (https://www.cancerrxgene.org/). 

The following drug listings were taken from the GDSC 

website, the half maximal inhibitory concentration (IC50) 

value of each BLCA patient was obtained using the 

oncoPredict R package (version 0.2) for the drug 

sensitivity response evaluation, where the smaller the 

IC50 value of a drug, the better the ability of the drug to 

inhibit cell growth, that is, the more effective it is in 

treating cancer. In addition, using a box plot, an analysis 

of the expression of nine immune checkpoint inhibitors 

(ICIs) in the two groups was performed. 

 

Risk score correlation analysis with m6A moderators 

 

N6-methyladenosine (m6A) modifications are effective 

biomarkers of immunotherapeutic responsiveness. 

Finally, we assessed the expression of regulators in 

high-risk and low-risk groups, using spearman analysis 

to examine correlations between risk score and m6A 

regulators. 

 

RT-qPCR (real-time quantitative PCR) experiments 

 

According to the manufacturer’s recommendations, RT-

qPCR was used to validate the hub gene levels. From 

BLCA patients who underwent radical cystectomy at 

Kunming Medical University’s Second Affiliated 

Hospital, we removed 10 cancer tissues and 10 

pericarcinomatous tissues. In addition, a normal bladder 

uroepithelial cell line (SV-HUC-1) and BLCA cell lines 

(UM-UC-3, RT4, T24, 5627, SW780, and J82) were 

acquired from the Chinese Academy of Sciences’ 

Shanghai Cell Bank. Roswell Park Memorial Institute 

(RPMI) 1640 medium supplemented with 10% fetal 

bovine serum was used to cultivate these cells. 

Following the manufacturer’s instructions, total RNA 

was extracted using the TRIzol reagent (Life 

Technology, CA, USA) and subsequently reverse 

transcribed into cDNA using the PrimeScript RT Master 

Mix (Takara, Tokyo, Japan). As an internal control, 

glyceraldehyde 3-phosphate dehydrogenase (GAPDH) 

was utilized. We calculated the relative gene expression 

levels using the 2−ΔΔCt method. Supplementary Table 1 

includes a list of all primers utilized. 

 

Statistical analysis 

 

The statistical analysis was performed using the R 

program (Version 4.2.0). The R packages, comparison 

methods, and cutoff values used for each analysis were 

clarified in the corresponding sections. The data from 

different groups were compared by the Wilcoxon test 

and the Kruskal-Wallis test. A P-value less than 0.05 

was regarded as statistically significant unless otherwise 

stated above. 

 

Availability of data and materials 

 

The analyzed datasets generated during the study are 

available from the corresponding author upon 

reasonable request. 

 

RESULTS 
 

Identification of DE-LMRGs and DE-LncRNAs 

between BLCA samples and normal samples 

 

Figure 1 depicted the overall schematic layout of the 

current investigation. Our principle components 

analysis (PCA) revealed that the disease and normal 

groups in our dataset could be distinguished 

(Supplementary Figure 1). Between BLCA samples and 

normal samples, there were 47 DE-LMRGs, including 

19 DE-LMRGs that were up-regulated and 28 DE-

LMRGs that were down-regulated (Figure 2A, 

Supplementary Table 2). 70 DE-LncRNAs, comprising 

38 up-regulated DE-LncRNAs and 32 down-regulated 

DE-LncRNAs, were found between BLCA samples and 

normal samples (Figure 2B, Supplementary Table 3). 

 

Identification of key DE-LMRGs and construction of 

the lncRNA-mRNA co-expression network 

 

According to the spearman correlation coefficient of 

more than 0.3, lncRNA-mRNA co-expression networks 

containing 48 DE-LncRNAs and 33 DE-LMRGs were 

constructed (Figure 3A). The LMRGs in the co-

expression network were further applied to create a PPI 

network with a combined score >0.4, hence 24 LMRGs 

https://www.cancerrxgene.org/
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Figure 1. Workflow chart shows the process for identifying LMRLs-related signature and their application in BLCA. 

 

 
 

Figure 2. Identification of lipid metabolism-related DEGs. (A) The heatmap plot and volcano diagram show the differentially 

expressed LMRGs. (B) The heatmap plot and volcano diagram show the differentially expressed lncRNAs. 
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with strong interaction strength were further detected as 

key genes (Figure 3B). Of these, the number of PTGS2 

targeted genes is the largest, which it was associated 

with among PTGS1, CAV1, PTGIS, etc. Followed by 

PTGIS, it was correlated with SQLE, GH25H, GAV1, 

etc. Then, we found that ACACB, ACOX2, and BCHE 

had higher mutation frequencies (Figure 3C, 3D). 

Additionally, 24 key genes were enriched in 104 GO 

Biological Processes (BP), 4 GO Cellular Component 

(CC), 42 GO Molecular Functions (MF), and 16 KEGG 

pathways mainly involving multiple metabolism-related 

GO terms and KEGG pathways including arachidonic 

acid metabolic processes, carboxylic acid biosynthetic 

process, fatty acid metabolic process, and icosanoid 

metabolic process and pathways such as arachidonic 

acid metabolic process, carboxylic acid biosynthetic 

process, fatty acid metabolic process, and icosanoid 

metabolic process (Figure 4A, 4B). 

 

Establishment and assessment of a key lncRNAs-

based-risk model 

 

In the univariate Cox analysis, the P values of RP11-

465B22.8, MIR100HG, 10RP3-406A7.7, and 

LINC00865 were less than 0.05 (Figure 5A). LASSO 

regression analysis further screened three key lncRNAs, 

namely RP11-465B22.8, MIR100HG, and LINC00865 

(Figure 5B). 3 key lncRNAs with 23 key genes 

constituted the Sanberry plot in Figure 5C, indicating 

that ACACB, BCHE et al. were associated with 

LINC00865 and MIR100HG. FABP6 and RP11-465B 

were co-expressed in the low-risk group. 

 

Simultaneously, the risk score in the TCGA dataset was 

calculated using the LASSO coefficients of three 

important lncRNAs, and the median risk score was used 

to divide the BLCA samples into high- and low-risk 

groups. In the low-risk group, it was evident that 

LINC00865 and RP11-465B22.8 were significantly 

expressed, while MIR100HG was highly expressed in 

the high-risk group (Figure 5D). Compared to people 

with low-risk scores, the prognosis for high-risk persons 

was poorer (Figure 5E). The under the curve (AUC) 

values of ROC analysis were consistently larger than 

0.6, showing that the risk model could effectively 

predict the survival of BLCA (Figure 5F). The 

outcomes in the GSE31684 dataset were in agreement 

with those in the TCGA dataset (Figure 6A–6C). 

 

 
 

Figure 3. Identification of key genes and calculation of tumor mutation burden. (A) LncRNA-mRNA co-expression network. (B) 

The PPI network shows 24 genes with strong interaction. (C, D) The waterfall plot shows the mutation frequency of the LMRGs in the TCGA-
BLCA cohort. 
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For the comparison of predictive capabilities of the key 

lncRNAs-based-risk model and clinical characteristics, 

ROC results suggested that among risk score, stage, and 

T-stage had gentle performances at 1, 3, and 5 years 

(Figure 6D). Figure 6E showed that the model obtained 

in this study did not differ much from the prediction of 

previous models in the literature, however, given the 

streamlining of the model genes (from eight to three), it 

was believed that our model will benefit further 

exploration of the BLCA prognosis. 

 

Relationship between risk score and clinical 

characteristics 

 

Considering the important prognostic significance of 

clinical characteristics, the correlation of risk score and 

clinical characteristics was explored, where the 

expression of MIR100HG, PR11-465B22.8, and 

LINC00B85 in different clinical characteristics 

was exhibited in Figure 7A. Crucially, risk score, T-

stage, N-stage, and age were selected as the independent 

prognostic factors (Figure 7B, 7C). The outcomes of the 

hierarchical analysis showed that in the age <65, age 

>65, N0-N1 period, T3-T4, the survival rate of 

individuals in the high-risk group was lower (Figure 7D). 

 

Analysis of functional enrichment in high- and low-

risk groups 

 

Furthermore, different biological significances in the 

two risk groups were investigated through the IPA 

functional enrichment analysis. Between the two 

groups, 620 DEGs were evaluated (Figure 8A). IPA 

analysis showed that 620 DEGs significantly acted in 50 

pathways, including cellular movement, organismal 

injury, abnormalities, immunological disease, etc. 

(Figure 8B, 8C). 

 

Evaluation of immune cell infiltration status and 

treatment response 

 

Analysis for immune infiltration correlation of risk 

score was a common and important approach to explore 

the potential immunotherapy targets related to the key

 

 
 

Figure 4. The results of functional enrichment analysis. (A) Distinctly enriched GO terms of differentially expressed LMRGs. (B) 

Significant KEGG pathway terms of differentially expressed LMRGs. 
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lncRNAs. The risk score was found to have a strong 

positive correlation with T cells CD4 memory 

activation, Macrophages M1, and Macrophages M2, 

and a weak negative correlation with Dendritic cell 

activation and T cells regulatory (Tregs) (Figure 9A, 

9B). Besides, the IMvigor210CoreBiology cohorts, an 

immunotherapy cohorts associated package, was 

conducted in this study, where the difference in survival 

between the high-risk and low-risk groups according to 

the GSVA score was considerable (Figure 9C). And 

meanwhile, the frequency of NR samples was larger 

among the samples from the high-risk group, and their 

GSVA scores were significantly different from R 

samples, demonstrating that the patient’s immuno- 

 

 
 

Figure 5. Construction and evaluation of LMRLs-based prognostic signature. (A) The LMRLs associated with the prognosis of BLCA 

patients were extracted by univariate Cox regression analysis. (B) LASSO regression analysis reserved 3 prognostic features LMRLs. (C) The 
Sanberry plot demonstrates lncRNA-mRNA co-expression relationships. (D) Distributions of risk score and survival status of BLCA patients 
and heatmap of the 3 genes signature in the training set. (E) KM survival curves for high and low-risk groups in the training set. (F) ROC 
curve of the 3 gene signature for predicting the 1, 3, and 5 years survival in the training set. 
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therapy treatment was highly correlated with the risk 

model (Figure 9D, 9E). Moreover, we employed the 

xCELL, ssGSEA, and CIBERSORT algorithms to 

assess the proportion of each type of immune cell,  

and we discovered that the ssGSEA algorithm’s 

assessment of the immune cell proportion was 

outstanding (Figure 10A). 

Analysis of the sensitivity to chemotherapy drugs 

 

For the potential treatment response of chemo-

therapeutic protocols in BLCA, the IC50 values for 147 

out of 198 anticancer drugs differed significantly 

between the high and low-risk groups, with the high-

risk group being more sensitive to 49 drugs, 

 

 
 

Figure 6. Validation of prognostic model. (A) High and low-risk group curves and the heat map of the model in the validation set. (B) 

KM survival curve of high and low-risk groups in the validation set. (C) Survival ROC curve of the validation set. (D) ROC curve for 
clinicopathological factors and risk score of patients at 1, 3, and 5 years. (E) Comparing the risk model with other models. 
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such as 5-fluorouracil 1073, and AGI 5198 1913 

(Supplementary Figure 2). The 98 medicines were more 

responsive to the low-risk group (ABT737 1910, 

AFATINIB 1032, etc.) (Supplementary Figure 3). In 

addition, we examined the variances in IC50 values 

between the two groups by averaging the IC50 values 

(Figure 10B). In the high-risk and low-risk groups, we 

examined the sensitivity of nine immune checkpoint 

inhibitors (ICIs). The expression of 8 ICIs, TNFRSF9, 

CTLA4, PDCD1, HAVCR2, PDCD1LG2, CD274, 

TIGIT, LAG3, and LGALS9, differed significantly 

between two groups (Figure 11A). 

 

Correlation analysis of risk score with m6A 

moderators 

 

As the effective prognostic and immunotherapy 

response-related biomarkers, the correlations of risk 

score and five m6A regulators, (ELAVL1, YTHDF2, 

IGFBP3, YTHDC1, and METTL3) were analyzed, 

 

 
 

Figure 7. Relationship between risk score and clinicopathological characteristics. (A) The heatmap shows the relationship among 

gender, age, grade, T stage, N stage, M stage, tumor stage, and risk score. (B, C) Univariate and multivariate assays identified independent 
prognostic factors in BLCA patients. (D) KM survival curve for high and low-risk groups in independent prognostic factors. 
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demonstrating that these regulators have a strong 

negative correlation with risk values (Figure 11B), and 

the low-risk group displayed increased expression of 

these five regulators. In addition, WTAP, RBM15B, 

FTO, ALKBH5, IGFBP2, YTHDF1, YTHDC2, 

IGFBP1, RBMX, and IGF2BP1 were significantly 

different between the two groups (Figure 11C). 

 

Using RT-qPCR to verify the model gene expression 

 

We found significantly lower expression of MIR100HG 

and LINC00865 in normal cell lines and tissues of 

BLCA (Figure 12A, 12B, 12D, 12E). However, RP11-

465B22.8 expression was significantly higher in BLCA 

tissues and cell lines (Figure 12C, 12F). The expression 

 

 
 

Figure 8. Functional enrichment analysis between high and low-risk groups. (A) The heatmap plot and volcano diagram show the 

DEGs between patients in high and low-risk groups. (B, C) IPA analysis shows 620 DEGs significantly acted in 50 pathways. 
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trends of the pivotal genes were matched with the 

TCGA transcriptome data. Therefore, we hypothesize 

that MIR100HG, LINC00865, and RP11-465B22.8 can 

be considered reliable and accurate model genes for 

BLCA. 

 

DISCUSSION 
 

One of the most prevalent cancers in the world is 

BLCA, and its prevalence is rising in many nations. 

Although there have been advances in the management 

of BLCA over the past few years, the disease’s 

heterogeneous and aggressive nature has led to the 

failure of TNM staging to accurately predict patient 

prognosis. For patients with locally advanced disease, 

the prognosis remains poor [22]. Due to the 

heterogeneous molecular expression of BLCA, current 

diagnostic methods are limited in their ability to assess 

prognosis. Therefore, it is crucial and urgent to screen 

new biomarkers to create patient-specific medicines and 

enhance prognosis. Lipids are well-known to be 

important components of biological membranes and 

 

 
 

Figure 9. Immune infiltration analysis and immunotherapy response. (A) Correlation chart between risk score and immune 

infiltration cells. (B) The relative proportions of 22 kinds of immune cells in the two risk subgroups. (C) KM survival curves for overall 
survival between the high and low-risk groups in the IMvigor210 cohort. (D, E) Differences of non-responders and responders to 
immunotherapy response between high and low-risk groups in the IMvigor210 cohort. 
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structural units of cells, playing a crucial role in cellular 

activity. Growing research has shown that lipid 

metabolic dysregulation is directly related to the 

emergence of inflammation, cancer, and medication 

resistance [23]. Recent research indicates that all 

metabolic pathways, including those for glucose, amino 

acids, nucleotides, and other pathways, may function as 

possible prognostic biomarkers for BLCA [24], on their 

molecular-level metabolic control, few investigations 

have been conducted. 

 

Bioinformatics analysis was used in the current work to 

thoroughly analyze the potential processes and 

prognostic significance of LMRGs in BLCA. Based on 

 

 
 

Figure 10. Analysis of immune landscape and drug sensitivity. (A) Three algorithms (xCELL, ssGSEA, and CIBERSORT), labeled by 

different colors, are applied to quantify immune-infiltration cells in the two risk score groups from the IMvigor210 cohort. (B) Drugs with 
significant differences between high and low-risk groups are presented in the bubble plot. 
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Spearman correlation analysis, there was discovered  

to be a strong correlation between 33 differentially 

expressed mRNAs and 48 differentially expressed 

lncRNAs. These were used to create a network of 

lncRNA and mRNA co-expression, in which ACACB, 

ACOX2, and BCHE exhibited high mutation rates. We 

then performed PPI network and functional enrichment 

analyses to investigate the biological functions of 

LMRGs in BLCA. The GO and KEGG analyses 

revealed that LMRGs were associated with fatty acid 

metabolism, carboxylic acid biosynthetic membrane 

rafts, phospholipase activity, arachidonic acid 

metabolism, and the PPAR signaling pathway. 

Furthermore, we established a novel signature for 

LMRLs in a large-scale BLCA cohort, including a test 

dataset and a validation dataset. This revealed its 

 

 
 

Figure 11. Correlation analysis of risk score with m6A moderators. (A) Expression of Immune-checkpoint inhibitors in high and low-

risk groups. (B, C) The correlation and relative proportions between risk score and m6A moderators in the two risk subgroups. 
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successful prediction of BLCA patients’ prognosis and 

its potential applicability to clinical traits and the 

immunological microenvironment. 

 

Recently, the construction of predictive models based 

on datasets related to specific biological features has 

shown advantages in the prognostic assessment of 

various malignancies. It is known that accurate 

prognosis prediction by classifying patients into two 

groups based on reliable predictive characteristics 

improves the ability of clinicians to carry out 

personalized treatment decisions [25, 26]. In the present 

study, RP11-465B22.8, MIR100HG, and LINC00865 

were identified as the best prognostic LMRGs, and a 

risk model was constructed, most of which are 

associated with the development of tumors. For 

example, a MIR100HG/hnRNPA2B1/TCF7L2 feedback 

loop may be activated by the miRNA-host gene 

lncRNA MIR100HG, a powerful inducer of epithelial-

to-mesenchymal transition in colorectal cancer, and 

may help explain cetuximab resistance and metastasis 

[27]. In addition, MIR100HG may be one of the 

immune-related prognostic lncRNA signature genes for 

BLCA, according to research by Luo WJ et al. This 

discovery offers BLCA patients a new target for 

customized immunotherapy [28]. Furthermore, it was 

discovered that RP11-465B22.8 promoted esophageal 

cancer cell proliferation, migration, and invasion while 

RP11-465B22.8 knockdown had the opposite impact. 

RP11-465B22.8 was demonstrated to function 

mechanistically as a miR-765 sponge to boost the 

expression of KLK4. Additionally, it was discovered 

that exosomes may transport LncRNA RP11-465B22.8 

from esophageal cancer cells to macrophages. Sub-

sequently, this administration triggered cell migration 

and invasion brought on by M2 macrophages [29]. Ma 

M et al. showed that high-risk groups based on the 

LINC00865 signature gene may benefit more from 

immunotherapy [30]. Finally, we have found that risk 

score is an independent survival predictive factor that 

can separate clinical outcomes in BLCA patients, with 

higher risk scores indicating a worse prognosis. The 

three LMRGs-based risk scores also had significant 

prognostic prediction accuracy, which was further 

validated in the external dataset GSE31684 and in vitro 

experiments. 

 

With a better understanding of the mechanisms of tumor 

development, it is now believed that tumor development 

is not solely the result of oncogene amplification or 

suppressor gene deletion, but that the surrounding 

environment also plays an important role [31]. 

 

 
 

Figure 12. The expression of MIR100HG, LINC00865 and RP11-465B22.8 in tissues and cell lines of BLCA detected by RT-
qPCR. (A) The expression of MIR100HG in BLCA tissues. (B) The expression of LINC00865 in BLCA tissues. (C) The expression of RP11-

465B22.8 in BLCA tissues. (D) The expression of MIR100HG in BLCA cell lines. (E) The expression of LINC00865 in BLCA cell lines. (F) The 
expression of RP11-465B22.8 in BLCA cell lines. 
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The tumor microenvironment (TME) is a complex intra-

tissue environment that interacts with the tumor and 

surrounding tissues, creating an environment that 

promotes tumor cell development, growth, and 

metastasis. Mounting evidence suggests a strong 

correlation between cancer prognosis and the TME, 

particularly concerning immune cells and their 

interactions with cancer cells [32]. Our findings showed 

that the risk model and five immune cells had a strong 

association: dendritic cell activation, M1 and M2 

macrophages, T-cell regulatory (Tregs), and T-cell CD4 

memory activation. Previous studies have reported that 

increased lipid accumulation within tumor-associated 

dendritic cells can lead to adverse stimulation of T-cell 

responses by reducing antigen presentation. Ultimately, 

this contributes to enhanced immunosuppression within 

the TME [33, 26]. Regarding the effect of Tregs, it is 

important to acknowledge their key role in the 

immunosuppressive TME of dysregulated lipid meta-

bolism. Tregs may secrete regulatory cytokines such as 

IL-10 and TGF-β, which help to maintain the 

immunosuppressive microenvironment and facilitate 

cancer cells in evading immune surveillance [34]. 

Moreover, our findings are consistent with the view that 

tumor-associated macrophages are crucial immuno-

suppressive cells that promote tumorigenesis and 

metastasis. M2 macrophages have been identified as 

important promoters of tumor progression and have 

been connected to negative outcomes, in contrast to M1 

macrophages, which have pro-inflammatory and anti-

tumor activities [35]. Taken together, our results are 

consistent with previous research and provide novel 

insights into effective cancer immunotherapy. They 

further propose that by triggering immune cell 

infiltration and immunological responses, aberrant lipid 

metabolism may aid in the development of BLCA. 

 

Several studies have pointed out that chemotherapy and 

immunotherapy are considered to be essential adjuvant 

treatment options for BLCA [36]. In this study, the 

BLCA cohort was divided into two groups using 

GSVA. We discovered that patients in the high-risk 

group had a worse prognosis and that they were more 

susceptible to immunotherapy, suggesting that the risk 

model can be effective in assessing patient outcomes. 

Moreover, among 198 common chemotherapeutic 

drugs, we screened 49 drugs that performed 

satisfactorily in the high-risk group. For example, the 

combination of Irinotecan and Gemcitabine is an 

effective treatment for patients with metastatic BLCA, 

and radiotherapy regimens with the addition of 5-

Fluorouracil are a relatively well-established treatment 

option for BLCA [37]. In this study, high-risk patients 
were more responsive to treatment with Irinotecan and 

5-Fluorouracil. In addition, Camptothecin showed 

strong cytotoxicity in vitro and in vivo against a wide 

range of tumor types and its sensitivity response in this 

study was excellent in the low-risk group [38]. For the 

eight immune checkpoint inhibitors, we also discovered 

substantial variations between the two groups. For 

example, compared to CD28, CTLA4 has a higher 

affinity and can initiate a cascade of events leading to 

the suppression of T-cell responses. In addition, Treg 

cells constitutively express CTLA4, which further plays 

a key role in suppressing anti-tumor immunity [39]. 

When T cells are stimulated, LAG3 is expressed on the 

surface of many different lymphocytes and rapidly 

appears on the surface. This reduces the tumor 

immunological milieu by speeding T cell depletion and 

reducing T cell proliferation [40]. These intriguing 

results show that the immune checkpoint profiles of 

patients in the two groups differ, and our model can 

identify patients who are suited for therapy with 

particular checkpoint inhibitors. Moreover, N6-

methyladenosine (m6A) modifications have been 

reported as powerful prognostic and immunotherapeutic 

biomarkers that can affect the splicing and maturation 

of ncRNAs, ultimately leading to tumorigenesis [41]. 

As a result, we used spearman analysis to examine the 

relationship between risk score and m6A regulators. 

According to our findings, the risk scores of five 

modifiers—ELAVL1, YTHDF2, IGFBP3, YTHDC1, 

and METTL3—were strongly correlated with each 

other. This suggests that upstream regulation of 

LncRNAs could be a novel therapeutic approach for 

treating BLCA. 
 

In summary, we developed and validated a new LMRG 

signature to predict the survival of BLCA. The 

aberrantly expressed LMRGs selected in this study 

could serve as prognostic biomarkers for BLCA 

patients. However, there are still limitations to consider 

when interpreting these results. Although it is important 

to be able to forecast how an immune checkpoint 

inhibitor will react, further study is required to 

understand their precise mechanisms and biological 

functions in BLCA. Furthermore, this retrospective 

study cannot rule out the possibility of selection bias, 

and additional research is required to verify our 

findings. 

 

CONCLUSIONS 
 

We were able to successfully identify a signature of 

LMRGs in our investigation that can forecast the 

general survival of BLCA patients. Our signature's 

substantial predictive value was confirmed in a separate 

cohort, proving it. These findings imply that LMRGs 

have a significant impact on BLCA development and 
may be a valid indicator of therapy effectiveness. Our 

research opens up new possibilities for the future 

treatment of BLCA with precision. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

Please browse Full Text version to see the data of Supplementary Figures 2 and 3. 

 

 

 
 

Supplementary Figure 1. Principal components analysis of tumor and normal sample in the TCGA dataset. 

 

Supplementary Figure 2. 49 chemotherapeutic drugs were sensitive in the high-risk group. 

 

Supplementary Figure 3. 98 chemotherapeutic drugs were sensitive in the low-risk group. 
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Supplementary Tables 
 

Supplementary Table 1. Primer sequences used for reverse transcription-quantitative PCR. 

Genes Primer sequence (5′→3′) 

MIR100HG 
F: AACTTGGCTTCCTCGCTTCT 

R: CTTTGTCCTTGCACTGGGGA 

LINC00865 
F: ACTGGATGTTCCCAGTTCTC 

R: CTTGTACCCAACAGAGTCTC 

RP11-465B22.8 
F: GTACCCAGAGCCTCCCTGTG 

R: GGTGCGTGAACTGCAGACTT 

GAPDH 
F: ACAACTTTGGTATCGTGGAAGG 

R: GCCATCACGCCACAGTTTC 

 

 

Supplementary Table 2. 47 DE-LMRGs between BLCA samples and normal samples. 

Symbol logFC AveExpr t P.Value adj.P.Val B 

RP11-867G23.10 −1.946136 0.392076 −17.54711 2.02E-52 7.08E-49 108.4001 

ADAMTS9-AS1 −1.623903 0.223178 −16.94116 1.00E-49 2.81E-46 102.2615 

AF131217.1 −1.614079 0.274368 −16.21864 1.55E-46 2.63E-43 94.99816 

LINC01082 −3.160091 0.95484 −16.21037 1.69E-46 2.63E-43 94.91551 

AF001548.6 −1.76174 0.299834 −15.06717 1.59E-41 1.86E-38 83.5865 

PGM5-AS1 −4.159291 0.786111 −14.6306 1.18E-39 1.04E-36 79.32468 

HAND2-AS1 −1.176201 0.205877 −13.96947 7.46E-37 5.24E-34 72.95189 

MIR1-1HG-AS1 −1.245398 0.205737 −13.91137 1.31E-36 8.35E-34 72.39697 

CTC-296K1.4 −2.853364 0.627719 −13.57402 3.35E-35 1.88E-32 69.19224 

CTC-296K1.3 −3.153153 0.830367 −13.30481 4.35E-34 2.07E-31 66.65728 

FENDRR −2.709976 0.966052 −13.0049 7.38E-33 3.05E-30 63.85817 

AC002398.12 −1.049263 0.183382 −12.90645 1.86E-32 7.25E-30 62.94532 

RP11-6O2.3 −1.316601 0.317031 −12.76854 6.75E-32 2.43E-29 61.67173 

RP11-887P2.5 −1.357555 0.212235 −12.75687 7.52E-32 2.64E-29 61.56426 

MBNL1-AS1 −1.72294 0.658881 −12.19028 1.40E-29 4.10E-27 56.40006 

C5orf66-AS1 −1.924639 0.594624 −12.00317 7.68E-29 2.07E-26 54.71935 

NR4A1AS −1.830838 0.796489 −11.65192 1.81E-27 4.71E-25 51.59942 

RP11-554A11.4 −1.414086 0.550645 −11.18615 1.11E-25 2.73E-23 47.53737 

RP11-498E2.9 −1.801452 0.590403 −11.06008 3.33E-25 7.79E-23 46.45329 

MIR100HG −2.008502 0.927027 −10.96475 7.60E-25 1.67E-22 45.63815 

RP11-753H16.3 −1.300328 0.294339 −10.29824 2.19E-22 4.10E-20 40.05281 

AC053503.6 −2.202909 0.608135 −9.780534 1.54E-20 2.46E-18 35.86101 

ACTA2-AS1 −1.356784 0.568752 −9.43741 2.40E-19 3.54E-17 33.15849 

LINC00641 −1.016138 0.941535 −8.8736 1.90E-17 2.36E-15 28.85736 

LINC00865 −1.443252 1.190996 −8.647051 1.05E-16 1.21E-14 27.18032 

SNHG1 1.359221 3.883086 8.504292 3.02E-16 3.37E-14 26.13921 

ZNF710-AS1 −1.131329 1.045621 −8.334389 1.05E-15 1.11E-13 24.91625 

RP11-553L6.5 −1.459297 2.427242 −8.205353 2.67E-15 2.78E-13 23.99935 

MIR22HG −1.623176 2.80716 −8.154589 3.85E-15 3.93E-13 23.64149 

SNHG12 1.215186 2.953564 7.770595 5.76E-14 5.43E-12 20.9878 
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RGS5 −2.265292 3.381771 −7.397829 7.28E-13 6.12E-11 18.50441 

CTD-2510F5.4 1.741091 2.899735 6.744602 4.94E-11 3.24E-09 14.38371 

RP11-703I16.1 −1.070464 1.291835 −6.362939 5.06E-10 2.89E-08 12.11862 

RP11-303E16.2 1.103857 3.361274 6.353876 5.34E-10 3.03E-08 12.06616 

SNHG3 1.064048 3.218649 6.257583 9.43E-10 5.25E-08 11.51253 

SNHG25 1.263032 2.143639 6.223272 1.15E-09 6.38E-08 11.31696 

RP6-65G23.3 1.189491 2.2966 6.214588 1.21E-09 6.66E-08 11.2676 

PCAT6 1.398388 2.868352 6.047879 3.18E-09 1.64E-07 10.33132 

PPP1R14B-AS1 1.364422 2.451623 6.041606 3.30E-09 1.68E-07 10.29651 

RP11-295G20.2 1.150859 2.650169 5.833411 1.07E-08 5.01E-07 9.158466 

PCCA-DT 1.042885 3.223762 5.693309 2.31E-08 1.01E-06 8.411815 

MAFG-DT 1.060909 1.787521 5.553827 4.89E-08 2.01E-06 7.683991 

CTD-2537I9.12 1.085947 2.004335 5.432102 9.32E-08 3.67E-06 7.061609 

MIR23AHG −1.289774 3.522301 −5.077265 5.71E-07 1.93E-05 5.316384 

CTA-384D8.36 1.024862 2.872703 5.076098 5.74E-07 1.93E-05 5.310814 

SPINT1-AS1 1.214653 3.397013 4.904587 1.33E-06 4.08E-05 4.504871 

RP1-86C11.7 1.11661 1.428936 4.884413 1.46E-06 4.43E-05 4.411697 

RP3-523K23.2 1.2478 3.216132 4.737496 2.94E-06 8.19E-05 3.743546 

RP11-50C13.1 1.215676 2.771355 4.662735 4.17E-06 0.000112 3.410601 

MIR200CHG 1.535653 3.953889 4.552689 6.90E-06 0.000176 2.929239 

CH17-360D5.2 1.037275 2.066593 4.330007 1.86E-05 0.000416 1.987211 

RP11-670E13.6 1.005279 2.343464 4.307895 2.04E-05 0.000449 1.896027 

VPS9D1-AS1 1.023731 1.982811 4.289357 2.21E-05 0.000478 1.819913 

LASTR 1.365122 1.51384 4.130502 4.35E-05 0.000865 1.18005 

RP3-406A7.7 1.020943 2.769143 3.805855 0.000162 0.00266 −0.05795 

NUDT19-DT 1.047823 2.401061 3.661312 0.000282 0.004262 −0.578701 

CASC9 1.057251 2.31302 3.558255 0.000415 0.005954 −0.938417 

KLHDC7B-DT 1.036457 1.506904 3.448439 0.000619 0.008343 −1.311059 

IGFL2-AS1 1.268883 1.462697 3.441953 0.000634 0.008483 −1.332724 

RP11-465B22.8 1.051318 2.533107 3.218674 0.001385 0.015924 −2.054886 

KRT7-AS 1.18984 2.819216 3.120334 0.001928 0.020737 −2.358319 

LINC01518 1.007683 1.091127 3.116905 0.00195 0.020879 −2.368739 

AATBC 1.01853 1.893502 3.097783 0.002077 0.021891 −2.426634 

LINC01819 1.107012 1.721722 3.076947 0.002224 0.023219 −2.489333 

CTD-2021H9.3 1.073609 1.558676 3.026578 0.002621 0.02628 −2.639229 

LINC01133 −1.074726 1.431864 −3.026473 0.002622 0.02628 −2.639537 

LINC01980 1.139638 1.779023 3.010273 0.002763 0.027435 −2.687243 

RP11-109M17.2 1.101517 1.469562 2.91865 0.003699 0.03419 −2.952421 

RP11-54H7.4 1.044085 1.0726 2.86592 0.004361 0.038776 −3.101465 

MIR205HG 1.182663 4.109484 2.852583 0.004545 0.040029 −3.138748 
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Supplementary Table 3. 70 DE-LncRNAs between BLCA samples and normal samples. 

Symbol logFC AveExpr t P.Value adj.P.Val B 

SLC2A4 −2.489706 0.5449 −14.73967 3.90E-40 3.03E-37 80.29017 

ACACB −1.481464 0.853814 −11.91687 1.65E-28 6.38E-26 53.95403 

ACOX2 −1.312222 0.572971 −10.45182 5.97E-23 1.54E-20 41.37253 

EBF1 −1.41762 0.819794 −10.06465 1.50E-21 2.91E-19 38.20695 

PLPP3 −1.987317 3.201628 −9.892062 6.17E-21 9.57E-19 36.81955 

PTGS1 −3.376291 2.15695 −9.458587 2.01E-19 1.73E-17 33.40224 

BCHE −1.790734 0.603735 −9.315577 6.21E-19 4.81E-17 32.29667 

CH25H −1.967207 1.348607 −8.859131 2.11E-17 1.48E-15 28.84382 

KLF4 −2.326709 3.360207 −8.705745 6.70E-17 4.00E-15 27.71024 

TNFAIP8L3 −1.797003 1.221633 −8.67609 8.37E-17 4.63E-15 27.49268 

PPP1CA 1.071662 6.440257 8.221976 2.36E-15 1.14E-13 24.22707 

LYPLA2 1.151503 5.802534 8.1729 3.36E-15 1.53E-13 23.88175 

PRKAG2 −1.060382 1.902452 −8.161794 3.64E-15 1.57E-13 23.8038 

MGLL −1.835234 2.055851 −8.02189 9.86E-15 3.82E-13 22.82864 

EBP 1.3197 4.78328 7.927315 1.92E-14 7.09E-13 22.17649 

PTGIS −3.008734 1.896224 −7.887455 2.54E-14 8.96E-13 21.90335 

EGR2 −1.824696 1.560406 −7.762461 6.07E-14 2.05E-12 21.05352 

PLA2G5 −1.260114 0.633826 −7.669621 1.15E-13 3.72E-12 20.42893 

DHCR7 1.515731 4.107957 7.572913 2.23E-13 6.27E-12 19.78439 

OSBPL10 −1.180758 1.506631 −7.558883 2.45E-13 6.55E-12 19.6914 

SQLE 1.648506 4.107132 7.286094 1.52E-12 3.94E-11 17.9098 

PPM1L −1.252799 1.444074 −7.262629 1.78E-12 4.45E-11 17.75892 

PLA2G15 1.004141 3.075382 6.977152 1.14E-11 2.75E-10 15.95402 

EPHX2 −1.389083 1.549747 −6.799022 3.51E-11 7.77E-10 14.85701 

PTGDS −2.745181 2.897305 −6.619111 1.07E-10 2.19E-09 13.77228 

MBOAT7 1.195575 5.304839 6.251062 9.78E-10 1.76E-08 11.62759 

FASN 1.370834 5.271571 6.09541 2.42E-09 4.06E-08 10.75128 

HILPDA 1.691945 4.169001 6.041664 3.29E-09 5.14E-08 10.453 

PTGS2 −2.310917 3.002981 −5.890265 7.75E-09 1.05E-07 9.624785 

UGCG −1.019877 3.887731 −5.823019 1.13E-08 1.46E-07 9.262642 

TBL1X −1.018187 2.468248 −5.693197 2.30E-08 2.88E-07 8.573581 

TRIB3 1.377929 3.115824 5.444608 8.72E-08 8.89E-07 7.291557 

SCD 1.793232 5.687892 5.294075 1.91E-07 1.76E-06 6.539459 

CYP27A1 −1.406311 2.279413 −5.09686 5.17E-07 4.45E-06 5.582192 

CYP1B1 −1.555609 1.575804 −4.896905 1.38E-06 1.07E-05 4.644558 

PLA2G4A −1.207523 2.330584 −4.810888 2.08E-06 1.53E-05 4.251516 

DHCR24 1.618315 5.645491 4.74381 2.85E-06 1.99E-05 3.949357 

SREBF1 1.077913 4.364146 4.67374 3.96E-06 2.64E-05 3.637801 

CAV1 −1.74292 4.514939 −4.442161 1.13E-05 6.55E-05 2.63802 

LPCAT1 1.080504 4.092869 4.419695 1.25E-05 7.18E-05 2.543489 

FABP4 −2.76082 3.157021 −4.352379 1.68E-05 9.45E-05 2.26286 

PLA2G2A −2.511362 3.427335 −4.277942 2.32E-05 0.000123 1.957142 

PLPP2 1.073745 3.546775 3.82306 0.000151 0.000681 0.194956 
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ALDH3B2 1.275369 3.634809 3.146638 0.001766 0.005848 −2.081017 

FABP6 1.283005 2.597581 3.088721 0.00214 0.006909 −2.256367 

PLA2G2F 1.438437 2.692196 2.886872 0.004086 0.012321 −2.843078 

GDPD3 1.041551 3.337134 2.50197 0.012719 0.033413 −3.855808 

 

 


