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ABSTRACT 
 

Background: The association between ccRCC and Anoikis remains to be thoroughly investigated. 
Methods: Anoikis-related clusters were identified using NMF. To identify prognostic anoikis-related genes 
(ARGs) and establish an optimal prognostic model, univariate Cox and LASSO regression were employed. The E-
MTAB-1980 cohort was utilized for external validation. Multiple algorithms were used to evaluate the immune 
properties of the model. GO, KEGG and GSVA analyses were employed to analyze biological pathway functions. 
qRT-PCR was employed to measure RNA levels of specific genes. Cell Counting Kit-8, wound healing, and 
Transwell chamber assays were performed to determine changes in the proliferative and metastatic abilities of 
A498 and 786-O cells. 
Results: Based on the expression of 21 prognostic ARGs, we constructed anoikis-related clusters with different 
prognostic and immune characteristics. The cluster A1 showed a worse prognosis, higher infiltration of 
immunosuppressive cells and enrichment of several oncogenic pathways. We also calculated the Anoikis Index 
(AI). Patients in high AI group had a worse prognosis, higher infiltration of immunosuppressive cells and higher 
expression of immunosuppressive checkpoints. TIMP1 exerted a tumor-promoting role in ccRCC and was 
significantly associated with immunosuppressive cells and checkpoints. The downregulation of TIMP1 
negatively regulated ccRCC cell proliferation and metastasis.  
Conclusions: ARGs played crucial roles in tumorigenesis and progression and were positively associated with a 
poor prognosis. AI had great accuracy in predicting the prognosis and immune characteristics of ccRCC patients. 
TIMP1 was significantly associated with clinicopathological variables and the immunosuppressive micro-
environment, which could be exploited to design novel immunotherapies for ccRCC patients. 
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INTRODUCTION 
 

Renal cell carcinoma (RCC) is a common malignant 

tumour of the urinary system that originates in the renal 

tubular epithelium [1, 2]. There are approximately 

295,000 newly diagnosed cases of RCC and around 

134,000 deaths worldwide annually, accounting for 

about 2% of all cancer-related deaths globally [3]. Clear 

cell renal cell carcinoma (ccRCC) is the predominant 

subtype of RCC, comprising approximately 70-80% of 

all RCC cases [4, 5]. The majority of ccRCC cases do 

not respond well to radiotherapy or chemotherapy. 

Therefore, early resection is considered the primary 

treatment for ccRCC patients [6]. However, even after 

tumour resection, recurrence or metastasis still occurs in 

nearly 30% of patients with localized ccRCC [7, 8]. The 

clinical outcomes for advanced ccRCC remain 

unsatisfactory despite significant advances in early 

detection, diagnosis and surgery [9]. Therefore, it is 

imperative to discover useful biomarkers for early 

diagnosis to improve the treatment of ccRCC patients. 

 

The development and homeostasis of multicellular 

organisms rely largely on programmed cell death 

(PCD), which allows organisms to eliminate cells that 

could easily transform into tumors or be hijacked by 

pathogenic bacteria for replication [10, 11]. The known 

types of PCD include autophagy-dependent cell death, 

apoptosis, necrosis, pyrodegeneration, NETosis, and 

more [12]. Anoikis refers to the death of normal 

adherent cells that have been in a suspended state for an 

extended period due to "homelessness" [13]. Anoikis is 

a specific type of PCD that occurs when cells separate 

from the extracellular matrix, initiating a "suicidal" 

behavior that plays an important role in body 

development, tissue homeostasis, disease development, 

and tumor metastasis [14, 15]. The ability of 

transformed cells to survive under "isolated" growth 

conditions is a common feature of tumour development 

and growth [16]. This acquired ability, known as 

anoikis resistance, is associated with the loss of cellular 

homeostasis, cancer growth and metastasis [17]. Cancer 

cells with anti-anoikis properties can spread to distant 

tissues or organs through the peripheral circulation, 

causing cancer metastasis [18]. Anoikis resistance 

occurs when detached cells circumvent the death 

signaling pathway, enabling their survival through 

biochemical and molecular alterations within the cell 

milieu. These changes are characteristic of invasiveness, 

metastasis, therapy resistance, and relapse of cancer 

cells [19]. Cancer cells metastasize through successive 

processes of detachment from one another or the ECM, 

migration to distal points, promotion of reattachment, 

and proliferation at the new site [20]. Cancer cells 

employ various mechanisms to evade anoikis, 

promoting their invasiveness and metastasis. Cellular 

acidosis and changes in reactive oxygen species (ROS) 

generation have a significant impact on promoting 

anoikis resistance [21]. These changes activate 

oncogenic signals that induce pro-survival pathways, 

leading to stemness, proliferation, and invasion [22, 23]. 

While nutrient uptake is necessary for cellular growth, 

abnormal metabolism in cancer patients can lead to 

anoikis resistance and promote therapy resistance. 

Studying the molecular mechanisms that control anti-

anoikis can provide insights into effective therapies for 

human malignancies. 

 

TIMP1 is a member of the matrix metalloproteinase 

(MMP) inhibitors family, which includes four identified 

members, TIMP1, TIMP2, TIMP3 and TIMP4 [24]. In 

addition to inhibiting MMP-mediated degradation of the 

extracellular matrix, TIMP1 also interacts with other 

proteins and plays a critical role in regulating biological 

processes such as cell growth, apoptosis, and 

differentiation [25]. Studies have shown that 

overexpression of TIMP1 may significantly increase 

genes involved in proliferation, apoptosis, and signal 

transduction variants [26, 27]. TIMP1 may also bind to 

the CD63/integrin β1 complex, producing an anti-

apoptotic effect [28]. Numerous clinical studies have 

demonstrated that abnormal expression of TIMP1 is 

associated with an adverse prognosis in various 

tumours. However, the exact function and underlying 

mechanism of TIMP1 in ccRCC remain to be further 

elucidated. 

 

This present study systematically investigated the 

association of ARGs with immune infiltrating cells and 

clinicopathological variables in ccRCC. Additionally, 

an anoikis-related prognostic model was constructed to 

effectively identify the survival risk and predict the 

survival rate of ccRCC patients. The mechanism of 

TIMP1 in regulating anoikis in the tumor micro-

environment may provide insights for the design of new 

immunotherapies for ccRCC. 

 

MATERIALS AND METHODS 
 

Data acquisition and study design 

 

Gene expression profiles and clinical data of ccRCC 

patients were obtained from The Cancer Genome Atlas 

(TCGA, https://www.cancer.gov/tcga). A total of 434 

ARGs were selected from Genecards according to the 

criterion of a correlation score > 0.4 (Supplementary 

Table 1). The E-MTAB-1980 cohort was used as an 

external validation cohort. It was downloaded from  

the ArrayExpress database (https://www.ebi.ac.uk/ 

arrayexpress/). Additionally, gene expression data from 

GSE73731 [29], GSE66272 [30] and GSE67501 [31] 

downloaded from the Gene Expression Omnibus (GEO; 

https://www.cancer.gov/tcga
https://www.ebi.ac.uk/arrayexpress/
https://www.ebi.ac.uk/arrayexpress/
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http://www.ncbi.nlm.nih.gov/geo/) database, were used 

to validate the clinicopathological characteristics of the 

genes. 

 

Identification of prognosis related ARGs  

 

Differentially expressed ARGs in ccRCC and normal 

kidney tissue were screened using the R package limma 

and Wilcoxon tests [32]. The screening criteria  

were |logFC|>1.5 and adjusted P < 0.05. Univariate  

Cox regression analysis was performed on the 

differentially expressed ARGs to further identify ARGs 

associated with prognosis, using a screening criterion of 

p-value < 0.05. 

 

Cluster analysis and bioinformatics analysis 

 

Hierarchical clustering of ccRCC samples based on 

prognosis-related ARGs expression profiles was 

performed using the R package non-negative matrix 

factorization (NMF) [33]. Functional enrichment 

analysis was conducted to confirm the potential 

functions of the different clusters. The screening criteria 

for differential genes between clusters were P<0.001 

and |logFC|>2. Gene Ontology (GO) and Kyoto 

Encyclopedia of Genes and Genomes (KEGG) 

enrichment analysis were performed to annotate 

functional genes and analyze gene function and related 

advanced genome function information. Gene set 

variation analysis (GSVA) enrichment analysis was 

conducted using the “GSVA” R package to explore the 

role of ARGs in biological pathways. The gene set 

“c2.cp.kegg.v7.4.symbols” from the MSigDB database 

was used for GSVA analysis. 

 

Construction and validation of the Anoikis index (AI) 

 

Prognostic ARGs were identified and further screened 

using the least absolute shrinkage and selection operator 

(LASSO) Cox regression analysis with the R package 

glmnet [34]. The AI formula was obtained by the linear 

combination of gene expressions weighted regression 

coefficients. The algorithm was as follows: AI=Coef A 

* Gene A expression + Coef B * Gene B expression 

+Coef C * Gene C expression+......Coef N * Gene N 

expression, with Coef referring to coefficient calculated 

by LASSO and gene expression referring to expression 

of ARGs. The ccRCC patients with survival data were 

divided into Low- and High- AI groups according to the 

median AI. Time-dependent receiver operating 

characteristic (ROC) curve was performed and the area 

under the ROC curve (AUC) was performed using the 

survivalROC package. Univariate and multivariate Cox 

regression analyses were used to evaluate the 

independence of AI and various clinicopathological 

features. 

Immune microenvironment assessment and 

mutation analysis 

 

Estimation of Stromal and Immune cells in Malignant 

Tumor tissues using Expression data (ESTIMATE) 

analysis was employed to quantify the immune scores, 

stromal scores, estimate scores, and tumor purity in the 

tumor microenvironment (TME) of each ccRCC 

sample. The relative abundance of each immune cell in 

the TME was quantitatively analysed using different 

algorithms (TIMER, CIBERSORT, QUANTISEQ, 

MCPCOUNTER, XCELL, EPIC and ssGSEA). 

Mutation data for ccRCC patients were downloaded 

from the TCGA database, and the Maftools package 

was used to illustrate the respective mutational profiling 

of the two risk levels by a waterfall plot [35]. Asterisks 

represented statistical p-values (*p < 0.05, **p < 0.01, 

***p < 0.001). 

 

Identification of immune and clinical characteristics 

of TIMP1 

 

The “ggplot2” package was used to analyze the 

differential expression of ARGs in different 

pathological grades and histological stages. Genes 

significantly associated with clinical features and 

playing key roles in the pathway were screened based 

on the correlation of ARGs expression with clinico-

pathological features. All ccRCC samples were 

divided into high and low TIMP1 expression groups 

according to the median expression level of TIMP1. 

The correlation analysis of TIMP1 expression with 

clinicopathological characteristics was validated in the 

GSE40435, GSE53757, and GSE73731 datasets. The 

Wilcoxon test was employed to verify differences in 

immune cells and checkpoints between the high and 

low TIMP1 expression groups. The “ggplot2” package 

and Spearman analyses were used to analyze the 

association of the TIMP1 with immune cells and 

checkpoints.  

 

Western blot assay 

 

Total proteins were extracted from the RCC cell lines, 

and a Western blot assay was performed after the 

detection of protein concentration. 20μg of samples 

were separated on a 10% SDS-PAGE gel, then 

transferred to a PVDF membrane and blocked for 1 

hour at room temperature. The membranes were 

incubated with primary antibodies (TIMP1 

concentration, 0.5 µg/mL; GAPDH dilution rate, 1:500; 

Abcam) at 4° C overnight. The next day, the 

membranes were incubated with the secondary antibody 
(Abcam; dilution rate, 1:2000) at 24° C for 1 hour. 

Signals of targeted proteins were detected using an 

enhanced chemiluminescence detection system. 

http://www.ncbi.nlm.nih.gov/geo/
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Cell culture and cell transfection 

 

Two human ccRCC cell lines (A498, 786-O) were 

obtained from the cell bank of the Chinese Academy of 

Sciences (Shanghai, China). All cells were cultured in 

RPMI 1640 medium (Thermo Fisher Scientific, Inc.) 

supplemented with 10% fetal bovine serum (FBS; 

Thermo Fisher Scientific, Inc.) at a constant temperature 

of 37° C in a humidified atmosphere containing 5% CO2. 

 

Lentiviral shRNA plasmids targeting TIMP1 along with 

the nonspecific control shRNA were obtained from 

Dharmacon (Shanghai, China). Transfection of plasmid 

and shRNA was performed using Lipo3000 following 

the manufacturer's instructions. 

 

Cell counting kit-8 (CCK8) assay 

 

A498 and 786-O cells after different interventions were 

incubated in 96-well plates (2x10^3) with 200 µL 

culture medium and conditioned in 37° C with 5% CO2. 

On days 1, 2, 3, 4 and 5, 20µL of CCK-8 solution was 

added into each well, and incubation was performed for 

2 hours. Absorbance was measured at an optical density 

of 450 nm using a Microplate reader (Bio-Rad 

Laboratories, Inc.).  

 

Transwell assay 

 

A498 and 786-O cells (with an incubation density of 

2x10^5 cells) were incubated in the upper chambers 

(Corning). For the invasion assay, the upper chambers 

were pre-coated with Matrigel (BD Biosciences). 

Culture medium without and with 10% FBS was added 

to the upper and lower chambers, respectively. After 12 

hours, non-migrated cells were wiped out, while 

migrated or invaded CRC cells were fixed, stained, and 

counted using an inverted microscope. 

 

Wound-healing assay 

 

Cell migration was assessed by performing a wound 

healing assay. A498 and 786-O cells were transfected 

with TIMP1 were seeded at a density of approximately 

2x10^6 cells in 6-well plates and cultured for 24 hours. 

Then, a yellow plastic pipette tip was used to create a 

wound by scraping the cells. Cell migration was 

monitored under a Nicon Eclipse microscope and 

photographed at 100× . 

 

Statistical analysis 

 

All analyses were performed by using R 4.1.0. All 
statistical tests were two-tailed, and a P-value <0.05 was 

considered statistically significant unless otherwise 

noted. To analyse the association between ARGs and 

overall survival (OS) in ccRCC patients, Kaplan-Meier 

(KM) curves and the log-rank test were used. Univariate 

and multivariate Cox regression analyses were utilized 

to confirm independent impact factors associated with 

survival. The Benjamini-Hochberg (BH) method was 

used to adjust all adjusted P-values or false rate 

discovery (FDR). An adjusted P-value < 0.05 was 

considered statistically significant. Abbreviations and 

corresponding words and phrases used in this article 

(Supplementary Table 5). 

 

Data availability statement  

 

All data used in this work can be acquired from (TCGA, 

(https://www.portal.gdc.cancer.gov/), GEO (https:// 

www.ncbi.nlm.nih.gov/geo/). 

 

RESULTS 
 

Establishment and biological characteristics of 

anoikis clusters 

 

In total, we included 434 ARGs, of which 85 genes 

exhibited differentially expression in ccRCC and 

paracancerous tissues, and 234 genes showed significant 

univariate associations (Supplementary Tables 1–3). 

Finally, we identified 48 differentially expressed ARGs 

with prognostic implications (Figure 1A). Next, we 

performed hierarchically clustering of ccRCC based on 

the expression profiles of these 48 prognosis-related 

ARGs, resulting in the division of samples into A1 and 

A2 clusters (Figure 1B). KM analysis demonstrated a 

significant difference in survival between the two 

clusters, with A1 showing a poor prognosis (Figure 1C). 

The heatmap displayed the distribution of gene 

expression and clinicopathological characteristics across 

the anoikis clusters (Figure 1D). To further explore the 

biological function differences between the two clusters, 

we identified 3,212 differentially expressed genes 

(P<0.001 and |logFC|>2) between them. These genes 

were subjected to GO and KEGG enrichment analyses. In 

the BP group, the genes were predominantly enriched in 

multiple immune regulatory pathways and regulation of 

inflammatory response, among others. In the CC group, 

the genes were mainly concentrated in the cell-substrate 

junction, extracellular matrix, and membrane region. In 

the MF group, the genes showed significant enrichment 

in the cell adhesion molecule binding, actin binding, and 

extracellular matrix structural (Figure 1E). The KEGG 

analysis indicated a concentration of genes in multiple 

cancer-promoting pathways, including the PI3K-Akt 

signaling pathway, mTOR signaling pathway, and 

AMPK signaling pathway (Figure 1F). Furthermore, 

GSVA analysis revealed a significant enrichment of 

metabolic pathways such as amino acid metabolism  

and fat metabolism in the A2 cluster (Figure 1G). To 

https://www.portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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further validate the stability and accuracy of the 48 

prognosis-related ARGs, we divided patients in the E-

MTAB-1980 dataset into A1 and A2 clusters based on 

gene expression profiles (Figure 1H). Significant 

differences in survival were observed between the A1 

and A2 clusters (Figure 1I). 

 

Identification of immunological characteristics of 

anoikis clusters 

 

The ssGSEA score was used to quantify the activities  

or abundances of immune signatures and immuno-

suppressive cells in the ccRCC samples. The results 

indicated that immunosuppressive cells (Macrophage, 

MDSC, and Regulatory.T.cell) were significantly 

overexpressed in the A1 cluster compared to the A2 

cluster, consistent with the survival disadvantage of A1 

cluster (Figure 2A–2C). Furthermore, we evaluated the 

differences in TME characteristics between A1 and A2 

clusters. ESTIMATEScore, ImmuneScore, and 

StromalScore showed significant differences between 

A1 and A2 clusters and were highly expressed in A1 

cluster (Figure 2D–2F). In contrast, tumourPurity  

had low expression in cluster A1 (Figure 2G).  

 

 
 

Figure 1. Establishment and validation of anoikis-related clusters. (A) Screening of 48 ARGs associated with prognosis and 
differentially expressed; (B) Heatmap plot indicating the consensus matrix of NMF clustering results utilizing the gene expression profile in 
TCGA KIRC cohort, colored by two ccRCC clusters; (C) KM survival curves revealing the prognosis difference of the two clusters (A1, A2);  
(D) The distribution of anoikis-related genes expression profile and clinicopathological characteristics in A1 and A2 clusters; (E) The results of 
GO biological process enrichment of differentially expressed genes; (F) The results of KEGG pathways analysis of differentially expressed 
genes; (G) Results of GSVA enrichment analysis between clusters; (H) Heatmap plot indicating the consensus matrix of NMF clustering results 
utilizing the gene expression profile in the E-MTAB-1980 cohort, colored by two ccRCC clusters; (I) KM survival curves revealing the prognosis 
difference of the two clusters (A1, A2).  
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Figure 2. The immune infiltration characteristics in anoikis-related clusters. (A–C) The differential expression of immunosuppressive 

cells between clusters (A) Macrophage; (B) MDSC; (C) Regulatory.T.cell; (D–G) The differences in tumor microenvironment characteristics 
between clusters (D) ESTIMATEScore; (E) ImmuneScore; (F) StromalScore; (G) TumorPurity; (H) Boxplots showing the differences in immune 
function between clusters; (I, J) Differences in immune checkpoint expression between clusters (I) CTLA4; (J) PDCD1. The asterisks 
represented the statistical p-value (*p<0.05, **p<0.01, ***p<0.001).  
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Additionally, APC co-stimulation, Checkpoint, 

Inflammation-promoting, and T cell co-stimulation 

were activated in the A1 cluster (Figure 2H). Moreover, 

immune checkpoints (CTLA4 and PDCD1) were 

significantly overexpressed in the A1 cluster (Figure 2I, 

2J). 

 

Construction and validation of the Anoikis index (AI) 

 

Lasso regression analysis was applied to the 48 

prognosis-related ARGs to improve robustness, 

resulting in the identification of 21 robust ARGs for 

constructing the Anoikis Index (AI) (Figure 3A, 3B). 

The Coefficients (Coef) for each modeled gene are 

presented in Supplementary Table 4. According to the 

median value of AI, the samples were divided into high 

and low AI groups. AI showed a negative correlation 

with patient survival based on the distribution of AI in 

ccRCC samples (Figure 3C). The heatmap revealed the 

distribution of gene expression and clinical 

characteristics (Figure 3D). The KM survival curve 

indicated that high AI was associated with a decreased 

chance of survival (Figure 3E). For 1, 2, and 3-year 

survival rates, the AUC predictive value of the AI was 

0.785, 0.727, and 0.74, respectively (Figure 3F). To 

investigate the independent prognostic value of AI, 

univariate and multivariate Cox regression analysis was 

performed. In the univariate cox regression, age, grade, 

stage, TMN stage, and AI were linked to poor survival 

(Figure 3G). However, in the multivariate analysis, 

only age and AI were independent predictors of OS 

(Figure 3H). To further validate the accuracy of the 

model, the 101 patients in the E-MTAB-1980 were 

used as the validation set. The results indicated that AI 

was negatively correlated with patient survival in the 

E-MTAB-1980 dataset, consistent with the results of 

the TCGA analysis (Figure 3I). Furthermore, for 1-, 2- 

and 3-year survival rates, the AUC predictive value of 

the AI was 0.767, 0.712, and 0.681, respectively 

(Figure 3J). 

 

Identification of the tumor mutation burden (TMB) 

characteristics of the Anoikis index (AI) 

 

To determine the differences in cancer-related gene 

mutations between the High and Low AI groups, we 

first calculated the mutations in each group. The 

mutation rate in High AI group was 84.89% and that in 

Low AI group was 78.31%. Furthermore, in both high 

and low AI groups, the top five most mutated genes 

were: BAP1, SETD2, TTN, PBRM1, and VHL (Figure 

4A, 4B). Additionally, significant differences in TMB 

were observed between the high and low AI groups 

(Figure 4C). The KM survival curve indicated that high 

TMB was associated with poor prognosis (Figure 4D). 

To further analyze the correlation between TMB and 

AI, combined mutation and AI survival analysis 

indicated that H-TMB+L-AI group had the worst 

prognosis, confirming the accuracy of the above results 

(Figure 4E). 

 

Identification of the immunological characteristics of 

the Anoikis index (AI) 

 

Figure 5A displayed a heatmap of immune responses 

based on CIBERSORT, QUANTISEQ, 

MCPCOUNTER, XCELL, CIBERSORT-ABS, TIMER, 

and EPIC algorithms, indicating a correlation between 

AI and immune cell infiltration in ccRCC. Specifically, 

AI exhibited a significant positive correlation with 

immune suppressive cells such as macrophages and 

Treg cells, according to various algorithms (Figure 5B). 

To further analyze the immune infiltration charac-

teristics of AI, we investigated the differences in the 

expression of immune cell infiltration, immune 

checkpoints and TME between high and low AI groups. 

The results revealed significantly higher levels of 

immunosuppressive cells (Macrophage, MDSC, and 

Regulatory T cell) and TME characteristics 

(ESTIMATEScore, ImmuneScore, and StromalScore) 

in the High AI group (Figure 5C–5H). Similarly, the 

expression of immunosuppressive checkpoints was 

significantly higher in the High AI group than in the 

Low AI group (Figure 5I). 

 

Identification of the clinicopathological features and 

drug sensitivity of the Anoikis index (AI) 

 

We first analyzed the proportions of various 

clinicopathological features between the High and Low 

AI groups. It was evident that the High AI group had a 

higher proportion of advanced clinicopathological 

stages compared to the Low AI group, and this 

difference was statistically significant (Supplementary 

Figure 1A–1E). Furthermore, we observed significant 

statistical differences in AI expression across diverse 

clinicopathological stages. Notably, AI expression 

increased as the clinicopathological stage advanced 

(Supplementary Figure 1F–1J). In-depth analysis of 

survival differences between the high and low AI 

groups in different clinicopathological stages indicated 

a poor prognosis for the high AI group, with AI 

showing a negative correlation with patient survival 

(Supplementary Figure 1K–1O). To assess the 

association between AI and ccRCC resistance, we 

screened nine major chemotherapeutic agents from the 

pRRophetic package. The Low AI group exhibited 

higher IC50 values for Bosutinib, Gefitinib, Nilotinib, 

Pazopanib, Sunitinib, Tipifarnib, Temsirolimus, 
Rapamycin, and Vorlistat, suggesting that these 9 drugs 

may be more suitable for patients with higher AI 

(Supplementary Figure 2).  
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Figure 3. Establishment and prognostic features of Anoikis index. (A, B) Lasso analysis of prognostic ARGs with minimum lambda 

value; (C) The risk curve of each sample reordered by AI and the scatter plot of the sample survival overview. The blue and pink dots 
represent survival and death, respectively; (D) The distribution of Anoikis-related genes expression profile and clinicopathological 
characteristics in AI; (E) Overall survival curve showing the prognostic difference between high and low AI group; (F) ROC curves about AI in 
1,2,3 years; (G, H) The univariate and multivariate Cox regression analysis of AI, age, gender, grade, stage, TMN stage; (I) Differences in 
survival between high and low AI groups in the E-MTAB-1980 cohort; (J) ROC curves about AI in 1,2,3 years in the E-MTAB-1980 cohort. 
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Identification and validation of the clinicopathological 

features of TIMP1 

 

To further analyze the key events leading to 

tumorigenesis and progression, we assessed the 

correlation between gene expression profiles and 

clinicopathological variables, revealing a significant 

association of TIMP1 with clinical features. Initially, 

we analyzed the expression level of TIMP1 in 33 

tumors and observed a moderate expression level in 

KIRC (Figure 6A). Subsequently, we investigated the 

differential expression of TIMP1 between ccRCC and 

adjacent carcinoma tissues in TCGA database, finding a 

significant overexpression of TIMP1 in ccRCC (Figure 

6B). The KM survival curve indicated a poor prognosis 

associated with TIMP1 (Figure 6C). Additionally, ROC 

curve analysis demonstrated a high prognostic value of 

TIMP1 in ccRCC patients (AUC=0.882) (Figure 6D). 

Further analysis involved examining the expression 

profile of TIMP1 across different clinicopathological 

stages. As depicted in Figure 6E–6I, the expression 

profile of TIMP1 exhibited a significant positively 

correlated with various clinical variables, including 

histological grade (P <0.001), pathological stage (P 

<0.001), T stage (P <0.001), M stage (P <0.001), and N 

stage (P <0.01). Furthermore, we investigated the 

expression profile of TIMP1 in various clinical 

variables across several GEO datasets, revealing its high 

expression in advanced clinicopathological stages and 

cancer tissues (Figure 6J–6N). 

 

Identification of the immunological characteristics of 

TIMP1 

 

We conducted further investigations into the correlation 

between TIMP1 expression profiles and immune cells

 

 
 

Figure 4. The tumor mutation burden characteristics of Anoikis index. (A, B) The waterfall chart showing the mutation frequency of 

the top 20 genes in the high and low AI groups; (C) Differences of the tumor mutation burden (TMB) between high and low AI groups; (D) KM 
survival curve showing the prognostic difference between high and low TMB groups; (E) KM survival curve showing OS of the combination of 
AI and TMB. 
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as well as immune checkpoints. The ccRCC patients 

were categorized into high or low TIMP1 expression 

groups based on the median value of TIMP1 expression. 

It became apparent that the expression of immuno-

suppressive cells (such as Macrophage, MDSC, and 

Regulatory.T.cell) was higher in the high TIMP1 

expression group compared to the low TIMP1 

expression group (Figure 7A–7C). Subsequently, by 

analyzing the correlation between TIMP1 and immune 

cells, we observed a significant positive correlation 

between TIMP1 and immune suppressive cells, 

including Macrophage, MDSC, and Regulatory.T.cell 

(Figure 7D). Consequently, we proceeded to evaluate 

the immune microenvironmental characteristics of 

TIMP1 based on ImmuneScore and StromalScore in 

ccRCC tissues. The results demonstrated a significant 

positive correlation between TIMP1 and immune, 

stromal, and estimated scores (Figure 7E–7G). 

 

 
 

Figure 5. The immune infiltration characteristics of Anoikis index. (A) Distribution of immune cells in high and low AI groups under 
multiple algorithms; (B) The correlation between immune cells and AI under multiple algorithms; (C–E) The differential expression of 
immunosuppressive cells between high and low AI groups (C) Macrophage; (D) MDSC; (E) Regulatory.T.cell; (F–H) The differential expression 
of tumor microenvironment scores between high and low AI groups (F) ImmuneScore; (G) StromalScore; (H) ESTIMATEScore; (I) The 
differential expression of immune checkpoints between high and low AI groups. The asterisks represented the statistical p-value (*p<0.05, 
**p<0.01, ***p<0.001).  



www.aging-us.com 8918 AGING 

Additionally, we examined the correlation between 

TIMP1 expression profiles and immune-suppressive 

checkpoints. As depicted in the Figure 7H–7J, CTLA4, 

PDCD1, and CD96 were all expressed at higher levels 

in the high TIMP1 group. Furthermore, TIMP1 

exhibited a significantly positively correlated with 

various immunosuppressive checkpoints (Figure 7K). 

Collectively, these findings indicate a close association 

between TIMP1 and the establishment of an 

immunosuppressive microenvironment. 

 

Validation of TIMP1 in tissues and cell lines 

 

qRT-PCR was conducted on 18 pairs of ccRCC tissues 

and normal renal tissues, as well as 7 cell lines, 

including 6 tumor cell lines and 1 normal renal cell line. 

Significantly higher expression of TIMP1 was observed 

in tumor tissues compared to normal renal tissues 

(Figure 8A). Moreover, when compared to normal renal 

cell lines, the expression of TIMP1 was markedly 

elevated in tumour cell lines, with the highest 

expression observed in the A498 cell line (Figure 8B). 

These experimental results were in line with the 

predictions made using bioinformatics methods. 

Additionally, the CPTAC database provided explicit 

evidence that the protein expression levels of TIMP1 

were significantly elevated in ccRCC tissues as 

compared to normal kidney tissues (Figure 8C). 

 

TIMP1-knockdown suppressed proliferation, 

migration and invasion in A498 and 786-O cells 

 

In the TIMP1-knockdown group, both mRNA and 

protein expression of TIMP1 were significantly down-

regulated (Figure 9A). The CCK8 assay demonstrated a 

marked decrease in the proliferation of A498 and 786-O

 

 
 

Figure 6. Correlation of TIMP1 expression profile with clinicopathological characteristics in ccRCC. (A) Expression profile of 
TIMP1 in 33 tumors; (B) Differential expression of TIMP1 in ccRCC and paracancerous tissues; (C) KM survival curves showing OS of TIMP1 in 
ccRCC; (D) ROC curves about TIMP1 in ccRCC; (E–I) Differences in TIMP1 expression profile among clinicopathological variables (E) Grade; (F) 
Stage; (G) T stage; (H) M stage; (I) N stage; (J–N) Differential expression of TIMP1 in different clinicopathological stages in the GEO validation 
datasets. (J, N) GSE40435; (K, L) GSE73731; (M) GSE53757. 
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cells in the TIMP1-knockdown group (Figure 9B). 

Wound healing analysis indicated that the healing 

distance of A498 and 786-O cells in the TIMP1-

knockdown group was lower than that in the control 

group after 24 hours (Figure 9C). Transwell 

experiments revealed a clear inhibition of migration in 

A498 and 786-O cells in the TIMP1-knockdown group 

(Figure 9D). Therefore, the expression of TIMP1 was 

found to be positively correlated with the proliferation, 

migration and invasion of ccRCC cells. 

 

DISCUSSION 
 

Recent studies have revealed an alarming increase in the 

incidence and mortality rates of ccRCC, making it the 

most fatal renal malignancy in adults [36]. As the 

understanding of the underlying mechanisms of RCC 

occurrence and development has advanced, traditional 

histopathological features such as tumor size, stage, and 

grade may no longer suffice for accurate diagnosis and 

prognosis [7, 37]. Consequently, the identification of 

reliable prognostic biomarkers is crucial for enhancing 

prognosis prediction in ccRCC. Anoikis, a specific form 

of apoptosis triggered by cell detachment from the 

native extracellular matrix, has garnered significant 

attention in the scientific community due to its pivotal 

role in tumor angiogenesis and metastasis [38, 39]. 

Thus, to further explore the involvement of ARGs in 

tumor progression and prognosis, this study investigates 

prognosis-related ARGs in ccRCC and establishes a 

prognostic model. 

 

Anoikis plays a crucial role in tumour progression, 

metastasis and spread of cancer cells, as it is associated 

 

 
 

Figure 7. Identification the immune infiltration characteristics of TIMP1 in ccRCC. (A–C) The differential expression of 

immunosuppressive cells between high and low TIMP1 groups (A) MDSC; (B) Macrophage; (C) Regulatory.T.cell; (D) The correlation of TIMP1 
expression profile with immune cells in ccRCC; (E–G) The differential expression of tumor microenvironment scores between high and low 
TIMP1 groups (E) ImmuneScore; (F) StromalScore; (G) ESTIMATEScore; (H–J) The differential expression of immune checkpoints between high 
and low TIMP1 groups (H) CTLA4; (I) CD96); (J) PDCD1; (K) The correlation of TIMP1 expression profile with immunosuppressive checkpoints 
in ccRCC. 
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with anchorage-independent growth and epithelial-

mesenchymal transition [40]. Extensive research on the 

mechanisms underlying anoikis has revealed its diverse 

biological functions in the metastasis and progression of 

various tumors. For instance, studies have demonstrated 

that CPT1A-mediated fatty acid oxidation promotes 

metastasis of colorectal cancer cells by inhibiting 

anoikis [41]. Chun Fen et al. uncovered that IQGAP1

 

 
 

Figure 8. Verification of TIMP1 expression differences between carcinoma and adjacent tissue. (A) Bar plot for the relative 

expression of TIMP1 in ccRCC tissues and normal tissues; (B) Bar plot for the relative expression of TIMP1 in ccRCC and normal cell lines;  
(C) Difference of TIMP1 protein expression between ccRCC and adjacent tissues. 

 

 
 

Figure 9. Down-regulation of TIMP1 suppressed the progression of ccRCC in vitro. (A) The expression of TIMP1 in A498 and 786-O 

cells was detected by RT-qPCR and Western blot; (B) TIMP1-knockdown suppressed ccRCC cell proliferation in A498 and 786-O cells;  
(C) Wound-healing tests demonstrated changes in ccRCC cell migration; (D) TIMP1-knockdown suppressed ccRCC cell metastasis in A498 and 
786-O cells. 
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enhances anoikis resistance, migration and invasion of 

hepatoma cells by promoting Rac1-dependent ROS 

accumulation and activation of Src/FAK signaling [42]. 

Chang et al. showed that CCN2 inhibits lung cancer 

metastasis by promoting DAPK-dependent anoikis and 

inducing EGFR degradation [43, 44]. Additionally, 

Shan et al. developed a prognostic model based on ARG 

expression profiles in endometrial cancer, which 

accurately reflects immune status and facilitates the 

evaluation of immunotherapy, providing valuable 

insights for individualized treatment [44]. Liu et al. 

systematically constructed and evaluated a prognostic 

model of ccRCC by screening anoikis-related genes 

from multiple datasets, comprising 7 ARGs. Moreover, 

they investigated expression differences and immune 

characteristics associated with the modeled genes [45]. 

Our study differed from theirs in several aspects: firstly, 

we constructed anoikis-related clusters based on ARGs 

expression profiles, enabling significant discrimination 

of clinical and immune characteristics between the 

clusters. Secondly, we identify TIMP1 as a key 

regulator of anoikis and validate its clinical properties 

using various datasets and in vitro experiments. 

 

As ccRCC is widely recognized as an immuno-

responsive tumor with high heterogeneity and 

metastatic potential, it exhibits unique immunological 

characteristics that influence its pathogenesis and 

treatment [46]. Research has revealed that invasive 

immune cells within the TME play a pivotal role in 

tumor proliferation, metastasis, and anti-cancer immune 

regulation, making them valuable therapeutic targets 

[46]. Furthermore, ccRCC is highly immunogenic, 

leading to immune cell infiltration, including the 

presence of cytotoxic CD8+ T cells [47, 48]. Immuno-

infiltration analysis, which examines the immune cell 

composition within tumors, is an essential component of 

bioinformatics analysis. Ghatalia et al. demonstrated 

that the recurrence of ccRCC following surgery was 

associated with lower T cell infiltrate, reduced adaptive 

immune response, and higher neutrophil gene 

expression, as determined through immunoinfiltration 

analysis [49]. Given the significant role of immunity in 

ccRCC, we evaluated the immune features of the 

prognostic models to understand the underlying reasons 

for survival differences. Additionally, we analyzed the 

implications of immunotherapy variations in the 

prognostic models to provide further guidance for 

clinical treatment decisions and implementation. 

 

TIMP1 functions by forming non-covalent stoichio-

metric complexes to inhibit the proteolytic activity of 

matrix metalloproteinases, thereby regulating the 
balance of extracellular matrix degradation during 

matrix remodeling [27]. Apart from its inhibitory effect 

on several matrix metalloproteinases crucial for tumor 

invasion and metastasis, TIMP1 also plays a vital role in 

regulating cell populations and exerting anti-apoptotic 

functions [50]. Numerous studies have demonstrated 

that abnormal TIMP1 expression is associated with 

unfavourable prognosis in various tumors, such as 

gastric cancer [51], cutaneous melanoma [52], papillary 

thyroid carcinoma [53] and breast cancer [26]. Based on 

these findings, TIMP1 has been proposed as a potential 

biomarker for screening, diagnosis, prognosis and 

monitoring of these tumors. In our study, we found that 

TIMP1 was significantly overexpressed in ccRCC and 

correlated with poor prognosis. As a potent cytokine, 

TIMP1 interacts with various cell-surface receptors to 

regulate immune cells [54]. Our study also revealed that 

immunosuppressive cells (Macrophage, MDSC, and 

Regulatory.T.cell), most immunosuppressive check-

points, and TME scores were significantly upregulated 

in the high-TIMP1 group. Additionally, there was a 

significant positive correlation between the expression 

of TIMP1 and immunosuppressive cells as well as most 

immunosuppressive checkpoints. Therefore, these 

findings suggested that TIMP1 may contribute to the 

formation of an immunosuppressive tumor micro-

environment, thereby promoting cancer cell invasion 

and metastasis. Consequently, TIMP1 emerges as a 

promising molecular target for novel preventive and 

therapeutic strategies for ccRCC. However, further 

studies are necessary to fully elucidate the molecular 

mechanisms underlying TIMP1 dysregulation and its 

role in ccRCC progression.  

 

Although the anoikis-related prognostic model we 

developed demonstrates high accuracy in predicting the 

prognosis of ccRCC patients, this study has certain 

limitations. Firstly, the data analysis in this paper relied 

solely on publicly available data. Including clinical 

samples would be beneficial in order to determine the 

expression pattern of ARGs through immuno-

histochemistry and other methods, providing additional 

validation. Furthermore, it is essential to investigate the 

biological mechanism of TIMP1 in remodeling the 

immunosuppressive microenvironment through in vitro 

and in vivo experimental analyses. These additional 

investigations will enhance our understanding of the 

role of TIMP1 and further contribute to the advance-

ment of our knowledge in this field. 

 

CONCLUSIONS 
 

Anoikis played a critical role in the development of 

TME in ccRCC patients. AI demonstrated remarkable 

accuracy in evaluating patient prognosis and immune 

characteristics. Moreover, TIMP1 appears to contribute 

to the establishment of an immunosuppressive TME and 

holds promise as a potential therapeutic target for 

ccRCC. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Correlation of Anoikis index with clinicopathological features in ccRCC. (A–E) The histogram showing 

the proportion of clinicopathological variables in the high and low AI groups (A) Grade; (B) Stage; (C) T stage; (D) M stage; (E) N stage;  
(F–J) Differences in AI among clinicopathological variables (F) Grade; (G) Stage; (H) T stage; (I) M stage; (J) N stage; (K–O) KM survival curves 
showing OS of AI in various clinicopathological characteristics, including TNM stage, pathological stage, age and gender of patients (K) Grade; 
(L) Stage; (M) T stage; (N) M stage; (O) N stage. 
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Supplementary Figure 2. Correlation between TIMP1 and drug sensitivity. (A–I) Correlation analysis of TIMP1 expression profile and 

drug sensitivity. (A) Temsirolimus; (B) Sunitinib; (C) Rapamycin; (D) Nilotinib; (E) Tipifarnib; (F) Gefitinib; (G) Dasatinib; (H) Bosutinib; (I) 
Vorlistat. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1–3. 

 

Supplementary Table 1. The list of 434 anoikis-related genes (ARGs). 

 

Supplementary Table 2. Differentially expressed genes between cancer and normol tissues. 

 

Supplementary Table 3. Results of univariate Cox regression analysis for ARGs. 

 

Supplementary Table 4. Genecoef of the modeled ARGs. 

Gene Coef 

AFAP1L1 -0.010763683 

BNIP3 -6.31E-05 

CCND1 -0.000176182 

EDA2R -0.027715245 

HAVCR2 -0.000701947 

HMOX1 -0.000933778 

IRF6 -0.016607677 

KL -0.003320283 

LTB4R2 0.151859301 

MNX1 0.107179555 

NTRK2 -0.008127214 

OCLN -0.057952565 

PLAUR 0.02023796 

PLG -0.015738536 

PLK1 0.09541327 

PTHLH 0.001435625 

PYCARD 0.00076028 

SERPINE1 6.21E-05 

TIMP1 0.000182814 

TLR3 -0.003016002 

XAF1 0.020367715 
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Supplementary Table 5. Abbreviations and corresponding words and phrases used in this article. 

Anoikis Index (AI) 

anoikis-related genes (ARGs) 

area under the ROC curve (AUC) 

Benjamini-Hochberg (BH) 

biological pathways (BP) 

cellular components (CC) 

Clear cell renal cell carcinoma (ccRCC) 

Estimation of Stromal and Immune cells in Malignant Tumor tissues using Expression data (ESTIMATE) 

extracellular matrix (ECM) 

Gene Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/) 

Gene Ontology (GO) 

Gene set variation analysis (GSVA) 

Kaplan-Meier (KM) 

Kyoto Encyclopedia of Genes and Genomes (KEGG) 

least absolute shrinkage and selection operator (LASSO) 

matrix metalloproteinase (MMP) 

molecular functions (MF) 

Mutation Annotation Format (MAF) 

non-negative matrix factorization (NMF) 

overall survival (OS) 

programmed cell death (PCD) 

receiver operating characteristic (ROC) 

Renal cell carcinoma (RCC) 

The Cancer Genome Atlas (TCGA, https://www.cancer.gov/tcga) 

tumor microenvironment (TME) 

 

http://www.ncbi.nlm.nih.gov/geo/
https://www.cancer.gov/tcga

