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INTRODUCTION 
 

Esophageal cancer (EC) remains one of the most 

common malignancies globally with poor therapeutic 

outcomes, ranking as the sixth highest cause of cancer-

related mortality worldwide [1]. Esophageal squamous 

cell carcinoma (ESCC) is the predominant subtype of 

EC, accounting for nearly 90% of EC cases in China 
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ABSTRACT 
 

Esophageal squamous cell carcinoma (ESCC) is a highly lethal form of cancer. Cuproptosis is a recently 
discovered form of regulated cell death. However, its significance in ESCC remains largely unknown. In this 
study, we observed significant expression differences in most of the 12 cuproptosis-related genes (CRGs) in the 
TCGA-ESCC dataset, which was validated using GSE20347, GSE38129, and individual ESCC datasets. We were 
able to divide patients in the TCGA-ESCC cohort into two subgroups based on disease, and found significant 
differences in survivor outcomes and biological functions between these subgroups. Additionally, we identified 
11 prognosis-related genes from the 12 CRGs using LASSO COX regression analysis and constructed a CRGs 
signature for ESCC. Patients were categorized into high- and low-risk subgroups based on their median risk 
score, with those in the high-risk subgroup having significantly worse overall survival than those in the low-risk 
subgroup. The CRGs signature was also highly accurate in predicting prognosis and survival outcomes. 
Univariate and multivariate Cox regression analyses revealed that 8 of the 11 CRGs were independent 
prognostic factors for predicting survival in ESCC patients. Furthermore, our nomogram performed well and 
could serve as a useful tool for predicting prognosis. Finally, our risk model was found to be relevant to the 
sensitivity of targeted agents and immune infiltration. Functional enrichment analysis demonstrated that the 
risk model was associated with biological pathways of tumor migration and invasion. In summary, our study 
may provide a promising prognostic signature based on CRGs and offers potential targets for personalized 
therapy. 
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[2]. Due to the lack of typical clinical symptoms and 

effective techniques for early diagnosis, ESCC is often 

diagnosed at a late stage. Currently, the main treatment 

options for ESCC include surgery, radiotherapy, 

chemotherapy, and immunotherapy. Despite advances 

in therapeutic management, the prognosis for ESCC 

patients remains bleak, with a 5-year survival rate of 

only 5% in patients with advanced-stage disease [3]. 

Therefore, the identification of novel prognostic 

markers and effective personalized therapeutic targets is 

urgently needed for the early detection and treatment of 

ESCC. 

 

Cuproptosis is a unique form of cell death that is 

distinct from apoptosis, necrosis, and ferroptosis, and 

was first proposed in 2022 [4]. Tsvetkov et al. 

discovered that copper-induced death occurs through 

the binding of copper to lipoylated components of the 

tricarboxylic acid (TCA) cycle, leading to the 

aggregation of lipoylated proteins and subsequent loss 

of iron-sulfur cluster proteins. This results in 

proteotoxic stress and ultimately cell death [4]. Copper 

is closely related to tumors [5], and copper depletion by 

the copper chelating agent tetrathiomolybdate reduces 

metastasis in triple-negative breast cancer and improves 

patient prognosis [6]. Studies suggest that copper 

ionophores, such as disulfiram and elesclomol, could be 

used as cancer therapeutic agents by inducing copper 

toxicity [7, 8]. Similarly, nanoparticles loaded with 

disulfiram/Cu2+ could promote the death of esophageal 

cancer cells [9]. Therefore, understanding the 

underlying mechanisms and functions of changes in 

cuproptosis-related genes (CRGs) is vital for identifying 

new ways to treat ESCC. 

 

Studying CRGs can also be valuable in predicting 

cancer prognosis and identifying potential therapeutic 

targets. Zhou et al. constructed a Cuproptosis Activation 

Scoring (CuAS) model for glioblastoma based on the 

TCGA, CGGA, and GEO databases and found that 

samples with high CuAS had worse prognoses than 

those with low CuAS [10]. The study also identified 

epiregulin (EREG) as a core oncogene in glioblastoma 

that affects immunity by influencing PD-L1 expression 

[10]. Previous research has shown that low levels of 

ferredoxin1 (FDX1) expression are closely associated 

with tumor-lymph node metastasis and short survival in 

renal clear cell carcinoma [11]. Another study found 

that knocking out the lipoyltransferase 1 (LIPT1) 

inhibited the proliferation and invasion of liver cancer 

cells, suggesting that LIPT1 might be a new therapeutic 

target for liver cancer [12]. Pyruvate dehydrogenase E1 

subunit alpha 1 (PDHA1) has been suggested as a 
prognostic predictive marker of ESCA by Xu et al. 

using univariate analysis [13]. These studies have 

revealed the potential value of CRGs in tumors and may 

provide new directions for further understanding the 

specific roles and molecular mechanisms of CRGs. 

Nevertheless, the role of CRGs in ESCC remains 

largely unknown. 

 

In this study, we aimed to identify important CRGs and 

tumor subtypes in ESCC. We used LASSO regression 

to construct prognostic models, and evaluated the 

accuracy of prognosis and survival analysis using 

Kaplan–Meier (KM) curves and receiver operating 

characteristic (ROC) curves. Univariate and multi-

variate Cox regression analyses were conducted to 

demonstrate independent prognostic factors for 

predicting survival in ESCC patients. We further 

developed a nomogram to predict patient survival at 1-, 

2-, and 3-year time points, and used decision curve 

analysis (DCA) to evaluate the predictive effect of  

the nomogram model. Additionally, we performed 

functional enrichment analysis, immune infiltration 

analysis, and drug sensitivity analysis based on the risk 

model. These analyses synthesize the role of CRGs in 

various aspects of ESCC, emphasize the importance of 

CRGs in the development of ESCC, and provide 

knowledge for the therapeutic application of a CRGs 

signature in ESCC. 

 

MATERIALS AND METHODS 
 

Data download and arrangement 
 

We used the TCGABiolinks R package [14] to 

download the ESCC dataset (TCGA-ESCC) from  

The Cancer Genome Atlas database (TCGA, 

https://portal.gdc.cancer.gov/) and analyzed it as the test 

set. We removed samples lacking clinical information 

data and retained only primary tumor (-01A) tissue 

types, resulting in a count of sequencing data 

comprising 80 ESCC samples with clinical information. 

We normalized sequencing data from the TCGA cohort 

from raw counts to fragments per kilobase million 

(FPKM). Corresponding clinical information of patients 

was obtained from the UCSC Xena database 

(http://genome.ucsc.edu) [15], and mutation data were 

taken from MAF files downloaded from the TCGA 

database. Furthermore, we used a unified standardized 

TCGA-ESCC dataset, which integrated the TCGA and 

GTEx databases and the sequencing data in the form of 

normalized read counts as Transcripts per Million 

(TPM). The TCGA-ESCC dataset consisted of 745 

samples (653 normal samples from GTEx and 92 tumor 

tissues from TCGA), and was used for subsequent 

differential expression analysis of CRGs between 

normal and ESCC groups. 
 

Furthermore, we downloaded two microarray gene-

expression profiles, GSE2034 [16] and GSE38129 [17], 

https://portal.gdc.cancer.gov/
http://genome.ucsc.edu/
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from the Gene Expression Omnibus (GEO, 

https://www.ncbi.nlm.nih.gov/geo/) [18] using the 

GEOquery package [19] for use as the verification 

cohort. These cohorts were obtained from Homo 

sapiens and were converted into corresponding genes 

using the annotation information available from the 

gene platforms, namely GPL571 (HG-U133A_2) 

Affymetrix Human Genome U133A 2.0 Array. The 

GSE20347 cohort included 17 para-carcinoma tissue 

samples and 17 carcinoma tissue samples, while the 

GSE38129 cohort included 30 tumor tissue samples and 

30 tumor-adjacent tissues. Additionally, we used the 

gene expression dataset of ESCC patients obtained from 

our own sequencing for correlation analysis. 

 

The individual ESCC dataset comprised 12 samples, 

including expression profile data from six esophageal 

squamous carcinoma tissue samples (grouping: ESCC) 

and six adjacent normal esophageal tissues (grouping: 

Normal). These samples were obtained from surgical 

patients at Fujian Cancer Hospital between July 1st and 

July 17th, 2020, and none of the patients had received 

treatment before surgery. The research scheme 

(including specimen collection) was reviewed and 

approved by the Biomedical Ethics Committee of 

Fujian Cancer Hospital (batch number: K2021-027-01). 

The clinical data for sequencing of patients with 

esophageal squamous cell carcinoma in our institution 

was shown in Supplementary Table 1. The GSE20347, 

GSE38129, and ESCC datasets were used as validation 

sets for subsequent validation. 

 

We then searched for twelve CRGs from published 

literature [4] by using “Cuproptosis-related genes” as 

the search keyword on PubMed. The 12 CRGs were 

ATPase copper transporting beta (ATP7B), cyclin 

dependent kinase inhibitor 2A (CDKN2A), 

dihydrolipoamide S-acetyltransferase (DLAT), dihydro-

lipoamide dehydrogenase (DLD), FDX1, glutaminase 

(GLS), lipoic acid synthetase (LIAS), LIPT1, metal 

regulatory transcription factor 1 (MTF1), PDHA1, 

pyruvate dehydrogenase E1 (PDHB), and solute carrier 

family 31 member 1 (SLC31A1). 

 

Differential expression analysis and consensus 

clustering analysis for cuproptosis-related genes 

 

First, we compared the expression profiles (HTSeq-

TPM) of cuproptosis-related genes (CRGs) between 

para-carcinoma tissues and carcinoma tissues. Next, we 

preprocessed somatic mutation data obtained from the 

TCGA-ESCC cohort using the “VarScan” software and 

visualized it using the “maftools” R package [20]. 
 

To verify the rationality of clustering, we employed the 

consensus clustering algorithm, which involves multiple 

iterations over subsamples of the dataset to provide an 

indication of cluster stability and parameter decisions. 

We used subsampling to induce sampling variability 

[21] and classified ESCC into various clusters to 

explore the function of CRGs. We applied the 

“ConsensusClusterPlus” R package [22] with 50 

iterations, 80% resampling rate Pearson correlation, 

clusterAlg = “km”, and distance = “Euclidean” 

(available at http://www.bioconductor.org/). We inves-

tigated gene expression arrays in the ESCC groups to 

compare the group expression difference of CRGs 

among different disease subtypes from the TCGA-

ESCC cohort using the Wilcoxon rank sum test. CRGs 

with a P-value < 0.05 were considered as threshold 

values for identification. 

 

Gene set variation analysis 

 

Gene Set Variation Analysis (GSVA) [23] is a non-

parametric unsupervised analysis method primarily used 

to assess the results of gene set enrichment in 

microarrays and transcriptomes. It evaluates whether 

different pathways are enriched between samples by 

converting the gene expression matrix between samples 

into the expression matrix of gene sets between 

samples. To further analyze the differences in biological 

behavior between ESCC disease subtypes, we 

conducted GSVA analysis. We used the gene set 

“h.all.v7.4.symbols.gmt” from the Molecular Signature 

Database (MSigDB) [24] as the reference set for 

GSVA. A threshold value of P < 0.05 was considered 

significant. 

 

Single-sample gene-set enrichment analysis and 

cuproptosis score 
 

The single-sample gene-set enrichment analysis 

(ssGSEA) algorithm quantifies the relative enrichment 

of each gene in a given dataset sample. We used the R 

package GSVA to calculate the cuproptosis score (CPs) 

using the ssGSEA algorithm based on the expression 

matrix of 12 CRGs for each sample in the TCGA-

ESCC, GSE20347, GSE38129, and ESCC datasets. We 

then analyzed the expression differences in CPs 

between the normal subtype and ESCC subtype in the 

GSE20347 and GSE38129 cohorts, as well as the 

expression differences in grouping of different subtypes 

of ESCC disease in the TCGA-ESCC dataset using the 

Wilcoxon rank sum test. A P-value < 0.05 was set as 

the cutoff for significance. 

 

Construction of a prognostic risk model based on 

CRGs 
 

To construct a prognostic signature and screen 

prognostic CRGs in the TCGA-ESCC dataset, we 

https://www.ncbi.nlm.nih.gov/geo/
http://www.bioconductor.org/
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utilized the glmnet package [25] to perform Least 

absolute shrinkage and selection operator (LASSO) Cox 

regression [26]. The LASSO regression is based on 

linear regression and adds a penalty term (absolute 

value of lambda × slope) to reduce overfitting and 

improve the generalization ability of the model. We 

performed the analysis using CRGs in the TCGA-ESCC 

dataset with a random seed number of “2021” and 

tenfold cross-validation. The results were visualized, 

and we illustrated the grouping of each sample in the 

LASSO regression prognostic model according to risk 

score and survival outcome, as well as the molecular 

expression of prognostic CRGs in each subgroup by risk 

factor plots. 

 

The ESCA patients were stratified into low-risk and 

high-risk subgroups based on the median risk score in 

the TCGA cohort. Kaplan-Meier curves were generated 

using the “survival” package to compare the overall 

survival (OS) differences between the low- and high-

risk groups. Furthermore, receiver operating 

characteristic (ROC) curves [27] and corresponding 

area under the curve (AUC) values were calculated 

using the “timeROC” package [28] to evaluate the 

performance of the prognostic risk model for predicting 

patient outcomes. 

 

Drug sensitivity analysis 

 

We collected ESCC cell lines and their drug response 

data from The Genomics of Drug Sensitivity in Cancer 

(GDSC, https://www.cancerrxgene.org/) database [29]. 

To compare the difference in immune drug sensitivity 

between high- and low-risk patients, we used the 

“oncoPredict” package [30] to perform drug sensitivity 

analysis in the TCGA-ESCC cohort. Additionally, the 

“DESeq2” R package [31] was utilized to screen for 

differentially expressed genes (DEGs) between the 

high- and low-risk groups in the TCGA-ESCC cohort, 

with screening criteria of an adjusted P-value < 0.05 

and | log2 Fold Change (FC)| ≥1.0. Upregulated genes 

were screened using the criteria of logFC > 1.0 and an 

adjusted P-value < 0.05. Downregulated genes were 

screened using the criteria of logFC < −1.0 and an 

adjusted P-value < 0.05. We visualized the results of the 

expression analysis using the “ggplot2” R package. 

 

Genomic and functional analysis 

 

Gene Ontology (GO) functional analysis [32] is a 

widely used approach for large-scale functional 

enrichment studies, encompassing biological process 

(BP), molecular function (MF), and cellular component 
(CC) categories. In our study, we employed the 

“ClusterProfiler” package [33] to conduct GO 

enrichment analysis of the differentially expressed 

genes (DEGs) between low- and high-risk groups in 

TCGA-ESCC cohort. We considered a statistically 

significant result when the false discovery rate q-value 

was less than 0.10 and the P-value was less than 0.05. 

The Benjamini-Hochberg method (BH) was utilized to 

correct the P-values. 

 

Gene Set Enrichment Analysis (GSEA) [34] is a 

computational method that determines whether a 

defined set of genes exhibits statistically significant 

concordant differences between two biological states. In 

this study, GSEA was performed using the 

“clusterProfiler” R package to elucidate significant 

functional and pathway differences between the high 

and low expression groups of DEGs in the TCGA-

ESCC cohort. Each analysis procedure was repeated 

1000 times. The c2.cp.v7.2.symbols set was down-

loaded from the MSigDB database and used as the 

reference gene set. A functional or pathway term with 

an adjusted P-value < 0.05 and a false discovery rate 

(FDR) < 0.25 was considered to have statistically 

significant enrichment. 

 

Immune infiltration analysis 

 

CIBERSORTx [35] is a suite of machine learning tools 

for assessing immune cell types and their abundance 

from mixed cell populations. In this study, we up-

loaded the gene expression data to the CIBERSORTx 

online analytical platform (https://cibersortx. 

stanford.edu/) to assign values for immune cell 

infiltration using the LM22 gene signature. We used 

boxplots to visualize differences in immune cell 

infiltration between low- and high-risk groups in the 

TCGA-ESCC cohort. The Spearman algorithm and 

“ggplot2” package were used to visualize correlations 

between low- and high-risk groups. The “pheatmap” 

package in R software was used to visualize 

correlations of infiltrating immune cells and CRGs 

among the low- and high-risk groups in the TCGA-

ESCC cohort using a heatmap. 

 

Construction and validation of the prediction 

nomogram 

 

To define the clinical value of the CRGs prognostic 

model constructed by LASSO regression for ESCC, we 

performed univariate Cox regression analysis on the 

expression of prognostic CRGs in the TCGA-ESCC 

dataset. We included all factors from the univariate Cox 

regression analysis in the multivariate Cox regression 

analysis to construct a multivariate Cox regression 

model. Based on the results of the multivariate Cox 
regression analysis, we established a nomogram using 

the rms R package. A nomogram [36] is a graph that 

represents the functional relationship among multiple 

https://www.cancerrxgene.org/
https://cibersortx.stanford.edu/
https://cibersortx.stanford.edu/
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independent variables through a cluster of disjoint lines 

in a rectangular coordinate system. It is based on the 

multivariate Cox regression analysis by setting a certain 

scale to score and characterize the individual variables 

within the multivariate Cox regression model, and 

finally calculating the total score to predict the 

probability of the event occurrence situation. 

Furthermore, we used decision curve analysis (DCA) to 

evaluate the accuracy and discrimination of the 

nomogram. DCA [37] is a simple method to evaluate 

clinical predictive models. We also used the R package 

“ggDCA” [38] to draw the DCA curve to assess the 

effect of the COX regression model. 

 

Statistical analysis 

 

All statistical analyses and plots were performed using 

R software (Version 4.1.2). The difference between two 

groups was compared using Student’s t-test or 

Wilcoxon rank-sum test. The Kruskal-Wallis test was 

used to compare differences among three or more 

groups. For categorical variables, Fisher’s exact test and 

chi-square test were employed to compare differences 

between two groups. Spearman’s correlation coefficient 

was used to assess correlation. All P-values were two-

sided, and P < 0.05 was considered statistically 

significant. 

 

RESULTS 
 

Differential expression of cuproptosis-related genes 

in ESCC dataset 

 

Firstly, we collected RNA-seq data of 12 CRGs 

(ATP7B, CDKN2A, DLAT, DLD, FDX1, GLS, LIAS, 

LIPT1, MTF1, PDHA1, PDHB, SLC31A1) from the 

TCGA-ESCC dataset, GSE20347 dataset, GSE38129 

dataset, and ESCC dataset. We then analyzed the 

expression differences of these 12 CRGs between 

ESCC tumor tissues and normal tissues in the four 

ESCC datasets using the Mann-Whitney U test 

(Wilcoxon rank-sum test). The results of the expression 

difference correlation analysis were presented through 

subgroup comparison plots (Figure 1). Our findings 

revealed that in the TCGA-ESCC dataset, nine out of 

the 12 CRGs (ATP7B, DLAT, FDX1, GLS, LIAS, 

MTF1, PDHA1, PDHB, SLC31A1) showed highly 

statistically significant differences (P < 0.001) between 

the ESCC and normal groups, except for CDKN2A, 

DLD, and LIPT1 genes (P > 0.05) (Figure 1A). In the 

GSE20347 dataset, the expression of CRGs DLAT, 

GLS, LIAS, MTF1, and PDHB was highly statistically 

significant (P < 0.001) between the ESCC and normal 

groups. Additionally, the expression of FDX1 gene was 

also highly statistically significant (P < 0.01) between 

different subgroups (Figure 1B). 

We performed differential expression analysis in the 

GSE38129 dataset and found that seven out of the 12 

CRGs showed statistically significant differences in 

expression between the ESCC and normal groups, with 

GLS, LIAS, MTF1, and PDHB genes being highly 

statistically significant (P < 0.001) (Figure 1C). In 

addition, in the ESCC dataset, the expression of GLS, 

LIAS, MTF1, PDHB, and SLC31A1 CRGs was 

statistically significant (P < 0.05) between the ESCC 

and normal groups (Figure 1D). Taken together, these 

results suggested that the 12 CRGs may play an 

important role in ESCC based on the differential 

expression analysis of these genes in the four ESCC 

datasets. 

 

Genetic variants of cuproptosis-related genes in 

ESCC 

 

To investigate somatic mutations in 12 CRGs (ATP7B, 

CDKN2A, DLAT, DLD, FDX1, GLS, LIAS, LIPT1, 

MTF1, PDHA1, PDHB, SLC31A1) in ESCC from the 

TCGA-ESCC cohort, we summarized the results of 

genetic mutation analysis. Four regulators (CDKN2A, 

ATP7B, DLD, LIAS) were found to have somatic 

mutations. The mutations mainly included missense and 

splice mutations, with missense mutations being the 

most common. Additionally, all genetic mutations of 

the 4 CRGs in ESCC were shown to be single 

nucleotide polymorphisms (SNPs), with C>T being the 

top-class SNV (Figure 2A). 

 

Figure 2B showed that 7 ESCC samples had somatic 

mutations, and 5 (71.43%) of the 7 ESCC samples had 

mutations in the 4 regulators (CDKN2A, ATP7B, DLD, 

LIAS). CDKN2A mutation samples accounted for 29% 

of all ESCC genetic mutations, involving missense and 

splice mutations. The remaining 3 regulator (ATP7B, 

DLD, LIAS) mutation samples accounted for 14% of all 

ESCC genetic mutations and only consisted of missense 

mutations. 

 

Furthermore, we used the RCircos package to map the 

chromosomal location of the 12 CRGs (Figure 2C). The 

12 CRGs were mainly located on chromosomes 1, 2, 4, 

9, 11, and X. CRGs were most commonly distributed on 

chromosomes 2, 9, and 11. Chromosomes 2, 9, and 1 

each had 2 CRGs, indicating that CRGs located on the 

same chromosome might be closely related at the 

genomic level. 

 

Development and validation of ESCC subtypes 

 

Initially, we investigated the differential expression of 
CRGs in ESCC patients from the TCGA-ESCC cohort 

by using the “ConsensusClusterPlus” R package for 

consensus clustering analysis based on 12 CRGs 
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(ATP7B, CDKN2A, DLAT, DLD, FDX1, GLS, LIAS, 

LIPT1, MTF1, PDHA1, PDHB, SLC31A1). This led to 

the separation of tumor samples into 2 clusters (Figure 

3A). Cluster 1 consisted of 59 tumor samples, while 

cluster 2 contained 21 tumor samples. Next, we 

performed principal component analysis (PCA) on the 

expression matrix from these 2 ESCC subtypes. The 

results showed significant differences in the cuproptosis 

transcription profiles between cluster 1 and cluster 2 

(Figure 3B). We then used a heatmap to identify the 

gene expression pattern of each subtype (Figure 3C), 

which revealed a few differences in expression level of 

the 12 CRGs between the two ESCC subtype from the 

TCGA-ESCC cohort. 

 

 
 

Figure 1. Differential expression of 12 CRGs between ESCC tissues and normal tissues in four cohorts. The expression levels of 

12 genes from TCGA-ESCC dataset (A), GSE20347 dataset (B), GSE38129 dataset (C), ESCC dataset (D) in ESCC tissue and normal tissue. 
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Furthermore, we compared the prognosis signature of 

these 2 ESCC subtypes using Kaplan-Meier analysis, 

and the survival analysis showed that cluster 1 had the 

worst survival situation (Figure 3D). We then used the 

Wilcoxon rank sum test to compare the level of 

expression of the 12 CRGs (ATP7B, CDKN2A, DLAT, 

DLD, FDX1, GLS, LIAS, LIPT1, MTF1, PDHA1, 

PDHB, SLC31A1) between cluster 1 and 2 from the 

TCGA-ESCC cohort, and the results are shown in Figure 

3E. As a result in Figure 3E, the expression of two 

regulators (CDKN2A, SLC31A1) showed significant 

differences between cluster 1 and 2 (P < 0.05). 

 

 
 

Figure 2. Mutation analysis of CRGs in ESCC. (A) Demonstration of CRGs mutations in ESCC. (B) Mutation details of CRGs are 

displayed. (C) Chromosomal localization map of CRGs. 
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Gene set variation analysis and construction of 

cuproptosis score prognosis and diagnostic signature 

 

To explore the biological differences between cluster 1 

and 2, we conducted GSVA enrichment analysis. 

Compared to cluster 1, cluster 2 exhibited significantly 

higher GSVA enrichment scores in two pathways, 

namely MYC targets V1 and unfolded protein response. 

The difference in these pathways between the two 

clusters was further analyzed using Mann-Whitney 

 

 
 

Figure 3. Construction of disease subtypes associated with ESCC. (A) Results of consensus clustering in ESCC for k = 2 clusters. (B) 

Presentation of PCA results for two ESCC disease subtypes (cluster1 and cluster2). (C) Complex numerical heat map of CRGs in different 
subtypes of ESCC disease. (D) KM curve between cluster1 and cluster2. (E) The expression level of CRGs in two distinct subtypes. ns: P > 
0.05, *P < 0.05, **P < 0.01, ***P < 0.001. 
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U test and visualized in Figure 4A. Additionally, we 

used the “pheatmap” R package to create a heatmap to 

present the specific difference analysis results of these 

two pathways between cluster 1 and 2, as shown in 

 

 
 

Figure 4. GSVA and construction of cuproptosis score prognosis signature. (A, B) GSVA enrichment analysis between two 

consensus clusters in TCGA-ESCC dataset, involved group comparison chart (A) and ComplexHeatmap (B). (C) The heat map indicated a 
correlation among the expression level of 12 CRGs from TCGA-ESCC dataset. (D, E) Correlation scatter plot showed the correlation between 
two pairs of CRGs, included DLAT and FDX1 (D), GLS and PDHB (E). (F) Differential analysis of Cuproptosis score among two ESCC subtypes. 
(G) Kaplan–Meier OS curves for patients in the high-and low- score group. 
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Figure 4B. The heatmap results confirmed that there 

were significant differences in these two pathways 

between cluster 1 and 2 in the TCGA-ESCC cohort. 

 

Spearman correlation analysis was used to investigate 

the expression levels of 12 CRGs (ATP7B, CDKN2A, 

DLAT, DLD, FDX1, GLS, LIAS, LIPT1, MTF1, 

PDHA1, PDHB, and SLC31A1) from the TCGA-ESCC 

cohort, and the results are presented in Figure 4C. As 

shown in Figure 4C, only the expression level of GLS 

was negatively correlated with that of other CRGs, 

while the expression levels of other CRGs were 

positively correlated. Additionally, we displayed the 

correlation scatter plots for the two pairs of genes with 

the highest and lowest correlation (Figure 4D, 4E). 

Among the 12 CRGs in the TCGA-ESCC cohort, 

DLAT and FDX were significantly positively correlated 

(r = 0.536, P < 0.001, Figure 4D), while GLA and 

PDHB were significantly negatively correlated (r = 

−0.388, P < 0.001, Figure 4E). 

 

Furthermore, to investigate the extent of copper-

related cell death in ESCC patients, we utilized the 

single-sample gene-set enrichment analysis (ssGSEA) 

algorithm to calculate the Cuproptosis score (CPs) of 

ESCC patients from the TCGA-ESCC dataset. 

Subsequently, we used the Wilcoxson rank sum test to 

examine the difference of CPs between the two 

subtypes (cluster 1 and 2) in the TCGA-ESCC cohort. 

We observed a statistically significant difference of 

CPs between cluster 1 and 2 (P < 0.001) (Figure 4F). 

Then, based on the CRs, we divided the TCGA-ESCC 

dataset samples into two subtypes (high score group 

and low score group). Next, we employed KM analysis 

to investigate the prognostic significance between the 

two groups using the clinical information of samples 

from the TCGA-ESCC dataset. As demonstrated in 

Figure 4G, the CPs might not be able to 

accurately predict the survival outcome of ESCC 

patients (P > 0.05). 

 

In addition, based on the transcriptome expression 

matrix of 12 CRGs from three verification datasets 

(GSE20347, GSE38129, and ESCC), we calculated the 

correlation expression values among the 12 CRGs using 

Pearson correlation analysis, and presented the results in 

heatmaps (Figure 5A, 5D, 5G). According to these 

heatmaps, we found that the GLS values were 

negatively correlated with the majority of the other 

CRGs values in these three verification datasets, while 

the other CRGs were positively correlated with one 

another. 

 
Moreover, based on the expression level of the 12 

CRGs from these three verification datasets, we 

utilized the ssGSEA algorithm to evaluate the CPs of 

each sample. Then, we used the Wilcoxon rank sum 

test to quantify the difference of CPs between the 

normal group and the ESCC group in the three 

verification datasets. The correlation analysis revealed 

a statistically significant difference of CPs between the 

normal group and the ESCC group in GSE20347 and 

GSE38129 (Figure 5B, 5E). Conversely, we found that 

the difference of CPs was not statistically significant 

between different groups in the ESCC dataset 

(Figure 5H). 

 

To explore the clinical utility of CPs evaluation in these 

three datasets, we utilized a ROC curve to demonstrate 

its ability to discriminate ESCC diagnosis. As indicated 

by the ROC curves, the AUC values in the GSE20347 

cohort, GSE38129 cohort, and ESCC cohort were 0.862 

(Figure 5C), 0.771 (Figure 5F), and 0.750 (Figure 5I), 

respectively. It can be inferred that the CPs has 

moderate accuracy in diagnosing ESCC in these three 

verification datasets. 

 

Construction and prognostic risk model based on 11 

cuproptosis-related genes 

 

To evaluate the predictive value of 12 CRGs (ATP7B, 

CDKN2A, DLAT, DLD, FDX1, GLS, LIAS, LIPT1, 

MTF1, PDHA1, PDHB, SLC31A1) for clinical 

outcomes in the TCGA-ESCC dataset, we used the 

transcriptome expression matrix of 79 patients with 

ESCC who had a survival time greater than zero to 

construct a prognosis signature through the LASSO 

algorithm (Figure 6A, 6B). Supplementary Table 2 

shows the signature coefficients for each gene under 

different penalty coefficients in the LASSO regression. 

The LASSO regression analysis, which is based on 

linear regression, removes overfitting and improves 

generalization ability by increasing the penalty term 

(lambda times the absolute value of the slope). Based on 

the LASSO regression analysis, we used 11 CRGs, 

including ATP7B, CDKN2A, DLAT, DLD, FDX1, 

LIAS, LIPT1, MTF1, PDHA1, PDHB, and SLC31A1, 

according to the minimum-minimum criterion and 

optimal-minimum criterion. We also calculated the 

penalty coefficients of the CRGs using LASSO analysis 

and established a risk index by multiplying the gene 

expression by the corresponding coefficients. We 

further visualized the sample groupings in the 

constructed prognostic model for CRGs using risk 

factor plots (Figure 6C). Kaplan-Meier survival analysis 

revealed that overall survival was significantly lower in 

the high-risk group of ESCA patients than in the low-

risk group (P < 0.05, Figure 6D). The AUC values 

demonstrated that the risk scores significantly predicted 
the prognosis of patients with ESCA. As shown in 

Figure 6E, the AUC values for 1-, 2-, and 3-year were 

0.847, 0.958, and 1.000, respectively. 
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Figure 5. Construction of cuproptosis score diagnosis signature. (A) The heat map presented the correlation among the expression 

level of 12 CRGs in GSE20347 cohort. (B) Differential analysis of cuproptosis score between normal group and ESCC group in GSE20347 
cohort. (C) ROC curves showed the diagnosis performance of GSE20347 cohort. (D) The heat map presented the correlation among the 
expression level of 12 CRGs in GSE38129 cohort. (E) Differential analysis of cuproptosis score between normal group and ESCC group in 
GSE38129 cohort. (F) ROC curves showed the diagnosis performance of GSE20347 cohort (C), GSE38129 cohort. (G) The heat map 
presented the correlation among the expression level of 12 CRGs in ESCC cohort. (H) Differential analysis of cuproptosis score between 
normal group and ESCC group in ESCC cohort. (I) ROC curves showed the diagnosis performance of ESCC cohort. 
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Figure 6. Prognostic signatures construction and prediction. (A) Partial likelihood deviance of different numbers of variables. One 

thousand-fold cross-validation was applied for tuning penalty parameter selection. (B) LASSO analysis identified 11 CRGs. Each curve 
corresponds to one gene. (C) Risk score, distribution of patient survival status between the low- and high−risk groups, and expression 
heatmaps of 11 CRGs. (D) Kaplan–Meier curves indicated that there is a strong relationship between high and low risk score and the overall 
survival rate. (E) ROC curve was applied to assess the predictive efficiency of the prognostic risk signature. 
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Evaluation of the sensitivity of antitumor drugs 

using the signature 

 

The TCGA-ESCC cohort was stratified into low- and 

high-risk groups using the median risk score. To 

investigate the differences in drug sensitivity between 

these groups, we compared the IC50 values of multiple 

antitumor drugs in both low- and high-risk groups 

(Figure 7A–7G). Our drug sensitivity analysis revealed 

significant differences between the low- and high-risk 

groups in seven drugs, including BMS.536924 (Figure 

7A), BMS.754807 (Figure 7B), CGP.60474 (Figure 

7C), NVP.TAE684 (Figure 7D), PF.02341066 (Figure 

7E), PLX4720 (Figure 7F), and Sunitinib (Figure 7G). 

Notably, Sunitinib (Figure 7G, P < 0.05) was more 

effective in patients in the low-risk group, whereas the 

other six drugs were more effective in patients in the 

high-risk group. 

Furthermore, we compared the cuproptosis score (CPs) 

between the low- and high-risk groups using the 

Mann-Whitney U test and found a significant 

difference between the two groups (P < 0.01, Figure 

7H). We then performed a correlation analysis 

between the risk score and cuproptosis score in 

patients from the TCGA-ESCC dataset, and the results 

were visualized by a correlation scatterplot (Figure 7I). 

Our findings showed that the risk score was negatively 

correlated with the cuproptosis score in patients from 

the TCGA-ESCC dataset (r = −0.387, P < 0.001, 

Figure 7I). 

 

To identify the differentially expressed genes (DEGs) 

associated with risk score in these patients from the 

TCGA-ESCC dataset, we compared the transcription 

matrix expression levels in the low-risk and high-risk 

groups using the DESeq2 package. After analyzing the 

 

 
 

Figure 7. Analysis of drug sensitivity between low-and high-risk groups. (A–G) IC50 of seven drugs, including BMS.536924 (A), 
BMS.754807 (B), CGP.60474 (C), NVP.TAE684 (D), PF.02341066 (E), PLX4720 (F), and Sunitinib (G) differed for ESCC patients in different risk 
groups. (H) Difference in cuproptosis score between low- and high-risk groups in TCGA-ESCC dataset. (I) Correlations between cuproptosis 
score and risk score. (J) The plot showed 36 upregulated and 35 downregulated genes based on the above volcano analysis in high-risk group. 
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transcriptomic changes, a total of 18,057 DEGs were 

identified in the volcano plot (Figure 7J) 

(Supplementary Table 3). We further screened 71 

critical genes (|log (FC)| >1 and FDR <0.05) using R 

software. Among these, we found 36 upregulated 

(downregulated in the low-risk group, log (FC) >0) 

and 35 downregulated (upregulated in the low-risk 

group, log(FC) <0) transcription factors in the high-

risk group. 

 

Gene ontology (GO) and gene set enrichment 

analysis (GSEA) 

 

After being converted into gene IDs, the 71 

differentially expressed genes (DEGs) were analyzed 

using Gene Ontology (GO) (Supplementary Table 4). 

The GO annotations of the DEGs consisted of three 

parts: CC (cellular component), BP (biological 

process), and MF (molecular function), which were 

used to analyze the functional enrichment of the 

DEGs. The results were visualized in a bubble plot 

(Figure 8A). The main biological processes involved 

adult locomotory behavior and neuron migration, 

while the most abundant cellular component terms 

were the integral component of postsynaptic 

membrane, intrinsic component of postsynaptic 

membrane, integral component of synaptic membrane, 

and integral component of postsynaptic specialization 

membrane. The most abundant molecular function 

terms were extracellular matrix structural constituent. 

Additionally, we also visualized the results of GO 

functional enrichment analysis with a circos plot 

(Figure 8B). 

 

Subsequently, based on the functional enrichment 

analysis, we calculated the z-score of each gene of 

the DEGs by providing logFC values obtained from 

the difference analysis of TCGA-ESCC dataset. The 

results of GO functional enrichment analysis, which 

were standardized by logFC values, were presented in 

a bubble plot (Figure 8C), mainly enriched in cellular 

component (CC) pathway. The relationship between 

these pathways and genes was shown in Figure 8D. 

 

We further performed Gene Set Enrichment Analysis 

(GSEA) on the expression of the DEGs in TCGA-ESCC 

dataset to uncover signaling pathways that are 

differently active in ESCC. The GSEA showed that the 

DEGs of TCGA-ESCC dataset were significantly 

enriched in four pathways (Figure 8E–8I, Sup-

plementary Table 5, P < 0.05 and q-value < 0.25), 

including the proteasome degradation pathway (Figure 

8F), Biocarta classic pathway (Figure 8G), complement 

activation pathway (Figure 8H), and integrin 3 pathway 

(Figure 8I). 

Characterization of immune infiltration between the 

low- and high-risk groups 

 

To explore differences in immune cell infiltration 

between the low- and high-risk groups, we used 

CIBERSORT to evaluate the abundance of 22 immune 

cell types in the TCGA-ESCC cohort. The distribution 

of overall immune cell abundances among the samples 

from the TCGA-ESCC cohort is shown in Figure 9A, 

and the results indicate that Macrophages M0 and 

Macrophages M1, as well as T cells CD4 memory 

activated, are the main infiltrating immune cells. 

 

Furthermore, we examined the relationships among the 

infiltration abundances of the 22 distinct types of 

immune cell (Monocytes, B cells memory, Plasma cells, 

B cells naive, T cells follicular helper, Eosinophils, T 

cells CD4 memory activated, T cells CD8, NK cells 

activated, T cells regulatory Tregs, Macrophages M1, T 

cells gamma delta, Mast cells resting, Dendritic cells 

resting, Macrophages M2, T cells CD4 memory resting, 

Macrophages M0, T cells CD4 naive, Mast cells 

activated, NK cells resting, Dendritic cells activated, and 

Neutrophils) based on the samples with abundances 

greater than 0 in the low- and high-risk groups (Figure 

9B, 9C). Negative correlations were found between most 

of the 22 types of immune cells in the low-risk group 

(Figure 9B), while negative correlations were observed 

between most of the 21 types of immune cells, except B 

cells memory, in the high-risk group (Figure 9C). 

 

Additionally, we investigated the correlation between 

the expression of 11 CRGs (ATP7B, CDKN2A, DLAT, 

DLD, FDX1, LIAS, LIPT, MTF1, PDHA1, PDHB, and 

SLC31A1) and the infiltration abundance of 22 types of 

immune cells in the low-risk (Figure 9D) and high-risk 

groups (Figure 9E), respectively. The screening 

criterion for correlation analysis was a P value < 0.05. 

Our results showed that CRG expression levels were 

statistically positively correlated with the infiltration 

abundance of Mast cells resting in the low-risk group, 

while the infiltration abundances of Mast cells activated 

and T cells CD4 naive were positively correlated with 

PDHB expression levels in the low-risk group (Figure 

9D). Conversely, most immune cell infiltration 

abundances were positively correlated with the 

expression levels of 12 CRGs in the high-risk group 

(Figure 9E). 

 

Validation of the prognostic value of the signature 

 

To further validate the prognostic risk model of CRGs, 

we conducted a statistical analysis of clinical data from 

ESCC patients obtained from the TCGA-ESCC dataset 

(Supplementary Table 6). Firstly, we performed 
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Figure 8. GO enrichment and genome enrichment analysis. (A) The bubble plot and (B) circos plot showing the significantly enriched 

GO pathways for DEGs between in TCGA-ESCC dataset. (C) The bubble plot and (D) circle plot presenting the results of GO functional 
enrichment analysis which standardized by logFC values. (E) Four biological characteristics for Gene sets enriched analysis in TCGA-ESCC 
dataset. (F–I) The GSEA showed DEGs of TCGA-ESCC dataset significantly enriched in 4 pathways, including the proteasome degradation 
pathway (F), biocarta classic pathway (G), complement activation pathway (H), and integrin 3 pathway (I). Ordinate in bubble plot (A) is GO 
terms, the color of the bubble corresponds to the magnitude of the correlation. In network plots (B), orange color dots represented the 
detail genes, and Navy blue circles represented the detail pathways. In the bubble plot (C), Cyan dots represented BP pathway, orange 
circles represented CC pathway, and the Navy blue circles represented MF pathway. In the circle plot, orange dots represented upregulated 
genes (logFC > 0), Navy blue dots represented downregulated genes (logFC < 0). 
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univariate and multivariate Cox regression analyses to 

demonstrate the correlation between patients’ prognosis 

and the expression levels of 11 CRGs (ATP7B, 

CDKN2A, DLAT, DLD, FDX1, LIAS, LIPT1, MTF1, 

PDHA1, PDHB, SLC31A1). In this study, we first 

conducted univariate Cox regression analysis based on 

the expression levels of 11 CRGs, followed by 

multivariate Cox regression analysis including all 

 

 
 

Figure 9. CIBERSORTX for immune cell infiltration analysis between the low-and high-risk groups. (A) Boxplot present the 

infiltration abundances analysis of immune cells from TCGA-ESCC cohort by CIBERSORT algorithm. (B, C) Correlation analysis among 
infiltration abundance of immune cells in low-risk group (B) and high-risk group (C) from TCGA-ESCC cohort. (D, E) Correlation analysis 
between infiltration abundance of immune cells and expression levels of CRGs in low-risk group (D) and high-risk group (E). 
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Table 1. Cox regression to identify clinical features associated with overall survival (OS). 

Characteristics Total (N) 
Univariate analysis Multivariate analysis 

Hazard ratio (95% CI) P value Hazard ratio (95% CI) P value 

ATP7B 79 1.667 (0.528−5.269) 0.384 3.048 (0.798−11.632) 0.103 

CDKN2A 79 0.685 (0.516−0.908) 0.009 0.307 (0.169−0.560) <0.001 

DLAT 79 0.663 (0.282−1.559) 0.346 0.073 (0.010−0.516) 0.009 

DLD 79 0.667 (0.281−1.585) 0.359 0.336 (0.093−1.215) 0.096 

FDX1 79 1.039 (0.457−2.365) 0.927 3.677 (0.892−15.153) 0.072 

LIAS 79 0.383 (0.114−1.286) 0.120 0.115 (0.024−0.552) 0.007 

LIPT1 79 0.528 (0.202−1.375) 0.191 0.094 (0.012−0.721) 0.023 

MTF1 79 0.562 (0.237−1.334) 0.191 1.386 (0.370−5.192) 0.628 

PDHA1 79 2.413 (0.854−6.814) 0.096 10.478 (1.893−58.007) 0.007 

PDHB 79 2.307 (0.695−7.656) 0.172 45.420 (4.430−465.682) 0.001 

SLC31A1 79 1.021 (0.345−3.019) 0.970 4.477 (1.254−15.988) 0.021 

 

variables in the univariate Cox analysis (Table 1). Our 

results revealed that 8 CRGs, namely CDKN2A, DLAT, 

FDX1, LIAS, LIPT1, PDHA1, PDHB, and SLC31A1, 

were significantly correlated with ESCC survival (P < 

0.05). The results of the univariate and multivariate Cox 

regression analyses were then presented in a forest plot 

(Figure 10A). 

 

Subsequently, based on the statistically significant 

prognostic factors identified in the multivariate analysis, 

a nomogram prognostic evaluation model was 

constructed. A nomogram characterizes multiple 

variables in the multivariate regression model, and the 

total score is calculated to predict the probability of 

events. As shown in Figure 10B, unlike other CRGs, the 

expression levels of three CRGs, including ATP7B, 

DLAT, and DLD, exhibited limited usefulness in the 

Cox regression model. 

 

Afterwards, a Decision Curve Analysis (DCA) was 

performed to evaluate the clinical value of the LASSO-

Cox regression prognosis model for 1-year (Figure 

10C), 2-year (Figure 10D), and 3-year (Figure 10E) 

time points. In the DCA curve, the x-axis represents the 

threshold probability, while the y-axis displays the net 

benefit. The results were determined by observing the 

x-value range of the model line that is higher than all 

positive line and all negative line. The larger the range 

of X-value, the better the clinical judgment utility. The 

DCA analysis revealed that the risk score model 

constructed by 11 CRGs (ATP7B, CDKN2A, DLAT, 

DLD, FDX1, LIAS, LIPT1, MTF1, PDHA1, PDHB, 

SLC31A1) had the best clinical judgment utility for 3-

year followed by 2-year and 1-year.  

 

We verified the diagnostic performance of our risk 

model using the TCGA-ESCC dataset. Firstly, we 

calculated the risk score for each sample in the low- and 

high-risk groups based on the LASSO-Cox regression 

prognosis model. We then used Mann-Whitney U tests 

to compare the risk scores between the two groups, and 

found a significant difference (P < 0.001, Figure 11A). 

Subsequently, we generated an ROC curve for the CRG 

prediction model to evaluate the ability of the risk score 

system to predict outcomes for low- and high-risk 

patients (Figure 11B). We observed that the risk score 

levels exhibited high diagnostic accuracy for grouping 

patients into low- and high-risk categories (AUC = 

0.998, Figure 11B). 

 

Based on the results of multivariate Cox regression 

analysis, we identified and included 11 CRGs in the 

construction of the LASSO-Cox regression prognosis 

model. The formula was as follows: 

 

RiskScores = ATP7B × 1.114 + CDKN2A × −1.180 + 

DLAT × −2.618 + DLD × −1.091 + FDX1 × 1.302 + 

LIAS × −2.163 + LTPT1 × −2.366 + MTF1 × 0.326 + 

PDHA2 × 2.349 + PDHB × 3.816 + SLC31A1 × 1.499. 

 

To validate the diagnostic accuracy of the LASSO-Cox 

regression prognosis model, we utilized Mann-Whitney 

U tests to calculate the difference in risk scores between 

the ESCC and normal groups in the TCGA-ESCC 

cohort (Figure 11C, 11D). Our analysis demonstrated a 

highly significant difference in risk score between the 

two groups (P < 0.001, Figure 11C), indicating the 

model’s effectiveness in distinguishing between the two 

groups. Additionally, we generated an ROC curve to 

evaluate the diagnostic capacity of the risk score 

system, with the resulting analysis shown in Figure 

11D. The area under the curve (AUC) for the TCGA-

ESCC prognostic model was 0.842. 

 

Furthermore, based on the expression levels of 11 

CRGs across three cohorts (GSE20347, GSE38129, and 
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ESCC), we calculated the risk score for each sample 

within the ESCC and normal groups using the formula. 

We then used Mann-Whitney U tests to compare the 

risk score between ESCC and normal groups in each of 

the three datasets. Our results showed no statistically 

significant difference in risk score between the two 

groups in any of the datasets, including GSE2034 

(Supplementary Figure 1A), GSE38129 (Supplementary 

Figure 1C), and ESCC (Supplementary Figure 1E) (P > 

0.05). Finally, ROC curve analysis was conducted, and 

the resulting AUC values for the prognosis model score 

in GSE2034 (Supplementary Figure 1B), GSE38129 

(Supplementary Figure 1D), and ESCC (Supplementary 

Figure 1F) were 0.623, 0.577, and 0.694, respectively. 

 

DISCUSSION 
 

In the present study, we identified general differences 

and positive correlations in the expression of most of 

the 12 CRGs in the TCGA-ESCC dataset, which were 

validated by GSE20347, GSE38129, and additional 

ESCC datasets. Furthermore, the TCGA-ESCC cohort 

was stratified into two disease subtypes with significant 

differences in CRG expression, clinical parameters, 

survival status, and pathway enrichment related to 

apoptosis regulation. Prognostic scores (high vs. low 

risk) were established based on eleven prognosis-related 

genes, which were screened from the 12 CRGs using 

LASSO COX regression analysis. These patterns 

effectively predicted the prognosis of ESCC patients. 

Initial analysis of biological functions in the high-risk 

versus low-risk groups was performed by GSEA and 

GO analyses. Moreover, there were differences in 

prognostic characteristics and drug sensitivity between 

high and low-risk groups. Additionally, somatic 

mutations were prevalent in ESCC patients, mostly 

concentrated in missense mutations, and the SNP rate 

was high in ESCC. Finally, Univariate and multivariate 

Cox regression analyses found eight out of 11 CRGs 

were clinically significantly associated with prognosis. 

A nomogram was constructed based on the results of 

multivariate regression analyses, which showed the 

clinical predictive effect of the LASSO-Cox regression 

prognostic model with a prediction timeline of 3 years 

 

 
 

Figure 10. The prognostic value of the CRGs prognosis model. (A, B) Univariate and multivariate cox regression analysis Forest plots 

(A), nomogram (B). (C, D) Decision curve analyses (DCA) of LASSO-Cox regression prognosis model for predicting 1-year (C), 2-year (D), and 
3-year (E). 
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> 2 years > 1 year. This study highlighted the important 

role of CRGs as prognostic molecular biomarkers in 

ESCC and provided new ideas for identifying reliable 

molecular biomarkers to target ESCC therapy. 

 

Initially, we performed differential expression analysis 

of 12 CRGs (ATP7B, CDKN2A, DLAT, DLD, FDX1, 

GLS, LIAS, LIPT1, MTF1, PDHA1, PDHB, SLC31A1) 

in four datasets (TCGA-ESCC, GSE20347, GSE38129, 

and ESCC datasets). Our results suggested that these 12 

CRGs might play a crucial role in ESCC. Notably, we 

found that GLS expression was significantly higher in 

ESCC tissues than in para-carcinoma tissues in all four 

datasets. GLS has been shown to have multiple roles in 

cancer cells, including maintaining mitochondrial 

metabolism, activating cell signaling, and promoting 

cancer cell growth [39]. Previous studies have also 

implicated GLS as a downstream factor of the proto-

oncogene transcription factor c-Jun in the development 

of breast cancer, as well as in the proliferation of 

 

 
 

Figure 11. The prognostic value of the LASSO-Cox regression prognosis risk model in TCGA-ESCC dataset. (A, B) Boxplots (A) 

and ROC curve (B) for the risk score levels in the low- and high-risk groups in TCGA-ESCC dataset. (C, D) Boxplots (C) and ROC curve (D) for 
the risk score levels in the ESCC and normal groups in TCGA-ESCC dataset. 
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hypoxic gastric cancer cells [40, 41]. Additionally, a 

study showed that the circ_0001093/miR-579-3p/GLS 

regulatory network might affect the progression of 

ESCC [42]. Taken together, these findings suggest that 

GLS may be a key regulator of prognosis and a 

potential therapeutic target for ESCC patients. 

 

Based on the transcriptome data of the 12 CRGs, we 

performed consensus clustering analysis to classify 

ESCC patients in the TCGA-ESCC cohort into two 

distinct disease subtypes, namely cluster 1 and cluster 2. 

We found that patients in cluster 2 had a significantly 

better prognosis than those in cluster 1. Furthermore, 

the patients in cluster 2 had higher expression levels of 

CDKN2A and SLC31A1 and showed significant 

enrichment of the MYC targets V1 and unfolded protein 

response pathways. On one hand, CDKN2A is a critical 

tumor suppressor that induces cell cycle arrest by 

inhibiting the CDK4/6-Cyclin D complex upon 

activation [43]. On the other hand, SLC31A1 plays a 

vital role in maintaining intracellular copper 

homeostasis [44]. Previous research suggested that 

CDKN2A and SLC31A1 may be key regulators 

affecting the prognosis of ESCC patients. Dysregulation 

of mitochondrial respiration due to intracellular copper 

overload can lead to cell death, while the activation of 

the “MYC targets V2” and “unfolded protein response” 

pathways can promote cell death by regulating 

apoptosis and cell cycle [45, 46]. Our findings were 

consistent with previous reports and provided a 

plausible explanation for the superior prognosis of 

cluster 2 over cluster 1. 

 

After calculating the cuproptosis scores (CPs) using 

ssGSEA for each ESCC patient in the TCGA-ESCC 

dataset, we observed that the CPs were significantly 

higher in cluster 2 than in cluster 1. However, CPs were 

not found to be effective in predicting survival 

outcomes in ESCC patients. In addition, we found that 

CPs levels were significantly higher in the ESCC group 

than in the normal group, based on the GSE20347 and 

GSE38129 datasets. Furthermore, ROC curves 

indicated that CPs levels could be used for subgroup 

diagnosis between the normal and ESCC groups, 

suggesting that CPs levels are a useful diagnostic model 

for subgrouping. 

 

We then conducted bioinformatics analyses to identify 

differentially expressed genes (DEGs) between low and 

high-risk groups. A total of 71 DEGs were identified in 

the TCGA-ESCC cohort. Gene ontology (GO) analysis 

revealed that the DEGs were primarily enriched in 

neuronal migration, synaptic membrane composition, 
and extracellular matrix (ECM) structure. The ECM is a 

key component of the tumor microenvironment that 

promotes tumor proliferation, migration, and invasion 

[47]. Moreover, gene set enrichment analysis (GSEA) 

revealed significant enrichment in pathways such as 

proteasomal degradation, complement activation, and 

the integrin 3 pathway of the DEGs. Previous studies 

demonstrated that the proteasome system manages 

tumor suppressors and oncogenic proteins, and 

dysregulation of this system was common in various 

types of cancer [48]. Additionally, recent studies have 

suggested that complement activation promotes tumor 

progression in multiple ways [49]. These findings 

indicated that CRGs influence ESCC progression by 

regulating the tumor microenvironment and 

participating in the immune response. 

 

In addition, we performed drug sensitivity analyses for 

seven drugs in the two risk groups, which included 

PLX4720, BMS.536924, BMS.754807, CGP.60474, 

NVP.TAE684, PF.02341066, and Sunitinib. Our results 

showed that the drug PLX4720 was more effective in 

the low-risk group of ESCC patients, whereas 

BMS.536924, BMS.754807, CGP.60474, NVP.TAE684, 

PF.02341066, and Sunitinib were more effective in the 

high-risk group of ESCC patients. PLX4720 is a 

selective inhibitor of BRAF V600E and specifically 

inhibits the MAPK/ERK signaling pathway [50]. 

BMS.536924 and BMS.754807 are IGF-1R inhibitors 

that activate the PI3K/AKT and MAPK signaling 

pathways by binding to their ligands, thereby promoting 

ESCA cell growth, proliferation, differentiation,  

and inhibiting apoptosis [51]. CGP.60474 is a CDK 

inhibitor that inhibits the cell cycle protein/CDK 

complex, which promotes cell cycle initiation and cell 

proliferation [51]. Activation of this cell growth cycle 

pathway is also prevalent in ESCA [50]. NVP.TAE684 

is an ALK inhibitor that inhibits ALK rearrangement 

and the downstream related signaling pathways, 

resulting in tumor cell proliferation and survival [52]. 

PF.02341066 is an ATP-competitive multi-target 

protein kinase inhibitor that inhibits Met/ALK/ROS. 

Our findings may provide new therapeutic ideas for the 

targeted treatment of ESCC. 

 

Furthermore, we observed that activated CD4 memory 

T cells, M0 macrophages, and tumor-associated macro-

phages were the most prevalent immune stromal cells in 

the tumor microenvironment. In addition, the expression 

level of PDHB was found to be significantly negatively 

correlated with the infiltration abundance of activated 

mast cells and naive CD4+ T cells in the low-risk 

group. In squamous cell carcinoma, the presence of 

activated mast cells has been correlated with disease 

progression, increased metastasis, and reduced patient 

survival [53]. CD4+ memory T cells inhibit tumor cell 
growth by promoting the proliferation of CD8+ memory 

T cells [54]. Moreover, mast cell inactivation was 

observed to suppress the accumulation of associated 
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tumor-macrophages, resulting in reduced tumor cell 

proliferation, angiogenesis, and diminished tumor 

burden [55]. Therefore, our upcoming research will 

focus on further exploring the relationship between 

PDHB and these immune subsets. Taken together, we 

integrated 11 CRGs (ATP7B, CDKN2A, DLAT, DLD, 

FDX1, LIAS, LIPT1, MTF1, PDHA1, PDHB, and 

SLC31A1) to develop a nomogram for quantitative 

prediction. The findings demonstrated that the risk score 

model was capable of predicting the prognosis of ESCC 

patients, enhancing the clinical utility of this prognostic 

feature. 

 

However, there are certain limitations that need to be 

addressed. Firstly, no further experimental validation 

has been conducted. In future studies, we intend to 

validate this prognostic model through in vitro 

experiments using cell lines and mouse models, and 

investigate the underlying mechanisms of this signature. 

Secondly, the reliability and stability of this prognostic 

model must be validated through prospective, 

multicenter studies and real-world data. These issues 

need to be addressed in future research. 

 

CONCLUSION 
 

In conclusion, we have utilized an integrated 

bioinformatics approach to explore the expression and 

prognosis of CRGs in ESCC, which may serve as 

potential biomarkers for therapeutic selection. 

Moreover, we have developed a prognostic gene 

signature model and diagnostic model associated with 

ESCC. Additionally, our findings indicated that CRGs 

modulated ESCC initiation and progression by 

regulating the tumor microenvironment and immune 

response. Lastly, we have proposed a novel concept of 

ESCC targeted therapy. However, the underlying 

pathogenesis and molecular targets require further 

validation. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figure 
 

 
 

Supplementary Figure 1. The prognostic value of the LASSO-Cox regression prognosis risk model in three validation 
datasets (GSE2034, GSE38129, and ESCC). (A, B) Boxplots (A) and ROC curve (B) for the risk score levels in the ESCC and normal groups 
in GSE20347 dataset. (C, D) Boxplots (C) and ROC curve (D) for the risk score levels in the ESCC and normal groups in GSE38129 dataset. (E, 
F) Boxplots (E) and ROC curve (F) for the risk score levels in the ESCC and normal groups in ESCC dataset. P ≥ 0.05 indicated no statistical 
significance; P < 0.05 was statistically significant. P < 0.01 was shown highly statistically significant. P < 0.001, which was extreme 
statistically significant. AUC value of ROC curves the closer to 1, the better diagnosis performance. AUC values more than 0.9 considered as 
having the capability to diagnose ESCC with excellent specificity and sensitivity, between 0.7 and 0.9 indicated specificity and sensitivity, 
less than 0.5 presented specificity and sensitivity. Abbreviations: LASSO: Least absolute shrinkage and selection operator; ESCC: esophageal 
squamous cell carcinoma; ROC: receiver operating characteristic curve. 
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Supplementary Tables 
 

Supplementary Table 1. Clinical data for sequencing of patients with esophageal squamous cell carcinoma in our 
institution. 

Characteristic Levels Overall 

N  6 

Gender, n (%) 
Female 1 (16.7%) 

Male 5 (83.3) 

Age, n (%) 
≤60 4 (66.7%) 

>60 2 (33.3%) 

Smoking, n (%) 
Yes 4 (66.7%) 

No 2 (33.3%) 

Pathologic T stage, n (%) 
2 4 (66.7%) 

3 2 (33.3%) 

Pathologic N stage, n (%) 
0 4 (66.7%) 

2 2 (33.3%) 

Pathologic TNM stage, n (%) 

I 3 (50.0%) 

II 1 (16.7%) 

III 2 (33.3%) 

 

Supplementary Table 2. The signature coefficients for each gene under different penalty coefficients in the LASSO 
regression. 

Variable Lambda.min 

ATP7B 0.425630623 

CDKN2A −0.490982128 

DLAT −0.466209791 

DLD −0.314629868 

FDX1 0.107707084 

GLS 0 

LIAS −1.017948588 

LIPT1 −0.899225738 

MTF1 −0.23401496 

PDHA1 0.821922748 

PDHB 1.556412604 

SLC31A1 0.16321755 

 

Supplementary Table 3. Differentially expressed genes in TCGA-ESCC dataset high and low risk group. 

Gene symbol 

ABCC2 CDKN2A DCC IGFN1 NXPE2 TFAP2B 

ACTC1 CEND1 DNER KCNU1 PAGE2 TFCP2L1 

ACTL8 CH25H DPT KRT20 PCBP3 TFPI2 

ADAM22 CHRNA9 DRD1 LCE1F PLP1 TKTL1 

ADAMTS18 CHST4 EGFR MIOX PRG4 TMEM200C 

ALKAL2 CILP EZHIP MS4A1 PWWP3B TMEM202 

BPIFB2 CKM FRMD1 MT1A RORB TRIM71 

C10orf90 CPLX2 GFRA3 MUC6 RXFP1 UPK1A 

C11orf88 CRYBA2 GOLGA6L7 NOBOX SFTPA2 VWA2 

C1QL1 CXCL12 GRB14 NPTX1 SLC8A2 ZFP57 
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C9orf24 DCAF4L2 HBE1 NR5A1 TBX18 ZNF541 

CDH12 DCAF8L2 IGFBP1 NTN3 TEPP  

 

Supplementary Table 4. GO enrichment analysis results of differentially expressed genes. 

Ontology ID Description GeneRatio BgRatio p value p.adjust q value 

BP GO: 0008344 adult locomotory behavior 4/60 77/18670 1.09e-04 0.099 0.089 

BP GO: 0001764 neuron migration 5/60 157/18670 1.48e-04 0.099 0.089 

CC GO: 0099055 
integral component of 

postsynaptic membrane 
4/66 117/19717 6.39e-04 0.045 0.040 

CC GO: 0098936 
intrinsic component of 
postsynaptic membrane 

4/66 122/19717 7.48e-04 0.045 0.040 

CC GO: 0099699 
integral component of synaptic 

membrane 
4/66 152/19717 0.002 0.045 0.040 

CC GO: 0099060 
integral component of 

postsynaptic specialization 
membrane 

3/66 74/19717 0.002 0.045 0.040 

CC GO: 0098948 
intrinsic component of 

postsynaptic specialization 
membrane 

3/66 77/19717 0.002 0.045 0.040 

CC GO: 0099240 
intrinsic component of synaptic 

membrane 
4/66 164/19717 0.002 0.045 0.040 

CC GO: 0062023 
collagen-containing extracellular 

matrix 
6/66 406/19717 0.002 0.045 0.040 

CC GO: 0099634 
postsynaptic specialization 

membrane 
3/66 101/19717 0.005 0.079 0.070 

CC GO: 0098978 glutamatergic synapse 5/66 349/19717 0.006 0.092 0.082 

MF GO: 0005201 
extracellular matrix structural 

constituent 
5/62 163/17697 2.64e-04 0.051 0.049 

 

Supplementary Table 5. GSEA analysis of TCGA-ESCC dataset. 

Description setSize enrichmentScore NES p value q values 

REACTOME_SMOOTH_MUSCLE_CONTRAC
TION 

38 0.67108 2.08286 0.00215 0.15306 

WP_MIRNA_TARGETS_IN_ECM_AND_MEM
BRANE_RECEPTORS 

22 0.74701 2.06312 0.00227 0.15306 

WP_STRIATED_MUSCLE_CONTRACTION_P
ATHWAY 

38 0.65059 2.01924 0.00215 0.15306 

WP_ELECTRON_TRANSPORT_CHAIN_OXPH
OS_SYSTEM_IN_MITOCHONDRIA 

90 0.55785 2.00529 0.00205 0.15306 

WP_MYOMETRIAL_RELAXATION_AND_CO
NTRACTION_PATHWAYS 

156 0.52354 1.999 0.00232 0.15306 

REACTOME_INITIAL_TRIGGERING_OF_CO
MPLEMENT 

22 0.72334 1.99774 0.00227 0.15306 

BIOCARTA_COMP_PATHWAY 19 0.75325 1.9961 0.00442 0.1952 

NABA_PROTEOGLYCANS 35 0.65393 1.992 0.0022 0.15306 

KEGG_VASCULAR_SMOOTH_MUSCLE_CO
NTRACTION 

114 0.53649 1.98928 0.00219 0.15306 

REACTOME_ACYL_CHAIN_REMODELLING
_OF_PG 

18 0.7545 1.96668 0.00454 0.1952 
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WP_PROTEASOME_DEGRADATION 62 0.5837 1.96244 0.00218 0.15306 

BIOCARTA_CLASSIC_PATHWAY 14 0.80088 1.94794 0.00458 0.1952 

REACTOME_BINDING_AND_UPTAKE_OF_L
IGANDS_BY_SCAVENGER_RECEPTORS 

42 0.61753 1.93018 0.00218 0.15306 

REACTOME_MUSCLE_CONTRACTION 205 0.48585 1.92507 0.00221 0.15306 

KEGG_DILATED_CARDIOMYOPATHY 90 0.53424 1.92044 0.00205 0.15306 

REACTOME_STRIATED_MUSCLE_CONTRA
CTION 

36 0.62449 1.91763 0.00222 0.15306 

WP_COMPLEMENT_ACTIVATION 22 0.69281 1.91341 0.00227 0.15306 

REACTOME_ACYL_CHAIN_REMODELLING
_OF_PI 

17 0.7468 1.90725 0.00454 0.1952 

REACTOME_SCAVENGING_BY_CLASS_A_R
ECEPTORS 

19 0.71518 1.8952 0.00442 0.1952 

PID_INTEGRIN3_PATHWAY 43 0.59355 1.864 0.0022 0.15306 

 

Supplementary Table 6. Patient characteristics of ESCC patients in the TCGA datasets. 

Characteristic Levels Overall 

n  80 

T stage, n (%) 

T1 8 (10.1%) 

T2 27 (34.2%) 

T3 41 (51.9%) 

T4 3 (3.8%) 

N stage, n (%) 

N0 46 (59%) 

N1 26 (33.3%) 

N2 5 (6.4%) 

N3 1 (1.3%) 

M stage, n (%) 
M0 70 (95.9%) 

M1 3 (4.1%) 

Pathologic stage, n (%) 

Stage I 7 (8.9%) 

Stage II 47 (59.5%) 

Stage III 22 (27.8%) 

Stage IV 3 (3.8%) 

Age, n (%) 
≤60 51 (63.7%) 

>60 29 (36.2%) 

Gender, n (%) 
Female 12 (15%) 

Male 68 (85%) 

 


