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ABSTRACT 
 

Mitochondria play a crucial role in the occurrence and development of tumors. We used mitochondria-related 
genes for consistent clustering to identify three stable molecular subtypes of head and neck squamous cell 
carcinoma (HNSCC) with different prognoses, mutations, and immune characteristics. Significant differences 
were observed in clinical characteristics, immune microenvironment, immune cell infiltration, and immune cell 
scores. TP53 was the most significantly mutated; cell cycle-related pathways and tumorigenesis-related 
pathways were activated in different subtypes. Risk modeling was conducted using a multifactor stepwise 
regression method, and nine genes were identified as mitochondria-related genes affecting prognosis (DKK1, 
EFNB2, ITGA5, AREG, EPHX3, CHGB, P4HA1, CCND1, and JCHAIN). Risk score calculations revealed significant 
differences in prognosis, immune cell scores, immune cell infiltration, and responses to conventional 
chemotherapy drugs. Glycolysis, angiogenesis, hypoxia, and tumor-related pathways were positively correlated 
with the RiskScore. Clinical samples were subjected to qPCR to validate the results. In this work, we constructed 
a prognostic model based on the mitochondrial correlation score, which well reflects the risk and positive 
factors for the prognosis of patients with HNSCC. This model can be used to guide individualized adjuvant and 
immunotherapy in patients with HNSCC. 
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INTRODUCTION 
 

Predominantly, head and neck squamous cell 

carcinoma (HNSCC) manifests as the primary 

histological variant of head and neck cancers, 

emerging as the world’s sixth most ubiquitous 

malignancy, encompassing over 90% of cases. Factors 

such as genetic predispositions, interaction with 

tobacco carcinogens, immoderate alcohol indulgence, 

and HPV infections are acknowledged determinants 

for HNSCC. Regrettably, the vast majority of HNSCC 

cases are discerned in their advanced phases. Even 

with significant progress in diagnostic and therapeutic 

strategies, the quintessential five-year survival 

trajectory remains unyielding at 50%. Consequently, 

the pressing imperative is to unearth steadfast 

molecular markers to optimize HNSCC clinical 

interventions [1]. 

 

Mitochondria are organelles with notable, metabolic 

activities and are considered signaling hubs with 

biosynthetic, bioenergetic, and signaling functions 

responsible for coordinating key biological pathways 

[2]. Mitochondria are associated with various 

diseases, namely cardiovascular, neurological, and 

metabolic disorders. Furthermore, mitochondria can 

influence all the processes involved in tumor 

formation and progression. As a result, they can affect 

all tumorigenic processes by regulating the metabolic, 

oxidative, and apoptotic processes in cancer cells. 

Mitochondrial DNA defects in mitochondrial 

functional defects have been reported in several 

cancers. Beyond their pivotal bioenergetic roles, 

mitochondria underpin tumor anabolism, orchestrate 

redox and calcium equilibrium, guide transcriptional 

governance, and regulate cellular demise. Moreover, 

mitochondrial dynamics hold significance in stress 

signaling. Cancer formation and progression are 

closely related to mitochondria; however, much 

regarding this complex relationship remains unclear 

[3, 4]. 

 

In this research, we harnessed mitochondria-

associated genes to delineate enduring molecular 

subclasses through uniform clustering, juxtaposing the 

clinical, pathway, and immune attributes across these 

subcategories. Vital prognostic influencers rooted in 

mitochondria related genes were discerned via multi-

factorial stepwise regression, culminating in the 

formulation of a clinical risk paradigm for such genes. 

To enhance the prognostic framework and fortify 

survival forecasts, we amalgamated the RiskScore 

with clinicopathological nuances, crafting a nomo-

gram to appraise the peril faced by HNC patients, 

thereby paving the way for tailored therapeutic 

approaches. 

RESULTS 
 

Establishment of molecular subtypes 

 

Differential analysis was performed using the limma 

package on tumor and normal samples next to cancer in 

TCGA (|FC|>1.2 and FDR <0.05, Supplementary 

Table 1). Next, a one-way Cox analysis of mitochondria-

related genes was performed in GSE41613 in TCGA-

HNSC (P < 0.05), and the differential genes were 

intersected with mitochondrial genes with a significant 

prognosis in both datasets. The final results included 39 

mitochondria-related differentially expressed genes with 

a significant prognosis (Figure 1A). Tumor samples 

expressed most of these genes (Figure 1B). Patients were 

then classified based on the coherent grouping of 

expression patterns connected to 39 key mitochondria-

related genes with significant prognostic implications. 

The ideal cluster count was determined using the 

cumulative distribution function (CDF), and the CDF 

Delta area curve showed that selecting three clusters 

increased stability (Figure 1C, 1D). This final choice of 

k = 3 culminated in three distinct molecular subtypes: 

C1, C2, and C3 (Figure 1E). Delving deeper into the 

prognostic attributes of these subtypes revealed marked 

disparities in their prognostic outcomes. As depicted in 

Figure 1F, C1 boasted the most favorable prognosis, 

succeeded by C2, while C3 manifested the least 

favorable outcome. Employing an analogous method-

logy for the GSE41613 dataset, these molecular subtypes 

again exhibited pronounced prognostic variations (e.g., 

Figure 1G), resonating with the findings from the TCGA 

dataset (Supplementary Tables 2 and 3 detail the 

clustering outcomes for TCGA and GSE41613 

subtypes). 

 

Clinical characteristics among subtypes 

 

We assessed the clinicopathological attributes across 

TCGA-HNSC molecular subtypes, uncovering 

pronounced distinctions in gender, clinical progression, 

staging, gradation, and survival outcomes among the 

three categories (Figure 2). Furthermore, in examining 

the expression of 39 mitochondria-related genes bearing 

prognostic relevance across distinct molecular subtypes, 

we discerned that the “Risk” gene was preeminent in 

C3, whereas the “Protective” gene exhibited pro-

nounced elevation in C1. 

 

Inter-subtype immune profile 

 

To delineate the immune milieu across varied molecular 

subtypes, we scrutinized immune cell penetration 

employing ESTIMATE, revealing a markedly 

diminished “ImmuneScore” for C3 compared to its 

counterparts (Figure 3A), characterized by attenuated 



www.aging-us.com 10349 AGING 

immune engagement. Utilizing the CIBERSORT 

methodology, we approximated the distribution of 

immune cell variants, identifying disparities among the 

molecular classifications (Figure 3B). Immune 

engagement evaluations were further determined via 

MCP-count and TIIMER, with a majority of immune 

cell metrics manifesting significant variations across 

subtypes (Figure 3C, 3D). Subsequently, the TIDE 

software provided insights into the prospective 

therapeutic implications of immunotherapy for the 

identified molecular categories. Elevated TIDE 

prognostications signify an increased propensity for 

immune evasion, hinting at a diminished therapeutic 

responsiveness to immunotherapy. Evidently, as 

depicted in Figure 3E, C3 from the TCGA cohort, 

marked by an adverse prognosis, displayed a 

considerably amplified TIDE metric, insinuating an 

escalated tendency for immune evasion and diminished 

therapeutic prospects from immunotherapy relative to 

the alternate subtypes. This is further underscored by 

the minimalistic response rates to immune checkpoint 

inhibitors in C3 (Figure 3F). 

 

Inter-subtype mutation characterization/pathway 

characterization 

 

Disparities in genomic modifications between these two 

molecular subtypes within the TCGA cohort underwent 

meticulous analysis. Insights into the molecular 

attributes of TCGA-HNSCs were extrapolated from 

referenced literature [5, 6]. C3 exhibited an elevated 

aneuploidy index, proportion altered, segment count, 

surpassing both C1 and C2. Conversely, C1 

demonstrated notably diminished tumor purity relative 

to C2 and C3 (Figure 4A). Subsequently, the mutation 

dataset, refined by TCGA mutect2 software, was 

acquired. Genes surpassing a mutation frequency of 

three were shortlisted for salient high-frequency 

mutations within each subtype via the Fisher test, 

adhering to a selection benchmark of P < 0.05. 

 

 
 

Figure 1. Molecular typing based on mitochondrial-related genes. (A) Identification of differential mitochondria-related genes with 

significant prognosis; (B) Expression of 39 genes in tumor and paraneoplastic normal samples; (C) CDF curves of TCGA cohort samples; (D) 
CDF Delta area curves of TCGA cohort samples, Delta area curve of consensus clustering, indicating the relative change in area under the 
cumulative distribution function (CDF) curve for each category number k compared with k – 1. The horizontal axis represents the category 
number k, and the vertical axis represents the relative change in area under the CDF curve; (E) Heat map of sample clustering at consensus 
k = 3; (F) KM curves of the relationship among the prognosis of the three subtypes of TCGA; (G) KM curves of the prognosis of the three 
subtypes in the GSE41613 cohort. 
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The mutational idiosyncrasies of the paramount 15 

genes within each subtype are delineated in in Figure 

4B. Subsequently, the manifestation of variably 

activated pathways across distinct molecular subtypes 

was scrutinized. For pathway identification, we 

executed a GSEA, leveraging the h.all.v7.5.1.entrez.gmt 

 

 
 

Figure 2. Relationship between gene expression profiles and clinical characteristics among molecular subtypes. 
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gene set from the MSigDB database [7], with FDR 

<0.05 denoting noteworthy enrichment. Figure 4C 

portrays the outcomes of the TCGA assessment, 

revealing an inhibition of cell cycle-associated 

pathways in C1, juxtaposed with the activation of both 

cell cycle and tumorigenesis-associated pathways. 

Identification of differential genes 

 

In our prior analysis in this paper, three molecular 

subtypes were established based on prognostically 

significant differential mitochondria-associated genes 

that differed in clinical, immune, and pathway features. 

 

 
 

Figure 3. Immunological characteristics between molecular subtypes in TCGA cohort. (A) Differences in TCGA cohort ESTIMATE 

immune scores between molecular subtypes; (B) Differences in TCGA cohort TIDE scores and immune response between molecular 
subtypes CIBERSORT immune scores between molecular subtypes; (C) Differences in TCGA cohort TIMER calculated immune cell scores 
between molecular subtypes; (D) Differences in TCGA cohort MCP-Count immune scores between molecular subtypes; (E, F): TCGA cohort 
TIDE scores and immune response between molecular subtypes. 
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Subsequently, genes exhibiting differential expression 

amongst C1, C2, and C3 relative to other subtypes were 

discerned utilizing the limma package, adhering to 

criteria of FDR <0.05 and |log2FC| > 1. This analysis 

culminated in the identification of 224, 443, and 226 

distinctively expressed genes in C1, C2, and C3, 

 

 
 

Figure 4. Genomic alterations in molecular subtypes of TCGA cohort. (A) Comparison of homologous recombination defects, 

aneuploidy score, fraction altered, number of segments, tumor purity in molecular subtypes of TCGA cohort differences; (B) Somatic 
mutations in the three molecular subtypes; (C) GSEA results among molecular subtypes of TCGA cohort. 
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respectively, aggregating to an ultimate count of 662 

unique genes (Supplementary Tables 4–6). Additionally, a 

comprehensive functional enrichment assessment of these 

differentially expressed genes was undertaken via the R 

software’s clusterProfiler package (FDR <0.05). The 

enriched findings from both GO and KEGG pathways 

pertinent to genes predominantly elevated in C3 isoforms 

are depicted in Figure 5 (Supplementary Table 7). 

 

Risk modeling 

 

Utilizing the coxph function from the SURVIVAL 

package, a univariate Cox analysis was conducted on the 

662 differential genes, pinpointing 20 genes of profound 

prognostic significance (P < 0.001) as illustrated in 

Supplementary Table 8. Subsequent to this, a multi-

factorial stepwise regression analysis was undertaken. 

This analytical approach employs the AIC information 

criterion—a metric balancing the statistical fit against the 

parameter count in the model. Using the AIC method 

within the MASS package, the analysis commences with 

the most intricate model, systematically excluding 

variables to minimize the AIC value. A diminished value 

signifies an optimal model, suggesting a satisfactory fit 

achieved with minimal parameters. Ultimately, nine 

pivotal genes influencing prognosis were discerned, as 

exemplified in Figure 6A. The definitive model equation 

is presented below: RiskScore = 0.073 × DKK1 + 0.154 

× EFNB2 + (−0.232 × ITGA5) + 0.064 × AREG + 

(−0.071 × EPHX3) + 0.069 × CHGB + 0.242 × P4HA1 + 

0.103 × CCND1 + (−0.061 × JCHAIN) Subsequently, 

risk scores for each specimen within the TCGA cohort 

were derived utilizing the expression metrics of the nine 

distinct genes. Based on the median RiskScore, TCGA 

samples were segregated into high-risk and low-risk 

contingents, and the Kaplan-Meier curves demonstrated a 

pronounced disparity between these cohorts (Figure 6B). 

The timeROC R package facilitated an ROC analysis on 

the prognostic stratification by RiskScore, examining the 

predictive efficacy over intervals from 1 to 5 years. The 

model exhibited an impressive area beneath the AUC 

curve (Figure 6C). In an endeavor to reinforce the 

model’s robustness validation, analogous methodology 

was applied to authenticate the GSE41613 and 

GSE65858 datasets. These validations confirmed a 

commendable AUC area, with conspicuous contrasts 

between high-risk and low-risk classifications (Figure 

6D–6G). 

 

 
 

Figure 5. Enrichment results of GO and KEGG pathways of differentially upregulated genes in C3 subtype. (A) Results of KEGG 

analysis of upregulated genes in TCGA-HNSC cohort C3; (B–D) Results of GO analysis of upregulated genes in TCGA-HNSC cohort C3. 
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Nomogram 

 

Univariate and multifactorial Cox regression 

assessments of RiskScore, juxtaposed with clinical 

attributes, ascertained that RiskScore, age, and stage 

stood as paramount prognostic determinants (Figure 7A, 

7B). To crystallize the interplay between risk evaluation 

and patient survival trajectories, we melded the 

RiskScore with pertinent clinicopathological indicators, 

giving rise to an illustrative columnar depiction 

 

 
 

Figure 6. Determination of risk model and its KM, ROC curves. (A) Multifactor forest plot of prognostic key genes; (B) KM curve of 

risk model constructed for 9 genes in TCGA dataset; (C) ROC curve of the risk model in TCGA dataset; (D) KM curve of risk model 
constructed for 9 genes in GSE41613 dataset; (E) ROC curve of risk model in GSE41613 dataset; (F) KM curve of risk model constructed for 9 
genes in GSE65858 dataset; (G) ROC curve of risk model in GSE65858 dataset. 
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(Figure 7C); here, RiskScore emerged as the preeminent 

force in forecasting survival. The model’s prognostic 

fidelity underwent scrutiny via the calibration trajectory 

depicted in Figure 7D. Calibration curves at the 1-, 3-, 

and 5-year milestones were in near-congruence with the 

benchmark trajectory, underscoring the model’s adept 

prognostic prowess. The model’s robustness garnered 

further validation through DCA (Decisioncurve); 

wherein both RiskScore and the nomogram exhibited a 

palpable ascendancy over extreme curves (Figure 7E). 

As illuminated in Figure 7F, the ROC curve analysis 

elucidated that the nomogram, coupled with RiskScore, 

manifested unparalleled sensitivity and specificity in 

forecasting the overarching survival of head and neck 

carcinoma patients, eclipsing other pertinent clinical 

markers such as age, gender, histological caliber, and 

TNM clinical echelon, thus asserting their superlative 

prognostic merit. To elucidate the nexus between the 

RiskScore and TCGA-HNSC clinical attributes, we 

probed the variances in risk stratifications and scores 

vis-à-vis clinical gradations utilizing the TCGA-HNSC 

compendium. The representation of C3 preponderated 

within the high-risk cohort (Figure 8A), whilst the 

RiskScore ascended concomitantly with the clinical tier 

(Figure 8B). Additionally, juxtapositions of the Risk-

Score across molecular subtypes revealed C3, bearing 

the most ominous prognosis, also brandished the zenith 

RiskScore. We further juxtaposed the prognostic 

disparities between high and low RiskScore strata 

across diverse clinicopathological categorizations. The 

results demonstrated that the risk groupings were 

equally good in different clinical groupings, proving the 

reliability of the risk groupings (Figure 8C–8F). 

 

Immune/pathway characteristics among risk 

subgroups 

 

To discern variances in the immune microenvironment 

across risk strata, we employed the CIBERSORT 

algorithm to quantify immune cell prevalence within 

TCGA-HNSC’s high- and low-risk factions (Figure 

9A). Utilizing both MCP-count and TIMER 

methodologies, we derived the immune infiltration 

indices for the TCGA-HNSC cohort, revealing 

pronounced disparities in most immune cell indices 

between risk strata (Figure 9B). The “ImmuneScore” 

was markedly elevated in the low-risk segment 

compared to its high-risk counterpart. Analyzing 

immunotherapeutic divergences between risk sectors 

within the TCGA cohort, we harnessed the TIDE 

software to gauge potential clinical immunotherapy 

outcomes for both risk sectors. Notably, the TIDE score 

for the high-risk faction surpassed that of the low-risk, 

implying an augmented propensity for immune evasion

 

 
 

Figure 7. Determination and survival prediction ability of nomogram. (A) Single-factor forest plot of RiskScore and clinical 

features; (B) Multifactor forest plot of RiskScore and clinical features; (C) RiskScore combined with clinical features column line plot; (D) 
Calibration curves of column line plot at 1, 3, and 5 years; (E) Decision curve of column line plot; (F) ROC curves of various clinical features 
for overall survival (OS) at 1, 3, and 5 years. 
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in the former, yet paradoxically suggesting a greater 

therapeutic benefit potential. Conversely, the amplified 

TIDE score in the high-risk cohort indicated increased 

susceptibility to immune subterfuge and a diminished 

probability of immunotherapeutic success (Figure 9D). 

We also employed the Pearson approach to deduce the 

correlation between RiskScore and immune score, 

unearthing a pronounced inverse association between 

 

 
 

Figure 8. Clinical characteristics between risk groups. (A) Key gene expression in relation to clinical characteristics and RiskScore; (B) 

Differences between RiskScore between clinicopathological subgroups in TCGA-HNSC cohort; (C) KM curves between RiskScore of the high- 
and low-risk groups for different stages in TCGA-HNSC cohort; (D) KM curves between RiskScore high- and low-risk groups for grades in 
TCGA-HNSC cohort grade; (E) KM curves between RiskScore high- and low-risk groups of age groups in TCGA-HNSC cohort; (F) KM curves 
between the RiskScore of high- and low-risk of different genders in TCGA-HNSC cohort. 
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RiskScore and a majority of immune cell indices 

(Figure 9C). Furthermore, we assessed the responsive-

ness to conventional chemotherapeutics across TCGA 

cohort subgroups, observing heightened sensitivity 

within the high-risk cohort compared to its low-risk 

counterpart (Figure 9E). To delve deeper into the nexus 

between RiskScore and biological functions across 

diverse samples, we employed the TCGA dataset, 

designating h.all.v7.5.1.symbols.gmt as our gene set. 

Thereafter, we executed single-sample GSEA (ssGSEA) 

analyses via the R package GSVA. For each distinct 

function, the ssGSEA enrichment scores were derived 

for every sample. Employing the rank sum test, we 

discerned distinct pathways between risk groups (P < 

0.05) and further evaluated the interrelation between 

these pathways and the RiskScore. As illustrated in 

Figure 10A, pathways integral to glycolysis, angio-

genesis, hypoxia, and specific tumorigenic processes 

manifested a robust positive association with the 

RiskScore. Through GSEA, we also analyzed 

prominently enriched pathways within both high- and 

low-risk cohorts. Adopting a threshold of NP <0.05, 

we pinpointed the saliently enriched pathways 

(Figure 10B). 

 

Expression of mitochondrial prognostic-related 

genes in HNSCC 

 

Prior findings indicated that CCL22, CTSG, and FGD3 

expressions were auspiciously linked with HNSCC 

prognosis, while TPP1 exhibited an inverse correlation. 

Using RT-qPCR, we probed the mRNA expression

 

 
 

Figure 9. Immune and pathway characteristics between different risk groups. (A) difference in CIBERSORT immune infiltration 

between risk subgroups in TCGA cohort; (B) difference in MCP-count, TIMER immune score between risk subgroups in TCGA cohort; (C) 
correlation between immune score and RiskScore in TCGA cohort; (D) difference in TIDE score and ESTIMATE immune score between risk 
subgroups in TCGA cohort; (E) difference in drug sensitivity (IC50) between risk subgroups in TCGA cohort. 
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levels of these four genes in both tumor and adjacent 

non-tumorous tissues from 10 HNSCC patients. 

Notably, expressions of (A) AREG (observed in 8 of 10 

samples, or 80%; Figure 11A), (B) DKK1 (observed in 

6 of 10 samples, or 60%; Figure 11B), and (C) EFNB2 

(observed in 7 of 10 samples, or 70%; Figure 11C) in 

tumorous specimens were markedly elevated compared 

to their non-tumorous counterparts. These data 

underscore that the expression patterns of certain 

prognostic genes in HNSCC align seamlessly with our 

anticipations. 
 

DISCUSSION 
 

While aberrations in mitochondrial genes frequently 

manifest in cancer cells, they seldom incapacitate 

mitochondrial energy metabolism. Instead, they 

recalibrate the mitochondria’s bioenergetic and 

biosynthetic equilibrium. Such altered states liaise with 

the nucleus via ‘retrograde signaling’, orchestrating a 

gamut of signal transduction pathways, transcriptional 

networks, and chromatin configurations, adeptly 

catering to the mitochondrial and nuclear exigencies of 

malignancies. Subsequently, malignant cells reconfigure 

neighboring stromal cells, refining the tumoral milieu. 

Mitochondria, pivotal in tumor anabolism, are 

custodians of redox balance, calcium homeostasis, 

transcriptional oversight, and cellular demise. 

Tumorigenesis, progression, and therapeutic responses 

are intricately intertwined with host immunological 

processes, many of which pivot on unimpaired 

mitochondrial metabolism [2, 4]. Reactive oxygen 

species (ROS) don pivotal roles—spanning cell death 

regulation, DNA repair, stem cell sustenance, metabolic 

shifts, and sculpting the tumor microenvironment. 

Intriguingly, such ROS also influence T-cell dynamics. 

In HNC, modulating ROS levels during 

chemotherapy/radiotherapy is of paramount clinical 

import. An array of non-oncologic pharmaceuticals, 

molecular compounds, traditional herbal remedies, and 

avant-garde interdisciplinary methodologies—

encompassing photodynamics, nanotech systems, and 

Bio Electro-Magnetic-Energy-Regulation (BEMER) 

therapies—can adeptly modulate cellular ROS in HNC, 

potentiating the efficacy of conventional treatment 

modalities [8–11]. Rencelj reported posited that 

mitochondrial receptors incisively target pivotal 

metabolic entities, influencing myriad oncogenic 

signaling cascades and holding sway over the Warburg 

effect—a phenomenon vital for cancer cell proliferation. 

A nexus between mitochondria and hypoxia has been 

delineated in breast cancer and HNCs [12]. Lee et al. 

elucidated that the majority of HNCs, rooted in mucosal 

epithelial cells, retain epithelial characteristics. 

However, as malignancy advances, it often morphs into 

mesenchymal or hypofractionated phenotypes, paving 

the way for invasion, metastasis, and treatment 

resistance. Erosion of epithelial traits, courtesy of 

epithelial-mesenchymal transition, might predispose 

such tenacious malignancies to ferroptosis. Steering 

mitochondrial or iron metabolism can amplify intra-

cellular ferrous iron and lipid peroxidation, rendering 

drug-resistant neoplasms more amenable to ferroptosis 

[13]. Huang and associates postulated that metabolic 

shifts originating from nasopharyngeal carcinoma  

cells might foster tumor advancement and immuno- 

 

 
 

Figure 10. Correlation between differential pathways and RiskScore in risk groups and their GSEA results in TCGA dataset. 
(A) Correlation between risk intergroup differential pathways and RiskScore in TCGA dataset; (B) GSEA results for high- and low-risk groups 
in TCGA dataset. 
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suppression via intercellular discourse with adjacent 

immune cells. Crafting therapeutic targets at this 

metabolic-immune interface could herald novel 

treatment avenues for nasopharyngeal carcinoma [14]. 

Ergo, strategic manipulation of mitochondrial 

metabolism emerges as a promising therapeutic frontier 

for HNC. In our investigation, we discerned a 

differential expression of mitochondrial-associated 

genes between tumoral and adjacent healthy tissues, 

pinpointed molecular isoforms through robust 

clustering, and spotlighted nine pivotal mitochondrial-

associated genes. Among them, CCND1, located on 

chromosome band 11q13, codes for cell cycle protein 

D1, pivotal in orchestrating G1-S phase transition. 

Beyond its pro-proliferative prowess, it augments 

cellular migratory potential, curtails differentiation, 

impedes DNA reparative processes, and is intricately 

woven into the mitochondrial metabolism governing the 

cell cycle. Consequently, its role as an oncogene in 

specific neoplasms is undeniable [15]. CCND1, 

perceived as a mitotic cellular sentinel, can, when 

dysregulated, plunge the cell into cycles of disarray and 

dysfunction [16]. Given its frequent amplification in 

malignancies [17], CCND1 remains a cynosure in 

oncologic pursuits [18]. Dickkopf-related protein 1 

(Dkk1), a protein consisting of 266 amino acids, 

manifests predominantly within mature tissues, 

including bone, placenta, prostate, spleen, and colon. It 

operates as a formidable adversary to the Wnt signaling 

cascade. DKK1 obstructs the intricate interplay between 

Wnt, FZD, and LRP6, culminating in the degradation of 

β-catenin and the subsequent dormancy of the β-

catenin/T-cell-specific factor (TCF) transcriptional 

ensemble, thereby attenuating genes steered by T-cell 

factors. Clinical evaluations across a spectrum of 

malignancies have detected amplified concentrations of 

this Wnt antagonist, Dickkopf-1(DKK1), within patient 

sera and neoplasms, frequently serving as harbingers of 

an unfavorable prognosis. DKK1 exhibits prowess in 

modulating immune cellular dynamics and curbing the 

tumoral immunosuppressive milieu. Its involvement in 

T-cell differentiation and fostering tumor subterfuge 

from immune scrutiny, primarily through the 

proliferation of MDSCs, has thrust DKK1 into the 

spotlight as a prospective linchpin in cancer immuno-

therapy [19]. IIt acts as a catalyst in the tumorigenesis 

of pancreatic, esophageal, and hepatocellular 

carcinomas, stands as a prognostic marker in breast, 

gastric, and colorectal malignancies, and spurs prostate 

neoplastic cell growth and migration [20–26]. 

Additionally, DKK1 orchestrates the accrual and 

function of MDSCs in malignancies, is ubiquitously 

 

 
 

Figure 11. RT-qPCR. Expression of prognostic-specific genes in HNSCC were consistent with the predicted trend. RT-qPCR 

detected mRNA expression levels of (A) AREG, (B) DKK1, and (C) EFNB2 in the tumor tissue and adjacent tissue of patients with HNSCC p < 0.05. 
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acknowledged as a potent tumor-affiliated antigen in 

multiple myeloma, and has been anointed as an 

innovative immunotherapy target for myeloma [27–29]. 

Contrarily, its role in mitigating breast neoplastic cell 

movement and infiltration is achieved through 

suppression of the β-catenin/MMP7 signaling conduit 

[30]. Ephrins serve as the ligands for the Eph receptor 

tyrosine kinase subset, with EFNB2 donning the dual 

hats of a receptor ligand and a signaling receptor. Its 

omnipresence within tumoral vasculature, coupled with 

its role in catalyzing tumor angiogenesis and 

neovascularization by anchoring vascular endothelial 

forerunners to neoplastic sites and its influence on 

lymphangiogenesis, underscores its significance. 

EFNB2 gene expression, fostering cellular proliferation, 

migration, and invasive tendencies particularly in 

pancreatic ductal adenocarcinoma, emerges as both a 

biological compass and a prognostic touchstone in a 

plethora of malignancies. Its expression intensity 

resonates with the malignancy’s severity [31–34]. Eph 

signaling’s intricate nexus with tumoral migration, 

growth, angiogenesis, apoptosis, and metastasis heralds 

its prospective therapeutic potential [35]. ITGA5, an 

affiliate of the integrin chain consortium, is an ever-

present adhesive entity. These cellular sentinels are 

pivotal in adhesive dynamics and intracellular 

communication. They sculpt neovascularization patterns 

and wield influence over neoplastic growth, invasion, 

and metastatic spread via conduits like FAK and PI3K 

[36]. Its association spans from hepatocellular 

carcinomas to gliomas, including mesenchymal shifts  

in tongue squamous cell carcinomas [37–39]. Its 

prognostic worth extends to non-small cell lung 

neoplasms and pediatric acute myeloid leukemia [40, 

41]. Augmenting this, curbing ITGA5 has been shown 

to bolster certain chemotherapeutic regimens’ efficacy 

[42]. Amphiregulin (AREG), a ligand specific to the 

epidermal growth factor receptor (EGFR), plays a 

pivotal role in the intricate orchestration of juxtacrine 

signaling amongst neighboring cells. In a distinct 

capacity, AREG is excreted, functioning as an autocrine 

or paracrine mediator. Its gene expression and 

subsequent discharge are precipitated by a myriad of 

agents, encompassing inflammatory lipids, cytokines, 

hormones, growth factors, and foreign substances [43]. 

By binding to EGFR, AREG triggers a slew of salient 

intracellular signaling pathways that delineate cellular 

viability, proliferation, and dynamism [44]. Exo-

genously secreted AREG, upon interfacing with EGFR, 

instigates a self-propagating feedback loop that 

enhances AREG transcription. Multiple intracellular 

conduits, such as MAPK, PI3K/Akt, STAT, and mTOR, 

are activated in the wake of AREG interaction, serving 
as the fulcrum for AREG/EGFR-directed cellular 

operations [45]. AREG has also been associated with 

oxidative stress and ferroptosis pathways, and HIF2-α 

regulates AREG, which are consistent with the results 

in the literature on AREG-induced transcriptional 

pathways under hypoxic conditions [46]. Studies have 

also shown that HIF-2α can enhance oxidative death in 

colon cancer cells through ferroptosis activators and 

DMF [47]. Areg is involved in immune regulation; can 

be an autocrine factor for tissue Treg, Treg expresses 

EGF receptors; and enhances Treg function [48]. It also 

enhances the differentiation of Th9 cells [49]. Mast cell-

derived AREG enhances the immunosuppressive 

capacity of regulatory T (Treg) cells, except for AREG 

expressed by cancer cells in specific cases, which 

produce acquired resistance to anti-EGFR therapies 

(e.g., cetuximab), and sensitivity to cetuximab depends 

on high expression of both EREG and AREG [50, 51]. 

AREG is also associated with hepatocellular carcinoma, 

cholangiocarcinoma, pancreatic cancer, lung cancer, 

and breast cancer [52–59]. Studies have shown that 

AREG can promote multiple cancer models in the 

invasion and in regulating tumorigenesis [60, 61] and 

that targeted stromal-derived AREG can eliminate the 

AREG generated by stromal and cancer cells at the 

TME ecological site [50] and can be used in 

combination with anti-PD-1 antibodies [62]. 

 

EPHX3, an adept epoxide hydrolase, proficiently 

metabolizes volatile xenobiotic epoxides and modulates 

endogenous epoxides integral to cellular signaling. With 

pronounced expression in the proximal digestive tract, 

bone marrow, lymphatic structures, and dermal layers, 

EPHX3 emerges as a paramount arbiter of tumori-

genesis across 13 malignancies. In the context of 

HNSCC, it not only epitomizes a prognostic indicator 

but also manifests its antineoplastic prowess by curbing 

tumor immune checkpoint articulation and immune 

cellular permeation [63]. EPHX3 hypermethylation may 

contribute to the development of OSCC and is 

associated with adenoid cystic carcinogenesis and 

progression [64]. Chromophobe granule B (CHGB) is 

one of the two major soluble proteins in the 

chromophobe granules of the adrenal medulla [65]. 

CHGB, instrumental in immune modulation, exhibits 

deviant gene expression across myriad tumor varieties, 

with its augmented expression being intrinsically linked 

to metastatic events. It may be a prognostic marker in 

neuroendocrine tumors, correlates with survival in 

colon cancer, correlates with malignant behavior in 

pheochromocytomas and abdominal paragangliomas, 

and correlates with poor prognosis in several squamous 

cell carcinomas (SCCs), namely HNSCC [66–69]. 

P4HA1 expression, catalyzed by HIF-1 under hypoxic 

conditions, orchestrates various tumorigenic pathways, 

including EMT, angiogenesis, invasion, inflammation, 
and notably, the glycolytic process. P4HA1 has an 

important role in the HIF-1 signaling pathway [70] and 

is associated with various tumors, namely HNSCC, 
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breast cancer, colorectal cancer, and B-cell lymphoma 

[71–75]. JCHAIN is a polypeptide chain specific to 

polymeric immunoglobulins (Igs) and is thought to be 

responsible for linking monomeric subunits into a 

polymeric form [76]. It is required for the multi-

merization of IgM and IgA, a small polypeptide 

required for the transport of these Ig classes across the 

mucosal epithelium in a multi-Ig receptor-mediated 

process [77] associated with various cancers, namely 

ovarian, gastric, and breast cancers [78–80]. JCHAIN is 

linked to both inherent and adaptive resistance to 

radiation therapy in nasopharyngeal carcinoma patients, 

influencing their prognostic outcomes [81]. 

 

We established three molecular subtypes, C1-C3, based 

on prognostically significant differential mitochondria-

related genes, which were associated with cell cycle-

related and tumorigenesis-related pathways, with cell 

cycle-related pathways being inhibited in C1 and cell 

cycle-related and tumorigenesis-related pathways being 

activated in C3. The differential genes of the subtypes 

were further analyzed by one-way Cox analysis and 

multifactor stepwise regression analysis. In the final 

analysis, nine pivotal genes were discerned as 

instrumental in influencing prognosis. Notably, DKK1, 

EFNB2, AREG, CHGB, P4HA1, and CCND1 

manifested as risk determinants, while ITGA5, EPHX3, 

and JCHAIN emerged as protective indicators. The 

RiskScore affirmed the model’s robustness, evident from 

the substantial area beneath the AUC curve, delineating 

marked disparities between high-risk and low-risk 

cohorts. The mRNA expression corroborated in clinical 

specimens mirrored largely congruent patterns; 

predominantly, there was a pronounced diminution in 

tumorous tissues, juxtaposed with an amplification in 

normal samples. The RiskScore showed a significant 

negative correlation with most immune cell scores. The 

RiskScore was positively correlated with glycolysis, 

angiogenesis, hypoxia, and tumor-related pathways 

(WNT, TFGβ, EMT) and further influenced immune 

regulation. These phenomena were verified using the 

GSE41613 and GSE65858 datasets. 

 

In summation, we devised a risk paradigm informed by 

nine mitochondria-centric genes, synergizing the 

RiskScore with clinicopathological nuances to elevate 

the precision of our prognostic framework and survival 

foresight, which boasted notable predictive acuity. 

Moreover, we scrutinized variances within the immune 

milieu across risk categories, discerning that the 

RiskScore harbored a marked inverse association with 

the majority of immune cell evaluations. We further 

gauged the responsiveness of distinct subgroups to 

traditional chemotherapy regimens. This model stands 

as a salient tool in HNC, facilitating therapeutic 

guidance and tailoring patient-centric interventions. 

MATERIALS AND METHODS 
 

Data collection and processing 

 

Utilizing the TCGA GDC API, we procured RNA-seq 

data from TCGA-HNSC. Post meticulous selection, we 

incorporated 499 primary tumor specimens and 44 

normative samples. From the GEO repository, we 

garnered expression metrics for GSE41613, leading to the 

inclusion of 97 distinguished samples. Similarly, for 

GSE65858, post-evaluation, 270 samples were integrated. 

 

Source of mitochondria-related genes 

 

The mitochondria-associated genes were obtained from 

the literature [82]. Mitochondria-associated genes 

encode mitochondria-localized proteins, namely all 

proteins in the mitochondrial membrane, matrix, cristae, 

and mitochondria-associated endoplasmic reticulum 

membrane. On the basis of subcellular localization, all 

genes were obtained from the Molecular Signature 

Database (MSigDB) database (http://software. 

broadinstitute.org/gsea/msigdb) for a set of 23 

mitochondria-associated cellular component genes; 

1576 genes were identified as mitochondria-associated 

genes (Supplementary Table 9). 

 

Data preprocessing 

 

From TCGA, RNA-seq data underwent a meticulous 

four-phase refinement: 

 

1. Exclusion of specimens lacking clinical follow-up 

data. 

2. Preservation of samples boasting survival durations 

exceeding 0 days. 

3. Elimination of samples devoid of status. 

4. Retain coding protein genes. 

 

For the GEO dataset, the subsequent procedures were 

executed: 

 

Upon accessing the pertinent microarray platform’s 

annotation details, probes were aligned with genes in 

accordance with this annotated data. Probes correlating 

with multiple genes were excised. Conversely, when 

several probes corresponded to a singular gene, their 

mean expression served as the definitive gene 

expression value. 

 

Molecular subtyping of mitochondria-related genes 

 

We constructed consistency matrices by using 

ConsensusClusterPlus for the clustering samples [83]. 

We obtained the molecular subtypes of the model by 

using mitochondria-related gene expression data with a 

http://software.broadinstitute.org/gsea/msigdb
http://software.broadinstitute.org/gsea/msigdb
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significant prognosis. Utilizing the “km” algorithm with 

“Euclidean” as the distance metric, we executed five 

hundred bootstraps, each encompassing 80% of the 

patients from the training set. The cluster range was 

established between 2 and 10. The optimal classification 

emerged from evaluating the consistency matrix and the 

CDF, thereby discerning the molecular subtypes of the 

specimen. 

 

Risk model 

 

1. Identify the differentially expressed genes between 

subtypes via the molecular subtypes identified 

previously (|log2FC|>1 and FDR <0.05). 

2. Select genes with a significant prognosis (P < 

0.001). 

3. Further reduce the number of genes by using 

multifactor stepwise regression to obtain the 

prognostically significant genes associated with the 

mitochondrial phenotype. 

4. Conduct risk modeling. The risk score for each 

patient was determined using the equation: RiskScore = 

Σβi × Expi. In this equation, ‘I’ denotes the expression 

level of genes associated with mitochondrial phenotype 

prognostic features, and β’ represents the pertinent 

gene’s Cox regression coefficient. Patients were 

stratified into two categories—high risk and low risk 

based on the median risk score. Survival curves were 

crafted using the Kaplan-Meier approach, with the log-

rank test assessing the significance of observed 

disparities. 

 

GSEA 

 

To investigate the pathways of different biological 

processes in different molecular subtypes, we used 

“GSEA” for pathway analysis: we performed gene set 

enrichment analysis using candidate gene sets from the 

HALLMARK database. 

 

Calculation of TME cell invasion abundance 

 

The CIBERSORT algorithm ascertained the pro-

portional abundances of 22 immune cells within the 

tumor tissue. Immune infiltration was gauged via the 

ESTIMATE software, while the MCP Count function 

assessed the metrics of 10 immune cells. Conversely, 

the TIMER function evaluated the metrics of six distinct 

immune cells. 

 

Prediction of responsiveness to immunotherapy 

 

The TIDE algorithm, a computational stratagem 
forecasting ICB responsiveness via gene expression 

profiling, authenticated the impact of IMS on predicting 

clinical receptivity to ICIs [84]. This algorithm 

scrutinized three cellular entities impeding T-cell 

penetration in tumors: the M2 variant of CAF, MDSCs, 

and TAMs. Moreover, it appraised two distinct tumor 

immune evasion methodologies: the compromised 

efficacy of tumor-infiltrating CTLs and the counteraction 

of CTLs due to immunosuppressive elements. 

 

qRT-PCR 

 

TRIzol facilitated the extraction of total RNA from 

pristine human HNSCC specimens and adjacent tissues, 

subsequently undergoing reverse transcription to cDNA. 

For the scope of this investigation, the patient consented 

to the surgical utilization of human tissue at the 

Quanzhou First Hospital, affiliated with Fujian Medical 

University, spanning October 2021 to November 2022. 

This endeavor received the endorsement of the Ethics 

Committee of the said institution, affirming the 

projected blueprint Quantitative real-time PCR, 

standardized to actin, was executed on the ABI 7900 

apparatus employing the SYBR Green RT-PCR assay. 

The following primers were used for PCR: AREG: 5′-

CTGTCGCTCTTGATACTCG-3′ (sense), 5′-CAGAAA 

ATGGTTCACGCT-3′ (antisense); DKK1: 5′-AACTG 

GGAGAAGATGGCT-3′ (sense), 5′-TCCTGGGGTG 

AAAGTATG-3′ (antisense); and EFNB2: 5′-ACATTC 

GGGGAACAACAT-3′ (sense), 5′-TTCAGCAAGA 

GGACCACC-3′ (antisense). 

 

Statistical analysis 
 

Analyses were executed with GraphPad Prism 5 and R 

(version 3.6.3), representing data as mean ± SD. The 

Student’s t-test assessed differential expression across 

tissues. The Cox function in R facilitated the Univariate 

Cox analysis, elucidating associations with HNSCC 

prognosis. Prognostic evaluations employed Kaplan-

Meier survival curves, with the log-rank test discerning 

the significance of disparities. A threshold of P < 0.05 

demarcated statistical significance. 

 

Data availability 
 

The data used to support the findings of this study have 

been included in this article. 
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Supplementary Table 1. Differential gene between cancer and adjacent tissues. 

 

Supplementary Table 2. Clustering results of TCGA subtypes. 

 

Supplementary Table 3. Clustering results of GSE41613 subtypes. 

 

Supplementary Table 4. Differentially expressed genes in C1 group. 

 

Supplementary Table 5. Differentially expressed genes in C2 group. 

 

Supplementary Table 6. Differentially expressed genes in C3 group. 

 

Supplementary Table 7. Results of GO and KEGG pathways for differentially upregulated genes in C3 isoforms. 

 

Supplementary Table 8. Results of one-way Cox analysis of differential genes. 

 

Supplementary Table 9. Mitochondria-associated genes. 

 


