SUPPLEMENTARY FIGURES

Sbject: hsa_circ_0139862 Query: mmu_circ_0016226

Score 904 bits(489)		Expect 9) 0.0	Identities 603/660(91%)	Gaps 0/660(0%)	Strand Plus/Plus
Query	1	GACTACCGAGTGAACA	TTTTTCTGAGACAGCAGTGGAA	TGATTCACGGCTGGCATACAGT	60
Sbjct	69	GACTACCGAGTGAATA	TTTTTCTGAGACAACAGTGGAA	TGATTCACGGCTGGCGTACAGT	128
Query	61	GAGTACCCAGATGATT	CCCTGGATTTGGATCCCTCAAT	GTTGGATTCGATTTGGAAACCG	120
Sbjct	129	GAGTACCCAGATGACT	CCCTGGACTTGGACCCATCCAT	GCTAGACTCCATTTGGAAACCA	188
Query	121	GATTTGTTCTTTGCCA	ATGAAAAGGGTGCCAATTTCCA	TGATGTCACCACTGACAACAAG	180
Sbjct	189	GATTTGTTCTTTGCCA	ATGAGAAGGGTGCCAACTTCCA	CGATGTCACCACTGACAACAAA	248
Query	181	TTGTTGCGGATTTCCA	AAAATGGCAAAGTGCTCTACAG	TATTAGACTCACCTTGACTTTA	240
Sbjct	249	TTGCTACGGATTTCGA	AAAATGGCAAAGTGCTCTACAG	TATCAGACTCACCTTGACCTTA	308
Query	241	TCTTGTCCAATGGACC	TGAAGAACTTTCCAATGGATGT	CCAGACCTGTACAATGCAGCTG	300
Sbjct	309	TCCTGTCCCATGGACT	TGAAGAACTTTCCGATGGATGT	CCAGACCTGTACAATGCAGCTG	368
Query	301	GAGAGTTTTGGGTACA	CCATGAATGACCTGATATTTGA	GTGGTTAAGTGATGGTCCAGTA	360
Sbjct	369	GAGAGTTTTGGGTACA	CGATGAATGACCTGATATTTGA	GTGGTTAAGTGATGGTCCAGTG	428
Query	361	CAAGTTGCTGAAGGAC	TCACCTTGCCCCAGTTTATTTT	GAAAGAAGAGAAGGAGCTTGGT	420
Sbjct	429	CAAGTTGCTGAAGGAT	TGACCCTGCCCCAGTTTATTTT	GAAAGAAGAGAAGGAACTTGGC	488
Query	421	TATTGCACAAAGCATT	ACAACACTGGCAAGTTTACCTG	CATTGAGGTCAAGTTTCACCTG	480
Sbjct	489	TACTGTACAAAGCACT	ACAACACTGGAAAGTTTACCTG	CATTGAGGTCAAGTTTCATCTG	548
Query	481	GAGCGCCAGATGGGCT	ACTATTTGATCCAGATGTACAT	CCCCAGCCTGTTGATAGTCATT	540
Sbjct	549	GAACGCCAAATGGGAT	ATTATTTGATCCAGATGTACAT	CCCAAGCCTGCTTATAGTAATT	608
Query	541	TTGTCCTGGGTCTCCT	TTTGGATAAACATGGATGCAGC	CCCTGCCAGGGTTGCCCTGGGC	600
Sbjct	609	TTGTCCTGGGTTTCCT	TTTGGATAAATATGGATGCAGC	CCCTGCCAGGGTCGCACTGGGC	668
Query	601	ATCACAACAGTCCTGA	CAATGACTACACAGAGTTCAGG	TTCCAGGGCATCTCTGCCAAAG	660
Sbjct	669	ATCACCACAGTCTTAA	CGATGACCACCCAGAGTTCAGG	CTCCAGGGCATCTCTGCCAAAG	728

Supplementary Figure 1. Homologous gene comparison of cGIra2. NCBI BLAST was conducted to compare the sequence similarity of cGIra2 between human genome and murine genome.

Supplementary Figure 2. Detection of cGIra2 expression in retinal tissues. (A) The expression distribution of cGIra2 in retinal tissues was detected by FISH assays. Red fluorescence represents the expression pattern of cGIra2 and blue fluorescence is DAPI. Scale bar: 20 μ m. (B) FISH assays were conducted to compare the expression pattern of cGIra2 between the microbeads-injected retinas and the saline-injected retinas. Scale bar: 20 μ m. *n* = 5 animals. (C) Western blots were conducted to detect the expression levels of the members of MAPK signaling in saline-injected retinas (Ctrl), microbeads-injected retinas (WT), microbeads-injected retinas plus Scr shRNA, and microbeads-injected retinas plus cGIra2 shRNA following 2-month after the induction of ocular hypertension. GAPDH was detected as the internal control (*n* = 4 animals; **P* < 0.05 vs. saline-injected retinas; #*P* < 0.05 between the marked group; One-way ANOVA followed by Bonferroni's post hoc test).

Supplementary Figure 3. Identification of RGCs by immunofluorescence staining with Thy 1.2 and TUJ1. Retinal ganglion cells (RGCs) derived from the newborn mouse retinas by the immunopanning-magnetic separation method. They were then stained with Thy 1.2 and TUJ1 to label RGCs. Nuclei were counterstained with 4',6-diamidino-2-phenylindole (DPAI). Scale bar: 20 μm.

Supplementary Figure 4. Detection of cGlra2 expression distribution in different groups. C57BL/6 mice received intravitreous injections of cGlra2 shRNA, scrambled (Scr) shRNA, or left untreated (Ctrl) for 14 days. The expression distribution of cGlra2 in retinal tissues was detected by FISH assays. Red fluorescence represents the expression pattern of cGlra2 and blue fluorescence is DAPI. Scale bar: Scale bar, 50 µm.

miR-144 mimic

miR-144 mimic+BCL2L11

miR-144 mimic+vector

Supplementary Figure 5. cGlra2/miR-144/BCL2L11 signaling axis is involved in regulating RGC function following hydrostatic pressure. (A-C) RGCs were transfected with Scr siRNA, cGIra2 siRNA, scramble (Scr) mimic, miR-144 mimic, miR-144 mimic plus pcDNA3.1-BCL2L11, miR-144 mimic plus pcDNA3.1 (vector) or left untreated (Ctrl) for 12 h and then exposed to hydrostatic pressure for additional 36 h. RGCs were maintained under the elevated hydrostatic pressure (70 mm Hg) to induce hydrostatic stress. CCK-8 assays were performed to detect RGC viability (A, n = 4 independent experiments). Hoechst staining and quantification analysis were performed to detect the changes of nuclei morphological characteristics of RGCs (B, n = 4 independent experiments, Scale bar: 50 μ m). Caspase 3/7 activity was performed to detect the degree of RGC apoptosis (C, n = 4 independent experiments). * P < 0.05 vs. Ctrl group; # P < 0.05between the marked group. All significance was examined using One-way ANOVA followed by Bonferroni's post hoc test.