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ABSTRACT

Ferulic acid (FA) is a well-known natural antioxidant that scavengesoxygen free radicals and alleviates
oxidative stress. This study investigated the chemopreventive potential of FA againstbovine oocyte quality
declineduringin vitro aging.Theresultsshowedthat 5 uM FAsupplementationdecreasedhe abnormality rate
of in vitro-agedbovine oocytes.In addition, FAsupplementation effectively improved antioxidant capacity by
removing excessiveROSand maintaining intracellular GSH levels and antioxidant enzyme activity. The
mitochondrial activity, mitochondrial membrane potential and intracellular ATPlevelsin agedbovine oocytes
were obviously enhancedby FA supplementation. Furthermore, FA supplementation reducedin vitro aging
inducedDNAdamageand maintained DNAstability in bovine oocytes.Moreover, spermbinding assayshowec
the number of spermthat boundto the zonapellucidaon agedbovine oocyteswassignificantlyhigherin the FA
supplementedgroup than in the Agedgroup. Therefore, FAis beneficial for maintaining in vitro-agedbovine
oocyte quality and could become a potential antioxidant for preventing bovine oocyte in vitro aging during
in vitro maturation.

INTRODUCTION [1], whilst also increasing the risk of miscarriage
and fetal malformation4]. Oocyte aging adversely
affects oocyte quality mainly in terms of morphology
and organelles as well as biochemical and molecular
perspective$5]. In terms of morphology and organelles,

aging oocytes exhibit perivitelline space (PVS) increases,

In the process of oocyte maturationvivo or in vitro,
oocytes in the metaphase of the second meiosis (Mll)
phase undergo timelated qualitydegradation if they
are not fertilized in timg1]. In vivo, the inability to

accurately predict the optimal fertilization time causes
a delay in fertilization. Consequently, the oocytes can
be retained in the oviduct after ovulation, which may
cause oocyte aginf?]. In vitro, oocytes need to be
cultured to maturation before micromanipulation and
vitro fertilization. Nevertheless, variations in individual
oocytes result in distinct maturation durations, and
extending the culture time is inevitable. This, in turn,
contributes to oocyte agirg].

Oocyte aging substantially diminishes fertilization

first polar body degradatiof6], zona pellucida (ZP)
hardening[7], chromosome disordefj8] and spindle
morphological abnormalitief®]. Fromthe biochemical
and molecular perspectiveaging is often accompanied
by excessive intracellular ROS accumulati¢io],
GSH levelsreduction[11] and C&" oscillation signal
disorder[12]. There is much eglence revealing the close
relationship between aging and R{1Si 15]. Excessive
accumulation of ROS causes oxidative damage to DNA,
proteins, and lipids, and the accumulation of oxidative
damage is a common feature of agii6i 18]. As a

rates and subsequent embryonic development potential matter of factaginginduced oxidative damage typically

www.agingus.com

12497

AGING


mailto:liangshuang85@jlu.edu.cn
mailto:yuan_bao@jlu.edu.cn
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/

results in the malfunction or deactivation of multiple
enzymes, which in turn causes DNA damage. The
effects of DNA damage are varied. The blockage of
gene transcription and DNA replication can result in
various adverse effects, including cellular dysfunction
or apoptosi$19]. With the gradual deepening of research
on aging, especially oocyte aging, it has been found
that supplementation with antioxidants durimgvitro
aging period can effectively delay oocyte aging, such as
melatonin and coenzyme Q[Z0i 23].

Ferulic acid (FA; 4hydroxy-3-methoxycinnamic acid)

is a natural antioxidant that is widely present in the
cell walls of monocotyledonous plan{24]. It mainly
prevents the occurrence of oxidative stress by scavenging
excessive intracellular ROR5]. In addition, FA has
been shown to have antiaging effel@6]. Since aging

is often accompanied by oxidative stress [10], we hypo
thesized that FA can delay oocyte aging and improve
oocyte quality by resisting oxidative stress.

Here, we investigated the effect of FA on the abnormality
rate of aging in bovine oocytes and evaluated the anti
oxidant capacity, mitochondrial activity and membrane
potential (MMP), ATP levels, apoptosis and sperm
binding capacity ofin vitro-aged bovine oocytes. Our
results will help to clarify the molecular mechanism of
oocyte quality control and provide some data support
and reference value for delaying oocyte aging and
improving animal reproduction.

RESULTS

FA palliates aginginduced oocyte morphological
anomalies

After 20022 h of in vitro culture, the oocytes were
matured and categorized as the Fresh group. The culture
time was prolonged to achiewe vitro aging for 6 h,

12 h, 24 h and 36 h. These oocytes were setl
categorized as the Aged group (Figure 1A). Here, we
detected the abnormality rate of oocytes. In this study,
oocytes with a very granular PVS, large PVS, first
polar body degradation, or nonuniform cytoplasm were

To explore the effect of FA on the abnormality rate of
oocytes duringn vitro aging, different concentrations
of FA (0, 2.5, 5, 10 and 2QM) were supplemented
during in vitro aging process. As shown in Figure 1D,
compared with the control group (72.74 + 1.41%s
179), the 2.5, 5 and 1M FA treatment groups had
significantly lower abnormality rates of aging oocytes
(2.5uM: 63.36 + 1.38%n = 143,P < 0.05; 5uM: 47.93

+ 1.30%,n = 199,P < 0.001; 10uM: 5908 + 2.64%,
n=192,P < 0.001). Among them, the abnormality rate
of aging oocytes in the M treatment group was the
lowest. Therefore, a concentration gfildl was selected
for subsequent studies.

The ZP thickness and PVS size are important indicators
for evaluating whether oocytes are abnormal and for
evaluating subsequent embryonic development. kexe,
used existing evaluation methods to calculate the above
two indices (Supplementary Figure [R)]. The results
were shown in Figure IHEG. Compared with those in
the Aged grouithickness12.64 + 0.83um, n = 25; size:
3.83% 1.64um, n = 36), the thickness of théP (11.82

*+ 1.22um, n = 20, P < 0.05) wassignificantly reduced,

the size of the PVS (3.65 £ 1.9n, n = 26) showed no
obvious change in the FA treatment group and higher
than those in the Fresh group (thicknekk.70 + 1.36
pm, n = 22; size:2.42 + 1.34um, n = 31). The above
resultsshowed that FA could effectively alleviate aging
induced bovine oocytes morphologiedinormality.

FA relieves aginginduced oocyte oxidation resistance

To explore the effect of FA on the antioxidant capacity
of in vitro-aged oocytes, DCFH and CMF2HC were used
to detect intracellular ROS and GSH levels, respectively.
As shown in Figure 2P2C, compared with those in
Freshgroup (ROS:1.00 = 0.03,n = 51; GSH: 1.00 +
0.02, n = 64), the ROS levels in Aged groupere
significantly increased (3.36 + 0.21= 50,P < 0.001),

and the GSH levels were significantly decreased (0.61 £
0.02,n=52,P < 0.001). After FA supplementation, the
levels of ROS in aged oocytes decreased significantly
(1.18 £ 0.05n = 39,P < 0.001), and the levels of GSH
increased significantly (0.76 + 0.08= 69,P < 0.001).

considered as abnormal oocytes based on the observed To further explore the effect of FA on the antioxidant

oocyte morphology (Figure 1B). As shown in Figure 1C,
there was a positive correlation between the abnormality
rate of oocytes and the timeinfvitro culture. Compared
with that of the Fresh group (25.78 + 2.83f%6+ 93),

the abnormality rates of oocytes aged for 12 h and
above were significantly increasenh (vitro aging for

12 h:59.03+ 1.46%,n = 109,P < 0.001; 24 h69.13 +
3.77%,n = 114,P < 0.001 and 36 M83.78+ 2.30%,n =

97, P < 0.001). In order to ensure the proper conduct
of subsequent experiments, vitro aging for 12 h was
selected for further studies.

capacity of aging oocytes, we detected intracellular
CAT and SOD activity. As shown in Figu®, 2E, the
activity of CAT (0.29 £ 0.88P < 0.001) and SOD (0.90

+ 0.01,P < 0.01) in the oocytes of the Aged group was
significantly lower than that in the oocytes of the Fresh
group CAT: 1.00 £ 0.03; SOD1.00+ 0.02), and the
activity of the above two enzymes was significantly
increased after FA supplementati@@AT:0.63 + 0.13,

P <0.05; SOD:0.96 + 0.0R < 0.05).The above results
indicated that FA could enhance the antioxidant capacity
of aging oocytes.
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Figure1l. FA palliates aginghnduced oocyte morphological anomalie¢d) Timeline diagram oh vitro-aged bovine oocytesB)
Representative images of oocyte morphological anomalies (a very granular PVS, large Ré&rfiosidy degradation, and nonuniform
cytoplasm). ©) The abnormality rates @i vitroaging for 6 h, 12 h, 24 h and 36 h groupRs.4. O) The abnormality rates of oocytésvitro
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MMP levels in oocytes, respectively. It is known to all
that JG-1 monomers accumulate in mitochondria and
form red fluorescenfiJ}-aggregate®at a high MMP. At
mitochondrial transmembrane potentials depolarised at
low MMP, JG1 exists as a green fluorescent monomer

FA alleviates aginginduced oocyte mitochondrial
dysfunction

We used MitoTracker Red CMXRos and -ICdyes
to stain oocytes to detect mitochondrial activity and
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Figure2. FA relieves aginrgnduced oocyte oxidation resistancgA) Oocytes were stained with DCFH and CMF2HC to detect the
intracellular ROS and GSH levels. Scale bar: 10&®g®. B, O Relative intracellular levels of ROS and GSH in bowitges of the three

groups (Fresh, Aged and Aged + FA grollp)E)(Relative intracellular activity of CAT and SOD in bovine oocytes from the three groups
(Fresh, Aged, and Aged + FRA¥4."P<0.05,”"P<0.01, and™ P<0.001 indicate significant differences.
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(Figure 3A). As shown in Figure 38C, compared FA mitigates aginginduced cellular senescence and

with those in the Fresh groupnifochondrialactivity: DNA damage

1.00 + 0.03,n = 40; MMP:1.03 + 0.03,n = 52), the

mitochondrial activity and MMP levels of oocytes inthe  To explore the effect of FA on the cellular senescence

agedgroup were significantly decreased (mitochondrial  of aging oocytes, we detected ®/Gal activity in

activity: 0.63 + 0.03n = 44,P < 0.001; MMP:0.39 £ oocytes. As shown in Figure 4AIB, the SAb-Gal

0.02,n = 43, P < 0.001). After FA supplementation, activity of oocytes in the Aged group was significantly

the mitochondrial activity and MMP levels of aging higher than that of fresh oocytes (Agegrbup:8.05 +

oocytes were significantly increased (mitochondrial 0.26,n = 48; Fresh groupi.00 + 0.02,n = 50, P <

activity: 0.83 + 0.03n = 45,P < 0.001; MMP:0.60 % 0.001). After FA supplementation, the activity of SA

0.01,n=42,P <0.001). b-Gal in aging oocytes was significantly decreased
(2.76 £ 0.09n = 47,P <0.001).

A decrease in MMP is often accompanied by changes

in mitochondrial function, so we analyzed the intra As aging occurs, DNA damage accumulates. This will

cellular ATP levels. As shown in Figure 3D, compared reduce the stability of DNA doublgtrands, which will

with those in the Fresh group (1.00 + 0.@15 300), lead to the decrease of oocyte quality. Therefore, we
the ATP levels of oocytes in the Aged group were examined the expression of the DNA dousieand
significantly decreased (0.73 + 0.08,= 300, P < damage r e p-HIAX amora thk thnee gooups

0.001). After FA supplementation, the ATP levels of  (Figure 4C). As shown in Figure 4D, compared with
aging oocytes were significantly increased (0.92 + that in the Fresh group (41.66 = 1.61f6= 39), the
0.04,n = 300,P < 0.001). pr opor t-H2AX-pogitife oacytes in the Aged
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group was significantly higher (84.16 + 1.40fcs 52,

P < 0.001), while the positive proportion decreased to
61.22 + 5.98% after FA supplementation< 54, P <
0.01).

The above results indicated that FA reduced
vitro aginginduced DNA damage and breakage and
maintained DNA stability.

FA inhibits aging-induced oocyte apoptosis

Persistent DNA damage is a trigger for apoptosis. To
evaluate whether FA inhibited the apoptosis of aging
oocytes, we detected the protein expression levels of
cleaved caspas® Bax and Bcl2 (Figure 5). Western
blot analysis showed that the expression levels of
cleaved caspasg (1.42 + 0.07,P < 0.01) and
BAX/Bcl2 (1.54 £ 0.13P < 0.01) in aged oocytes were
significantly higher than those in fresh oocytes, while
the expression levels of cleaved caspagé.14 + 0.08,

P < 0.05) and BAX/Bcl2 (1.19 + 0.1(R < 0.05) in
aged oocytes were significantly decreased after FA
supplementation. The above results indicated that FA
supplementation could inhibit the apoptosis of aging
oocytes.
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FA improves the spermbinding ability of aged
oocytes

To explore the effect of FA on the fertilization ability of
aging oocytes, we detected the number of sperm bound
to oocytes by spernocyte binding analysis (Figure 6).
The results showed that compared with that of the Fresh
group (256.44 + 143 =27), the number of sperm bound
to the ZP of oocytes in the aged group was significantly
reduced (100.76 + 6.26, = 34, P < 0.001). After FA
supplementation, the number of -BBund sperm in
aged oocytes increased significantly (187.70 = 126,

= 23, P < 0.01). The above results showed that FA
supplementation could improve the fertilization ability
of bovine oocytes.

DISCUSSION

IVM is a significant part of assisted reproductive
technology (ART), and oocyte quality exerts an
important effect on IVM efficiency28]. When thein

vitro culture time is prolonged, the oocyte quality
decreases in a tirrdependent mannef29]. Many

studies have shawthat the optimal culture time of
bovine oocytes are 2082 h[30i 32]. Here, we extended
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Figure 4. FA mitigates agingnduced cellular senescence and DNA damag@l) Representative fluorescence images of
intracellular SAB-Gal activity in the three groups (Fresh, Aged, and Aged + FA). Scale bar: 18 3in@) Relative intracellular levels of
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the culture time to set up @amvitro aging model, which of the PVS, an increase in debris within the PVS

demonstrated the positive effect of FA ionvitro-aged [6], fragmentatiorof the first polar body[33] and
bovine oocytes. thickening of the ZH34]. In this study, we observed the
morphology of aged bovine oocytes at different culture
Extensive results haveshown that morphological time and treatment concentrations. In line with previous
abnormalities occur during IVM, especially aftex- studies, our results suggest that the abnormality rate

tendedVM period. These include a rise in the size of oocytes increases in a tidependent manner [29].
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Moreover, FA supplementation has the potential to
ameliorate the morphological abnormalities of aged
oocytes.

The balance between ROS and GSH is essential
for maintaining normal cell functiorj35]. ROS are
widely involved in biological processes such as folli
cular development, meiosis, ovulation and embryonic
developmen{36]. However, prolongedh vitro culture
time can lead to excessive accumulation of ROS in
unfertilized oocyteqg37], resulting in oxidative stress
that compromises oocyte qualif8, 39]. As a non
enzymatic antioxidant, GSH is responsible for cleaning
up the excessive ROS to maintain cellular redox balance
to alleviate intracellular oxidative stress [40] and improve
the antioxidant capacity of aged oocyfds41, 42]. In

this study, we found that FA supplementation alleviated
the increase in intracellular ROS and the decrease
in GSH caused by oocyte aging. In addition, studies
have shown that, as important members of antioxidative
defense, the activity of CAT and SOD will decrease
with the aging procespil, 43]. Meanwhile, FA can
reduce intracellular ROS levels by increasing the activity
of the above two antioxidant enzymes, thereby alleviating
oxidative stress in oocytdd4, 45]. As expected, the
activity of CAT and SOD iraged oocytes was increased
after FA supplementation. The results of the experiment

provide clear support for the statement that FA improves
in vitro-aged bovine oocyte quality by resisting oxidative
stress.

Mitochondria are the power sources of oocyte.
They enable diverse physiological activities of cells by
synthesizing ATP and have a fundamental role in
oocyte maturation, fertilization and subsequent embryo
nic developmen{46i 48]. There is mounting evidence
indicating that mitochondrial dysfunction, as a cause or
consequence of oxidative stress, is intrinsically linked
to the process of agin@9]. Studies have shown that
significant reductions in mitochondrial activity, MMP
level and ATP production in aging oocytes can severely
affect oocyte quality, which in turn leads to a decrease
in oocyte development potentiggQi 52]. Our results
showed that FA alleviated the decrease in MMP
and partially restored mitochondrial function in aged
oocytes. These results provide evidence that exogenous
antioxidant supplementation can improve mitochondrial
function in aged oocytes and thus promote oocyte
developmental potentifd2, 53, 54].

Aging-induced oocyte mitochondrial dysfunction can
easily cause DNA damage in cells55] . H2 AX,
biomarker of DNA doublestrand breaks, recruits DNA

repair proteins at the end of broken chromosomes to

Aging
«—— Ferulic acid
\
A
&2
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L Rost- ettt
! o ®SA-p-Galt MMPJATP| :
A7 \'7y SOD|
o\ r A damagel CATI /6
Apoptotosis

Figure 7. Schematic diagram of the protective action of FA am vitro-aged bovine oocytesAfter FA supplementation,
intracellular ROS, §AGal, and DNAlamagewere decreased, while intracellular GSH, activity of CAT and SOD as well as mitochondria
activity and function (MMP, ATP production) were increased in aged oocyte. These may help oocyte delay aging processvand impr

oocyte quality.

www.agingus.com

12504

AGING



repair DNA damagg56, 57]. Previous studies have
shown that aging can lead to a significant increase
in the amount
consistent with our results. After FA supplementation,
we observed a significant decrease in t2AX
positive proportion. This suggests that FA has the
potential to alleviate DNA doubistrand breaks
induced by aging and maintain the stability of DNA
doublestrands.

One of the prevalent cell responses to DNA damage is
programmed cell death, or apoptof§6, 61]. Caspase

3 is a crucial zymogen during cellular apoptosis, and
is activated by cleavage during this procd6g].
The antiapoptotic protein Bcl2 and the proapoptotic
protein BAX induce apoptosis by permeabilizing
the mitochondrial outer membrane (OMM) and then
initiating the caspase cascaf8]. Our study found
that the levels of cleaved casp&seand BAX/Bcl2

in aged oocytes were significantly increased, which
was consistent with the findings of previous studies
[64, 65]. After FA supplementation, the levels of the
above apoptosiselated proteins were significantly
reduced.These results clearly support our hypothesis
that FA canprotect oocytes againsh vitro aging
induced apoptosis.

Sperm binding ability is one of the indicators used to
evaluate the quality of oocytes. Since the complex
process of fertilization begins with the binding of
sperm to the ZH66], we evaluated the sperm binding
ability of oocytes via a spermocyte binding assay.
Here, we found that FA can increase the number of
sperm bound to aging oocytes. Studies have shown that
oocyte aging is usually accompanied by changes in the
ZP [4]. It has been confirmed in mouse oocytes that
postovulatory aging can lead to abnormal distribution
of cortical granules and ovastacin in oocytes, resulting
in premature cleavage of ZP2 before fertilization,
thus hindering the normal binding of sperm to oocytes
[67]. Therefore, we speculated that FA might improve
the binding ability of sperm by alleviating premature
exocytosis of aged oocytes.

In summary, this study revealed that bovine oocytes
in vitro aged may lead to a series of molecular events
in oocytes, including oocyte morphological abnor
malities, oxidative damage, mitochondrial dysfunction,
increasing apoptosis and decreasing speogyte
binding ability. FA supplementation could effectively
improve the quality ofin vitro-aged bovine oocytes
by improving the antioxidant capacitgmeliorating
mitochondrial function and inhibiting apoptosis. The
above results indicate that FA may be useful for
delaying oocyte aging in other mammals and provide
new ideas for improving oocyte quality (Figure 7).

MATERIALS AND METHODS

58, 59, WRIGh XS 1 n cpgpfichid afd reagents

Unless otherwise specified, all chemicals and
reagents were purchased from SigAldrich (St.
Louis, MO, USA). FA (CymitQuimica, SpairCAS:
537-98-4) was diluted with DMSO to waing
concentrations of 2.pM, 5 uM, 10 uM and 20uM.
The control group was treated with the same
concentration of DMSO.

In vitro maturation and aging of bovine oocytes

Bovine ovaries were collected from the local
slaughterhouse and transported to the laboratory within
2 hours at 37.5°C in normal saline supplemented with
1% penicillin G (75 mg/L) and streptomycin sulfate
(50 mg/L). Cumulus oocyte complexes (COCs) were
extracted from follicles with a diameter of  mm
using 10 mL disposable syringes with an-geige
needle. Under a stereomicroscope (Zeiss, Stemi 305),
oocytes wrapped in three or more intact cumulus
layers were selected, washed three times in HEPES,
placed inin vitro maturation (IVM) medium (tissue
culture medium 199 supplemented with 100 mM Na
pyruvate, 10 ng/mL EGF, 10% fetal bovine serum,
10 IU/mL follicle-stimulating hormone, 10 IU/mL
luteinizing hormone and gg / m tEstradiol), covered
with mineral oil (Sage, AR®BO0085P) and placed

in an environment under 38.5°C and 5% CO2 until
maturation. For subsequent experimentsexeriments
were performed on the basis of using 0.2% hyaluronidase
to remove the cumulus cells of naked oocytes.

In vitro aging treatment

Oocytes were cultured to maturityn(vitro culture

for 20 h), and the culture time was extended to 26,
32, 44 and 56 h to observe the abnormality rates.
Subsequent experiments were carried out on naked
oocytes.

Intracellular ROS and GSH level assay

To determine intracellular ROS and GSH levels;ytes
were treated with 2.5ug/L 2NjNjlichlorodihydroflue
rescein diacetate (DCFHB0033 Beyotime, Ching or

10 uM 4-chloromethyi6,8-difluoro-7-hydroxycoumarin
(CMF2HC; C12881 Invitrogen,USA) and incubated in
PBSPVA medium at 37°C for 30 min. After washing
the oocytes in PBEVA three times, the fluorescence
intensity of each group of oocytes was captured by
using a fluorescence microscope (Nikon, $2B) and
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photographed. The fluorescence intensity was analyzed calculated according to the measured value and the
using ImageJ software (NItStapleton, NYUSA). standard curve.

Superoxide dismutase and catalase activity assay Intracellular senescencea s s o c i -gatacodidase
(SA-b-gal) activity assay

The superoxide dismutase (SOD) activity and catalase

(CAT) activity were measured using a WSTtotal Intracellular SAb-gal activity was measured by
superoxide dismutase detection Kefyotime,S101S) using a Cellular Senescence Detection KEPIDER
and a catalase detection KBG0205 Solarbio, China b G a$G03 Dojindo, Japajn Briefly, oocytes were

After preparing the standard reaction solution and ~Cultured in an environment under 38.5°C and 5%
curve, 40 oocytes were dissolved in the relevant lysis C€O2 for 1 h after adding 1 mL of Bafilomycin Al
buffer and incubated with the reaction buffer for 30 ~ Working solution. Subsequently, 1 mL of SPIDER
min. Finally, the absorbance values were measured P Gal ~working solution was
by a microplate reader (SpectraMax i®ulti-Mode were cultured in an environment under 38._5°C a_nd
Detection Platform, Molecular devices, China), and 9% CO2 for 30 min. After washing three times in

the activity of SOD and CAT was calculated based on PBSPVA, the fluorescence intensity of each group
the absorbance values and standard curves. of oocytes was captured by fluorescence microscope
and photographed, and the fluorescence intensity was

Mitochondrial activity assay analyzed by ImageJ software.
To assess mitochondrial activity, oocytes were Sperm binding assay
incubated in the IVM medium accompanying
MitoTracker Red CMXRos (Invitrogen, M7512) at
37°C for 30 min. After washing three times in PBS
PVA, the fluorescence intensity of each group of
oocytes was captured llpiorescence microscope and
photographed, and the fluorescence intensity was
analyzed by ImageJ software.

Straw frozen semen was removed from liquid
nitrogen and thawed. The purified sperm were
obtained by density gradient centrifugation on
Percoll and resuspended so that the sperm density
was 1 x 1&mL. Oocytes and resuspended sperm
were caeincubated in IVF drops in an environment
under 38.5°C and 5% CO2 for 1 h. Then, they were
fixed in PBSPVA containing 4% paraformaldehyde
MMP assay for 30 min. After fixation, PBSPVA was used to

) ) wash three times, after which the samples were
To determine the level of MMP, oocytes were incubated  ansferred to 1Qug/mL Hoechst 33343 to label the
in PBSPVA containing 2uM 5,5\§,6Njetrachlore spermatidnuclei. Afterward, the stained spewocyte
1,IN3,Metraethylbenzimidazolylcarbocyanine iodide  complexeavere mounted onto glass slides, examined
dye (JG-1; Beyotime C2006) at 37°C for 30 min. After and photographed by a microscope under fluorescent

washing the oocytes in PB®SV/A three times, images light. The sperm number was analyzed by ImageJ
were captured by using a fluorescence microscope, and goftware.

the fluorescence intensity was analyzed by using ImageJ
software. The average MMP of oocytes was calculated  |mmunofluorescence staining
as the ratio of red fluorescence intensity (corresponding

to activated mitochondria) to green fluorescence Oocytes were fixed in PBBVA containing 4%

intensity (corresponding to inactive mitochondria). paraformaldehyde for 30 min and permeabilized in
0.3% Triton X100 at room temperature for 15 min. The
Intracellular ATP levels assay oocytes were then blocked in PBBYA containing 3%

BSA at room temperature for 2 hours. Next, the oocytes
Intracellular ATP levels were measured using an ATP  were incubated with a primary ai2AX antibody
assay kit (Beyotime, S0027). Briefly, 50 oocytes were (9718S; CST, USA) at 4°C overnight. After first
collected from each group into a 1.5 ml centrifuge tube antibody incubation, the oocytes were washed three

containing 45uL of lysis buffer. The cells were lysed times in PBSPVA, and the oocytes were incubated
by ultrasound and centrifuged at 12,0@® for 5 min with goat antirabbit IgG (CST; 4413S for H2AX

at £C. The supernatant was taken for subsequent staining) at room temperature for 2 hours. Afterward,
determination. Then, 10QL of ATP working solution the oocytes were transferred to P@/mL Hoechst
and 20puL of supernatant were added to a-\@éll 33343 at room temperature for 15 min. Fluorescence
opaque plate, and the mixtures were measured by a microscopy was used to determine the positivity and
microplate reader. The intracellular ATBvels were negat i ¥H2AKy of o
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Western blot FUNDING

For Western blotting, 70 oocytes were collected This study was supported by the National
and lysed in SDS lysis buffer (40% ddH20, 20%  Natural Science Foundation of China (U20A2053 and
glycerol, 20% SDS, 12.5% 0.5 M T#i4Cl, 20 mM U22A20509) and the Modern Agricultural Industry

b-mercaptoethanol and trace bromophenol blue) and Technology System (CARSY).

incubated in a 95°C metal bath for 10 min. Next, the

total protein was separated by sodium dodecyl sulfate REFERENCES

polyacrylamide gel electrophoresis (SIPAGE) and

transferred to a polyvinylidene fluoride membrane 1. Lord T Aitken RJOxidative stress and ageing of the

(Millipore, Billerica, MA, USA). Blocking buffer postovulatory  oocyte. Reproduction 2013
(WLAO66a, Wanleibip Ching was used to block 146:R217-27.
the transferred membrane, and the membrane was https://doi.org/10.1530/REP.3-0111

i ncubated overnight wi-t h f
actin (CST, 4970T), Bcl2 (Proteintech, 1278RP),

PVBDL395@ugBt | bodi es against

BAX (Proteintech, 50592-lg) and Caspas@ (CST, 2. DiNisio VAntonouli S Damdimopoulou PSalumets

9662S) at 4°C. After washing in TBST 3 times for A Cecconi S a_nd SIERR In vivo an_d n vitro

10 min each time, the membrane was incubated with postovulatory aging: whefime worksagainst oocyte

goat antirabbit IgG (CST, 7074S) at room temperature quality?J ,ASS'St Reprod GeneD22 39:905-18.

for 1 hour. The images were analyzed with a Tanon hitps://doi.org/10.1007/510818022.0241 8y

5200 image analyzer (Tanon, China), and ImageJ PMID35312936

software was used for visualization and analysis 3. Niu YJZhou W Nie ZW Zhou D Xu YNOck SAYan
CG Cui XSUbiquinot10 delays postovulatory oocyte

Statistical analysis aging by improving mitochondrial renewal in pigs.
Aging(Albany NY)2020 12:1256-71.

All the above experiments were repeated at least three https://doi.org/10.18632/aging.102681

times. The statistical results are expressed as the mean + PMID31958774
standard error of the mean (SEM). The total number

. ) . 4. Miao Yl.Kikuchi KSun QYSchatten HOocyte aging:
of oocytes used in each experiment (n) is shown by the
bar. The number of independent repetitidRsi$ shown ceIIuIa_r and -molecular char_wg_gs, developmental
in the diagram annotation. Statistical analysis was per Botgntnalzoggdls.;v;réssal possibility Hum - Reprod
formed by oneway analysis of variance (ANOVA). All htFt) ;idoi or /16 1093/Humu 4/dmp014
statistical analyses were performed using SPSS version PI\/IIJID.1942.9534 : = =
22.0 (IBM, Chicago,IlL, USA) software. Significant ==
differences are expressed aB € 0.05), ("P < 0.01) 5. Takahashi Tigarashi HAmita M, Hara SMatsuo K
and (" P <0.001). Kurachi H Molecular mechanism of poor embryo
development in postovulatory aged oocytes: mini
AUTHOR CONTRIBUTIONS review.J Obstet Gynaecol R&013 39:1431-9.
https://doi.org/10.1111/j0og.12111
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Zh_ang and Y4Jing Yin an_alyzed the data and wrote the Reprod Dev2004 69:66-76.
ar_tlcle. Yu Wan_g, Hao Jiang and -Bao Z_hang help_ed https://doi.org/10.1002/mrd.20148
with th(_e analysis of the results and revised the figures PMID15278906
and article. -
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SUPPLEMENTARY MATERIALS

Supplementary Figure
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Supplementary Figure 1. Calculation method for the size of each part of the oodjteneter of cytoplasm (A) = (A1A2)/2.
Inner diameter of zona pellucida (B) = (BB2)/2. Outer diameter of zona pellucida (C) = $612)/2. Thickness of zona pellucida =(C
B)/2. Size of perivitelline space ={B)/2. Abbreviations: ZP: Zona pellucida; PVS: perivitelline space; PB: first polar body.
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