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INTRODUCTION 
 

Breast cancer is the most prevalent form of cancer 

among women, exhibiting high heterogeneity [1]. 

Triple-negative breast cancer (TNBC) is a subtype of 

breast cancer characterized by the absence of estrogen 

receptor, progesterone receptor, and HER2 expression 

[2]. Despite significant improvements in overall 

survival rates for breast cancer patients in recent 

decades, the clinical outcomes for TNBC patients 

remain poorer compared to Luminal and HER2-

enriched subtypes [3, 4]. TNBC exhibits aggressive 

biological behavior, leading to high recurrence rates, 

treatment failures, and unfavorable prognoses [3, 4]. 

Current treatment strategies for TNBC primarily 

involve surgery and chemotherapy but often fail to 

achieve satisfactory efficacy [2]. Recently, the 

combination of chemotherapy with targeted drugs or 

immune checkpoint blockades (ICBs), had shown 

promising results in improving outcomes for a subset of 
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ABSTRACT 
 

Cuproptosis is closely associated with tumor progression and plays a role in tumor immunity. However, 
there is a lack of sufficient research on establishing a cuproptosis and immune-related risk model for 
predicting the prognosis and drug sensitivity of triple-negative breast cancer (TNBC). In this study, we 
collected clinical and gene expression data of TNBC patients from the TCGA and GEO databases. Based on 
cuproptosis-related genes, we identified two distinct cuproptosis patterns associated with immune 
response through consensus clustering and enrichment analyses. Thus, we constructed a prognostic 
cuproptosis-associated immune signature (CIS) in the TCGA-TNBC cohort and validated its predictive 
capacity in the GSE81540 and GSE58812 cohorts. TNBC patients with a high CIS exhibited significantly worse 
outcomes and higher rates of immune cell infiltration. Conversely, patients in the low-CIS group exhibited 
an immunosuppressive phenotype and potentially reduced sensitivity to immunotherapy. Furthermore, we 
predicted potential therapeutic agents for the low-CIS group and validated the levels of representative 
signature genes in cell lines and clinical samples. In all, We developed a novel risk model with cuproptosis 
and immune-related genes to predict OS and characterized immune microenvironment, and drug sensitivity, 
which might facilitate individual treatment of TNBC patients. 
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TNBC patients. Nonetheless, due to the heterogeneity 

of the tumor, great challenges persist in selecting 

potentially responsive patients and overcoming drug 

resistance [5, 6]. Thus, the exploration of a novel risk 

stratification model for prognosis and treatment 

response is of utmost importance for enhancing the 

clinical management of TNBC. 

 

A new form of copper-induced programmed cell death 

termed “cuproptosis” has caused great attention from 

researchers. Copper (Cu) is an essential mineral nutrient 

within the tumor body, and its imbalance was 

implicated in various diseases, including Menkes 

disease, Wilson disease, Alzheimer’s disease, and 

cancers [7]. It has been demonstrated that copper 

directly binds to the lipoylated components of the 

tricarboxylic acid (TCA) cycle, leading to the 

accumulation of fatty acylating protein, excessive 

production of reactive oxygen species (ROS), and 

eventually cell death. Dysregulation of cuproptosis can 

affect various biological processes, such as cell 

proliferation and angiogenesis to influence tumor 

progression [8]. Thus, investigating the genes involved 

in cuproptosis regulation is of great importance [9]. 

Recent studies have demonstrated that a copper 

transporter, P-type ATPase transporter (ATP7A) can 

activate VEGFR2 signaling and angiogenesis, 

promoting cancer progression [10]. Copper transporter 

1 (CTR1) is associated with immune evasion in 

different cancer types by regulating PD-L1 expression 

[11]. Reduced expression of ferredoxin 1 (FDX1) in 

clear cell renal cell carcinoma has been linked to 

metastasis, worse outcomes, suppressed immune cell 

infiltration, and decreased expression of immune 

markers [12, 13]. Thus, cuproptosis is not only 

associated with tumor proliferation, invasion, and 

metastasis but also can affect tumor immunity. 

 

Immunotherapies such as anti-PD-1/PD-L1 and anti-

CTLA4 are important treatments for TNBC. Therefore, 

it is crucial to determine the TNBC patients who are 

sensitive to immunotherapy. It has been demonstrated 

that immune cell infiltration and immune checkpoint 

expression were closely associated with clinical benefits 

from immunotherapy [6, 14]. The expression of 

immune checkpoints such as PD-L1 in tumor samples 

serves as the most commonly used biomarker for 

predicting the potential efficacy of ICBs, as patients 

with high expression of immune checkpoints are more 

likely to obtain a favorable clinical response to 

immunotherapy [14, 15]. The tumor microenvironment 

(TME) encompasses a complex network of immune 

cells, stromal cells, and extracellular matrix components, 

and can be categorized into inflamed (hot tumor) and 

non-inflamed (cold tumor) phenotypes based on the 

infiltration of tumor-infiltrating lymphocytes (TILs)  

[16, 17]. Generally, inflamed tumors tend to be more 

sensitive to currently utilized ICBs. For non-inflamed 

tumors that may respond poorly to immunotherapies, 

molecular target therapies might be salvage treatment 

options, such as inhibitors for PI3K/AKT/mTOR 

pathway and EGFR for TNBC [18–20]. Based on these 

findings, there is an urgent need to investigate the 

association between cuproptosis and tumor immunity 

for improving individualized treatment for TNBC 

patients. 

 

However, a systematic analysis of cuproptosis and 

immune-related genes in TNBC is still lacking. In this 

study, we classified TNBC into two distinct subtypes 

based on cuproptosis-related genes. Recognizing the 

close association between cuproptosis regulation and 

tumor immunity, we are the first study to integrate 

cuproptosis-related genes with immune-related genes to 

construct a risk model for predicting immunotherapy 

efficacy, identifying potential therapeutic agents, and 

determining the prognosis of patients in triple-negative 

breast cancer. 

 

RESULTS 
 

Cuproptosis regulated patterns in TNBC 

 

The study design is presented in the flow chart (Figure 

1). We observed differential expression of 12 

cuproptosis-related genes between TNBC samples and 

paired normal tissues, indicating dysregulation of these 

genes in TNBC (Figure 2A). We further explored the 

relationship among these cuproptosis-related genes and 

found potential interactions between each gene (Figure 

2B). Inspired by above results, we hypothesized that 

TNBC might present different regulated patterns 

according to cuproptosis-related gene expression, and 

then performed a consensus clustering analysis with 

TNBC samples. The TNBC patients were divided in 

two clusters (k value = 2), named cuproptosis cluster A 

and cluster B (Figure 2C, 2D). As expected, the 

differential expression of cuproptosis-related genes 

between the two clusters indicated distinct cuproptosis 

patterns in TNBC (Figure 2E). Importantly, the overall 

survival analysis revealed the difference prognosis in 

two cuproptosis-related clusters, suggesting that 

different cuproptosis patterns were associated with the 

clinical outcome of TNBC patients (Figure 2F). 

 

Identification of cuproptosis and immune-related 

genes 

 

To further investigate the effect of cuproptosis in TNBC, 

we firstly identified the differentially expressed genes 

(DEGs) between cluster A and cluster B (Figure 3A and 

Supplementary Table 1). Subsequently, through a 
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Figure 1. Flow chart of our study. 
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Figure 2. Identification of different cuproptosis patterns in TNBC. (A) The expression of twelve cuproptosis-related genes in normal 

and TNBC tissues from TCGA data. (B) The correlation network between twelve cuproptosis genes in TNBC. (C) Cumulative distribution 
function (CDF) and relative change in the area under the CDF curve (CDF Delta area) of consensus clustering based on cuproptosis-related 
genes. (D) Unsupervised consensus clustering (k = 2) divides TNBC samples into cluster A and cluster B based on 12 cuproptosis-related genes. 
(E) The different expression of twelve cuproptosis genes between two clusters displayed with a heatmap. (F) KM curves of overall survival for 
the two cuproptosis clusters. (* P<0.05, **P< 0.01). 
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Figure 3. Identification of cuproptosis and immune-related genes in TNBC. (A) Volcano plot exhibiting the differentially expressed 

genes (DEGs) between the two cuproptosis clusters. (B) Screening 207 prognosis DEGs through the intersection of DEGs and prognostic genes 
in TNBC. (C) Enrichment analysis with GO and HALLMARK pathways based on 207 prognosis DEGs. (D) Identification of 20 prognostic DEGs 
associated with GO_IMMUNE_RESPONSE and immune infiltrated cells. (E) The correlation heatmap of 20 immune genes with 12 cuproptosis 
genes. (* P<0.05, **P< 0.01). 
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univariate Cox and intersection analysis, 207 

prognostic DEGs were used to investigate the 

association between cuproptosis and biological 

characteristics of TNBC (Figure 3B). The Gene 

Ontology (GO) and HALLMARK analysis revealed 

that the genes were significantly enriched in 

HALLMARK_INTERFERON_GAMMA_RESPONSE 

and GOBP_IMMUNE_RESPONSE (Supplementary 

Table 2). The results above indicated the potential 

involvement of immune-related mechanisms in 

cuproptosis (Figure 3C). 

 

Furthermore, we identified 20 prognostic DEGs which 

overlapped with the GO_BP_IMMUNE_RESPONSE 

gene set and correlated with immune cell infiltration in 

TNBC by the TIMER algorithm (Figure 3D). We also 

validated the significant correlation between these 20 

prognostic DEGs and the 12 cuproptosis-related genes 

(Figure 3E). Therefore, we considered these 20 genes as 

cuproptosis and immune-related genes (CIRGs) which 

provided an opportunity for us to recognize the 

interaction between cuproptosis and tumor immunity.  

 

Construction of prognostic cuproptosis and immune-

related gene signature 

 

The prognostic value of CIRGs were visualized by the 

forest plot (Figure 4A). Then, LASSO-Cox method 

successfully selected nine hub genes to construct a 

cuproptosis and immune related signature (CIS) and 

divided TNBC patients into high- and low- CIS groups 

according to the score of each TNBC patients (Figure 

4B). The coefficient of each hub gene was displayed by 

the Lollipop plot (Figure 4C). The different mRNA 

expression profile of nine hub genes in high- and low-

CIS groups were displayed by a heatmap (Figure 4D). 

Importantly, the overall survival of TNBC patients in 

high-CIS group was significantly better than low-CIS 

group in the TCGA cohort (Figure 5A). In addition, the 

area under curve (AUC) values of 1, 3, 5-year ROC 

curved were larger than 0.7, suggesting a satisfied 

predictive accuracy of CIS score for TNBC prognosis 

(Figure 5B). The distribution of patients with different 

survival status and CIS score also suggested that a high 

CIS score was associated with a worse outcome (Figure 

5C). Consistently, the predictive ability of CIS was 

validated in GSE81540 and GSE58812 cohorts 

(Supplementary Figures 1A, 1B, 2A, 2B). The overall 

survival analysis showed poorer prognosis in high-CIS 

group, compared with low-CIS group, and the ROC 

curves indicated the high predictive accuracy of CIS for 

predicting TNBC overall survival (AUC value of 1-, 3-, 

5-year OS was 0.705, 0.815 and 0.786 respectively) in 

GSE81540 cohort (Supplementary Figure 1A, 1B) and 

(AUC value of 1-, 3-, 5-year OS was 0.869, 0.752 and 

0.763 respectively) in GSE58812 cohort 

(Supplementary Figure 2A, 2B). The distribution of CIS 

score and survival status of patients showed that higher 

CIS score was related to poorer prognosis in the 

validation set (Supplementary Figures 1C, 1D, 2C, 2D). 

In conclusion, these results revealed that CIS had a 

robust performance to predict prognosis of TNBC.  

 

CIS is an independent prognostic factor for TNBC 

 

To identify the clinical factors associated with the 

prognosis of TNBC, we used univariate and 

multivariate Cox regression analysis to estimate the 

hazard ratio of CIS score and common 

clinicopathological features in TCGA-TNBC cohorts. 

The results of univariate Cox regression analysis 

showed that CIS was a strong risk factor for OS in 

TNBC patients (In TCGA cohort, Hazard Ratio (HR): 

3.57, 95% Confidence Interval (CI): 2.26-5.66, P < 

0.001, Figure 5D; in GSE81540 cohort, HR: 1.82, 95% 

CI:1.29-2.77, P = 0.004; Supplementary Figure 1E). 

The results of multivariate Cox regression analysis 

demonstrated that CIS score was an independent 

prognostic factor for TNBC patients after adjusting with 

clinical features (In TCGA, HR: 3.02, 95% CI: 1.81-

5.04, P < 0.001 (Figure 5E); in GSE81540 cohort, HR: 

1.02, 95% CI:1.32-1.87, P = 0.001; Supplementary 

Figure 1F). Thus, the above results indicated that CIS 

was an independent and effective prognostic factor for 

overall survival of TNBC patients. A nomogram was 

constructed based on CIS and prognostic clinical 

characteristics to predict 1-, 3-, and 5-year OS of 

individual TNBC patient to promote the application of 

CIS in clinical practice (Figure 5F). As expected, the 

high-nomogram total point was associated with a worse 

outcome in the TCGA-TNBC cohort (C-index = 0.829, 

P < 0.001). The calibration curves were highly 

concordance with the actual rates for 1-, 3-, and 5-year 

survival, indicating an excellent predictive capacity of 

the nomogram (Figure 5G). 

 

Association between CIS and tumor immune 

phenotype 

 

To gain insights into the immune status of individual 

TNBC patients, we firstly assessed immune cell 

infiltration and the expression of immune checkpoint 

genes in TNBC samples. The TIMER analysis revealed 

a significantly higher infiltration fraction of B cells, T 

cells CD8+ and T cells CD4+ in the high-CIS group 

(Figure 6A). Additionally, the CIS score exhibited a 

positive correlation with immune cell infiltration across 

various analyses (Figure 6B). Consistent with previous 

results, the CIBERSORT analysis showed that a high 

CIS score was correlated with high infiltration of B 

cells, T cells CD8+, T cells CD4+ and low infiltration 

of macrophages. Similar results were observed using 
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MCPcounter, xCell, EPIC, and quantiseq algorithms 

(Figure 6B). 

 

In addition, we performed ESTIMATE analysis to 

further explore the immune status of individual TNBC 

patients. We found that CIS score was positively 

correlated to estimate_score and immune_score with 

statistical significance, and high CIS score was 

associated with high stromal score and low tumor purity 

in TNBC samples (Figure 6C). These findings 

suggested that CIS was significantly associated with the 

immune status of TNBC.  

 

 
 

Figure 4. Construction of cuproptosis-related immune signature (CIS) based on the LASSO-Cox model. (A) Forest plot of hazard 

ratios manifesting the prognostic values of cuproptosis-related immune genes. (B) LASSO-Cox regression analysis for variable selection and 
construction of signature for TNBC. (C) The corresponding coefficient of nine selected genes. (D) The expression profile of nine selected genes 
in high- and low-risk group. 
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Figure 5. The clinical significance of cuproptosis-related immune signature in TNBC. (A) The Kaplan-Merier curves for overall 

survival of low- and high-risk groups. (B) The ROC curves of CIS for predicting 1-, 3-, and 5-year overall survival in the TGCA-TNBC cohort.  
(C) The distribution of TNBC patients according to CIS score and survival status. (D, E) Univariate Cox analysis (D) and, multivariate Cox 
analysis (E) of clinical factors and CIS score in TCGA cohort. (F) Construction of nomogram for predicting 1-, 3-, and 5-year overall survival of 
TNBC patients. (G) Calibration curves of the nomogram for predicting the probability of OS at 1-, 3-, and 5-years survival in the TCGA cohort. 
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Moreover, we compared the expression of immune 

checkpoint genes between high- and low-CIS group. 

CTLA4, PDCD1, TIGIT were significantly higher 

expressed in high-CIS group. In the meanwhile, 

although no statistical significance, CD274 was slightly 

upregulation in high-CIS group (Figure 6D). Generally, 

dysregulated expression of HLA signaling genes has 

been reported to play important roles in the immune 

 

 
 

Figure 6. Association between CIS and tumor immune microenvironment. (A) The boxplot of the immune cell infiltration in low- and 

high-risk groups depending on TIMER estimation. (B) The significant correlation between immune cells and CIS score in CIBERSORT, 
MCPcounter, xCell, EPIC, and quantiseq analyses. (C) Comparison of the expression of genes from the signatures of Immune_check_point, 
HLA, B_cells_Rooney_et_al., B_cells_Danaher_et_al., T_cell_Danaher_et_al., and TIP_Cancer_antigen_presentation between low- and high -
risk groups in heatmap and boxplot. (D) The correlation between CIS score and ESTIMATE algorithm evaluated scores in TNBC. (*P<0.05, **P< 
0.01, ***P< 0.001). 



www.aging-us.com 10 AGING 

recognition, immune response and immunotherapy 

efficacy [20]. In this study, a majority of genes in HLA 

signature, including CR1/2, CD19, CD22, CCR5, MS4A1, 

were highly expressed in high-CIS group than that in low-

CIS group, suggesting that the patients in high-CIS group 

might present induced immunological surveillance and 

boosted immune response that contribute to better 

response to immunotherapy (Figure 6C).  

 

Expression level of genes in immune cell signatures 

were compared between high- and low-CIS groups to 

analysis the correlation between CIS and immune cell 

related genes (Figure 6C). Most of the genes in 

B_cells_Rooney_et_al. signature were upregulated in 

high-CIS group, including BTLA, FCRL3, BANK1, 

CD79A, BLK, FCRL1, BACH2. The expression of 

genes related to T_cells_Danaher_et_al. signature were 

investigated as well in TNCB samples, several genes 

such as CD3D/E/G and TRAT1 showed higher 

expression in high-CIS group than low-CIS group. 

Moreover, genes in TIP_Cancer_antigen_presentation 

signature were highly expressed in high-CIS group. 

 

Above findings suggesting that CIS was significantly 

associated with anti-tumor immunity in TNBC, the 

patients in high-CIS group presented a higher rate of 

immune cell infiltration, higher expression of immune 

checkpoint genes and immune cell signature related 

genes, which might be more likely to benefit from 

immunotherapy, while the patients with low CIS score 

showed an immunosuppressive phenotype. 

 

Predicition of response to immunotherapy and 

target drug 

 

We further investigated whether the CIS score 

associated with the response to immunotherapy and 

predicted potential therapeutic drugs for patients in the 

low-CIS group. The TIDE algorithm was employed to 

predict the response of each TNBC patient to ICB 

treatments (Figure 7A). As anticipated, patients in the 

high-CIS group were more likely to exhibit favorable 

responses to immunotherapy (Fisher’s test, P < 0.05). 

The submap analysis further predicted that high CIS 

score might be significantly associated with anti-PD-1 

response, while a low CIS score was related to 

resistance to anti-CTLA4 treatment (Figure 7B).  

 

Since the low-CIS group might be insensitive to 

immunotherapies due to its immunosuppressive 

phenotype, we predicted the potential therapeutic small 

molecular agents for these patients. Four CTRP-derived 

compounds (KX2-391, gemcitabine, BI-2536, 

AZD8055) and four PRISM-derived compounds 

(SB743921, vandetanib, paclitaxel, BI-2536) were 

found to be sensitive in the low-CIS group (Figure 7C, 

7D). These compounds had a negative correlation with 

the CIS score and lower estimated AUC values in the 

high-CIS group (Figure 7E, 7F). 

 

Functional annotation of different CIS groups 

 

To identify the biological processes associated with CIS 

in TNBC, GO and KEGG enrichment analysis were 

used for functional annotation for patients in different 

CIS groups. In GO analysis, high enrichment of the 

immune system process (GO: 0002376) was observed 

in the high-CIS group, while the cellular process (GO: 

0009987) and metabolic process (GO: 0008152) were 

higher enriched in the low-CIS group (Figure 8A, 8B). 

The results of GSEA showed that KEGG pathways such 

as Steroid Hormone biosynthesis and Drug Metabolism 

Cytochrome P450 were highly enriched in the low-CIS 

group (Figure 8C). The immune-related pathways 

including B Cell Receptor Signaling Pathway and T cell 

Receptor Signaling Pathway were highly enriched in the 

high-CIS group (Figure 8D). Furthermore, since tumor 

metabolism was closely associated with tumor 

progression, we explored the difference of tumor 

metabolism regulation between two CIS groups by 

ssGSEA method to score 102 metabolism signatures 

based on gene expression profiles of TNBC samples 

[21]. We found that the scores of Glycogen Degradation, 

Drug Metabolism by Cytochrome P450, Steroid 

Biosynthesis and Tyrosine Metabolism were 

significantly higher in low-CIS group than high-CIS 

group (Figure 8E). Combining the results together, the 

dysregulated genes in high-CIS group mainly involved 

in regulation of tumor immunity, while genes in low-

CIS group might participate in tumor metabolism. 

 

Validating the expression of gene expression 

 

Previous studies have demonstrated that IDO1 and 

THY1 could serve as oncogenes in cancers. Similarly, 

our result predicted that IDO1 and THY1 were 

associated with high prognostic risk in TNBC patients. 

The mRNA expression retrieved from breast cancer and 

normal tissue in the TCGA cohort showed that IDO1 

and THY1 were significantly higher in TNBC samples 

than in normal samples (Figure 9A, 9C). Then, the 

results of qRT-PCR assays detecting mRNA expression 

of IDO1 and THY1 in TNBC cell lines (MDA-MB-231, 

MDA-MB-468) and normal cell line (MCF10A) were 

consistent with TCGA samples (Figure 9B, 9D). 

Moreover, we detected the protein expression of IDO1 

and THY1 in TNBC and adjacent normal tissues by 

IHC staining. These results confirmed that IDO1 and 

THY1 were upregulated in TNBC than normal cells and 

tissues (Figure 9E, 9F). In our analysis of TNBC 

scRNA-seq data, we observed elevated expression of 

IDO1 and THY1 in cluster 3 and cluster 2, respectively, 
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Figure 7. Predicting response to immunotherapy and potential therapeutic agents. (A) The distribution of the risk score and 

predicted immune therapy response based on the TIDE dataset (left). The numbers of patients who might potentially response or non-
response to immunotherapy in two risk groups for Fisher’s test (right). (B) Submap analysis predicted potential response to immunotherapy 
in low- and high-risk groups. (C) Correlation between estimated AUC values of CTRP-derived compounds and CIS score. (D) Correlation 
between estimated AUC values of PRISM-derived compounds and CIS score. (E) Comparison of AUC values of CTRP-derived compounds 
between low- and high-risk groups. (F) Comparison of AUC values of PRISM-derived compounds between low- and high-risk groups. (*P<0.05, 
**P< 0.01, ***P< 0.001).  



www.aging-us.com 12 AGING 

 
 

Figure 8. Functional analyses for patients in two risk groups. (A) GO analysis based on differentially expressed genes in low-

risk samples. (B) GO analysis based on differentially expressed genes in high-risk samples. (C) Identifying KEGG pathways significantly 
enriched in the low-risk samples by GSEA. (D) Identifying KEGG pathways significantly enriched in the high-risk samples by GSEA. (E) 
Comparing the scores of signatures relating to tumor metabolism between low- and high-risk groups. (*P<0.05, **P< 0.01, ***P< 
0.001). 
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Figure 9. Upregulated expression of IDO1 and THY1 in TNBC cell lines and tissue samples. (A) Significantly different expression of 

the IDO1 among breast cancer tissues and normal tissues. (B) qRT-PCR examined the mRNA expression of IDO1 gene in MCF-10A, MDA-MB-
231, and MDA-MB-468 cell lines. (C) Significantly different expression of the THY1 gene between breast cancer tissues and normal tissues.  
(D) qRT-PCR examined the mRNA expression of THY1 gene in MCF-10A, MDA-MB-231, and MDA-MB-468 cell lines. (E, F) IHC staining of IDO1 
and THY1 protein in adjacent normal tissues and TNBC tissues. (*P<0.05, **P< 0.01, ***P< 0.001). 
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compared to the other clusters (see Supplementary 

Figure 2E, 2F). 

 

DISCUSSION 
 

As a vital bioinorganic element, copper ion plays 

important roles in many biological processes, and the 

dysfunction of copper homeostasis is related to various 

pathological disorders in mitochondrial respiration, 

redox reactions, and nutrient metabolism [22]. 

Becoming a topic of interest, recent studies reported 

that an imbalance of Cu was associated with 

pathological processes of cancer and immunotherapy 

efficacy [23, 24]. In vivo, evidence revealed that 

mitochondrial copper depletion could reduce TNBC 

progression [25]. A retrospective study reported that 

serum copper could be used to predict TNBC prognosis 

[26]. Cu ion could bind to lipoacylated components of 

the tricarboxylic acid cycle in mitochondrial respiration, 

induce oxidative stress, and even lead to Cu-regulated 

cell death, named cuproptosis [27]. Therefore, 

exploring the relationships among Cu homeostasis, 

cuproptosis, and tumor biological phenotype in TNBC 

might provide new insights for individualized 

treatments.  

 

Many studies had revealed a complex interacting 

network between the genes involved in programmed 

cell death (ferroptosis, necroptosis, pyroptosis) and 

immune phenotype [28–30]. Similarly, recent studies 

have demonstrated that the genes involved in 

cuproptosis played important roles in tumor 

progression and cancer immune evasion [9]. For 

instance, significantly lower ferredoxin 1 (FDX1) 

expression in clear cell renal cell carcinoma was 

associated with metastasis, shorter OS, lower 

enrichment of invading immune cells, and expression 

of corresponding marker [13]. More importantly, 

FDX1 expression was positively correlated with the 

proportion of CD8+ T cells, and NK cells in cancer 

tissues [12]. Considering one of the most important 

copper influx transporters, copper transporter 1 (CTR-1) 

was correlated with PD-L1 expression and involved in 

immune evasion [23].  

 

Immunotherapy such as immune checkpoint inhibitors 

has emerged as a prospective treatment by targeting 

PD-1/PD-L1 or CTLA4 and achieved clinical benefit in 

patients with breast cancer [6, 31–33]. However, a non-

negligible proportion of TNBC patients showed poor 

response to ICBs due to tumor heterogeneity, and there 

was a clinical need to efficiently predict the potential 

sensitivity to immunotherapy for individual TNBC 

patients. PD-L1 expression, microsatellite instability 

status, and mutation burden have been considered to be 

inefficient to predict the potential response to 

immunotherapy [6, 34, 35]. Increasing evidence 

indicated that risk models constructed with genes 

associated with programmed cell death and tumor 

immunity could stably and efficiently predict survival 

outcomes and potential clinical benefits from 

immunotherapy [30, 36]. Therefore, our work 

comprehensively analyzed the correlation between 

immune response and cuproptosis in TNBC to improve 

the selection of patients for immunotherapy. 

 

In this study, we first distinguished two clusters with 

significantly different outcomes in TNBC based on 12 

cuproptosis-related genes published in a previous study 

[27]. To deeply explore cuproptosis patterns in TNBC, we 

included the genes that were dysregulated in two 

cuproptosis patterns (DEGs) and simultaneously 

correlated to the overall survival of TNBC for function 

annotation. The enrichment analysis suggested that the 

cuproptosis patterns were significantly associated with 

GOBP_IMMUNE_RESPONSE and HALLMARK_ 

INTERFERON_GAMMA_RESPONSE pathways. 

Therefore, we defined the overlapping genes of the 

GOBP_IMMUNE_RESPONSE gene set, DEGs, and 

prognosis genes in TNBC as CIRGs. Later, these genes 

were subjected to LASSO-Cox analysis and constructed 

a CIS which successfully predicted the prognosis of 

TNBC, and divided the TNBC into two distinct 

phenotypes according to immune activity and 

metabolism.  

 

As far as we know, this is the first study correlating 

cuproptosis patterns with immune response in TNBC. 

Therefore, we recognized the association between CIS 

and immune infiltrated cells, immune-related biomarkers, 

and the potential response of immune therapy. Through 

six algorithms for estimating immune cell infiltration, we 

identified that the B cells, CD4+ T cells, and CD8+ cells 

mainly infiltrated in the high-CIS group. The immune 

score and ESTIMATE score are positively associated 

with the CIS score. In addition, genes extracting from 

immune checkpoints, HLA genes, B_cells_Rooney_et_al. 

signature, T_cells_Danaher_et_al. signature, and 

TIP_Cancer_antigen_presentation signature were 

generally upregulated in patients of the high-CIS group. 

Furthermore, we performed TIDE and submap analysis 

to predict the response to immunotherapy in TNBC 

patients. These results suggested that patients with high 

CIS scores presented an inflamed phenotype and might 

be more likely to benefit from ICBs than patients in the 

low-CIS group. Based on CTRP and PRISM database, 

the patients with low CIS scores showed high sensitivity 

to several kinds of small molecular inhibitors including, 

Src kinase and tubulin-polymerization inhibitor (KX2-

391), mTOR inhibitor (ADZ8055), a PLK1 inhibitor (BI-

2536). The results also indicated that patients in the low-

CIS group might obtain better clinical benefits from 
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classical chemotherapies such as paclitaxel and 

gemcitabine, which have been demonstrated to be 

effective in many TNBC patients. Moreover, both the 

GSEA enrichment analysis and ssGSEA analysis 

based on IOBR indicated that patients in the low-CIS 

group were associated with tumor metabolisms such as 

steroid hormone biosynthesis, drug metabolism 

cytochrome P450, and retinol metabolism. The CIS 

consisted of nine hub genes with different coefficients. 

Especially, the IDO1 and THY1 showed a positive 

correlation with a signature score, reporting as 

important factors in cancers. IDO1 promotes tumor 

progression in colorectal, gastric, cervical, and breast 

cancer [37–40]. Furthermore, Michael Platten et al. 

reported that IDO1 presents an immunosuppressive 

effect by participating in regulating L-Tryptophan (Trp) 

metabolism through the kynurenine pathway (KP) [41]. 

Remarkably, promising results of IDO1 inhibitors 

have been reported in some clinical trials. KEYNOTE-

252 clinical trial reported that pembrolizumab 

combined with epacadostat, an IDO1 selective 

inhibitor showed promising anti-tumor activity in 

advanced melanoma [42]. However, large-size 

randomized clinical trials were needed for 

investigating the efficacy of IDO1 inhibitors in TNBC 

[39]. THY1, also known as CD90, has been reported to 

be correlated with poor prognosis of multiple cancers 

[43, 44]. Especially, THY1 was found to be implicated 

in immune cell infiltration in metastatic breast cancer 

[45]. The pro-tumor effects of both two oncogenes 

were validated in our study by comparing their 

expression between normal samples and four subtypes 

of breast cancer. The results suggested a significantly 

different expression in TNBC. The qRT-PCR and IHC 

provided experimental evidence at the mRNA and 

protein level of IDO1 and THY1 which might help to 

investigate the underlying regulatory mechanism of 

these two biomarkers in TNBC. 

 

In conclusion, our study confirmed two distinct 

clusters according to the cuproptosis-related gene 

expression that presented close interaction with 

immune response. We constructed a robust prognostic 

signature CIS was established to predict overall 

survival, and systematically assess its association with 

the immune cell infiltration and immune checkpoint 

gene expression in TNBC patients with different, 

which helps to distinguish the immunophenotype of 

the tumor and predict the efficacy of immunotherapies. 

What’s more, our cuproptosis and immune-related 

signature could be used to identify potential sensitive 

therapeutic agents for TNBC patients who might 

benefit less from immunotherapy, and provide 

potential molecular targets to improve the treatment 

efficacy of ICBs and development of precise therapy 

strategies in TNBC.  

MATERIALS AND METHODS 
 

Data acquisition and processing 

 

The clinicopathological information and mRNA 

expression data of TNBC were downloaded from The 

Cancer Genome Atlas TCGA (https://portal.gdc.cancer. 

gov/) and set as the training cohort. The data of 

GSE81540, GSE58812 and GSE188600 GSE58812 and 

GSE188600 were downloaded from the GEO database 

(https://www.ncbi.nlm.nih.gov/geo/) using the “getGEO” 

function in the “GEOquery” R package. Log2 

transformations were performed for all gene expression 

data. Somatic mutation and copy number variation 

(CNV) data were obtained from the TCGA database. A 

total of 156 patients from the TCGA-TNBC cohort were 

included in the training set, and 360 TNBC patients 

from the GSE81540 cohort were enrolled in the 

validation set. Cuproptosis-related genes were obtained 

from previous studies [21]. 

 

Consensus clustering 

 

Cluster analysis was performed using the 

“ConsensusClusterPlus” R package, using a 

gglomerative pam clustering with a 1-pearson 

correlation distance and resampling 80% of the 

samples for 10 repetitions. The optimal number  

of clusters was determined using the empirical 

cumulative distribution function plot. In this study, 

the TNBC patients were divided into 2 clusters based 

on the gene expression level of 12 cuproptosis-related 

genes. In detail, we used the consensus clustering 

algorithm with 1,000 iterations by sampling 80% of 

the data in each iteration. Two cuproptosis clusters 

(namely, “cluster A” and “cluster B” groups)  

were distinguished to present different cuproptosis 

statuses. 

 

The TNBC cells divided into 7 clusters through UMAP 

analysis by using “Seurat” R package. 

 

Identification of cuproptosis and immune-related 

genes 

 

The differentially expressed genes (DEGs) between 

cuproptosis cluster A and cluster B were screened  

out with limma R package with the criteria of p < 0.05, 

|Log2(Fold Change)| > 1.3. Then, the genes associated 

with the overall survival of TNBC patients in the 

TCGA cohort were identified by univariate Cox 

regression analysis with the criteria of P-value <0.05. 

The intersection of the DEGs and TNBC prognosis-

related genes included 207 prognostic cuproptosis-

related genes. Subsequently, enrichment analysis 

based on GO and HALLMARK pathways was 

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
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performed to investigate the potential biological 

functions of the prognostic cuproptosis-related genes. 

Then the genes involved in the 

GO_BP_IMMUNE_RESPONSE pathway were 

selected as cuproptosis and immune-related genes 

(CIRGs). 

 

Construction and validation of CIS scoring model 

 

Firstly, we perform univariate Cox regression analysis 

to assess the prognostic value of 20 cuproptosis and 

immune-related genes (CIRGs) and visualized it by a 

forest plot. Then, LASSO-Cox regression was used to 

screen 9 hub genes and obtain corresponding 

coefficients for constructing the cuproptosis-associated 

immune signature CIS signature by using the R package 

“glmnet”. The calculation formula for the CIS risk score 

is shown below:  

 

1

n

i i

i

CIS coef x
=

=   

 
Where xi is the mRNA expression level of each gene and 

Coefi is the corresponding coefficient. The CIS score was 

calculated for all patients according to the formula: 

Riskscore = (-0.3088)*CLEC4E + (-0.1055)*IDO1 +  

(-0.194)*GBP1 + (-0.1523)*APOBEC3C + (0.2277)* 

TAP1 + (-0.1583)*C1R + (-0.1891)*RAB2B + (0.6039)* 

THY1 + (-0.7136)*GPLD. We assessed the reliability of 

the risk score model by predicting the OS of TNBC 

through survival curves of both the train set and 

validation set. The cut-off value of the CIS score was 

selected as the median risk score of all the patients, and 

the patients were divided into two risk groups (low-CIS 

and high-CIS) according to the cut-off value. 

 
Functional annotation and immune cell infiltration 

analysis  

 
The Gene Ontology (GO), REACTOME, and Kyoto 

Encyclopedia of Genes and Genomes (KEGG) 

enrichment in each TNBC sample were analyzed with 

the “ClusterProfiler” R package. Gene set enrichment 

analysis (GSEA) was applied to explore significantly 

correlated pathways in this study. 

 
The CIBERSORT, MCPcounter, xCell, EPIC, and 

quantiseq algorithms were used to assess the immune 

cell infiltration of high- and low-CIS groups. The 

ESTIMATE (The Estimation of Stromal and Immune 

cells in Malignant Tumor tissues using Expression) 

method was used to calculate the estimate score, 

immune score, stromal score, and tumor purity of each 

TNBC sample. The genes from immune-related 

signatures summarized in “IOBR” R package published 

in previous studies were included in our study to 

evaluated the immune phenotype of TNBC patient. The 

signatures related to tumor metabolism were also 

measured by IOBR package via ssGSEA method [21]. 

 

Prediction of potential therapeutic agents and 

immunotherapy response 

 

To predict the potential therapeutic drugs for TNBC 

patients in high- and low-CIS groups, two datasets 

(Cancer Therapeutics Response Portal (CTRP) 2.0 

database (http://portals.broadinstitute.org/ctrp/) and the 

Profiling Relative Inhibition Simultaneously in 

Mixtures (PRISM) database (https://www.theprismlab. 

org/)) were used to obtain sensitive data. The AUC was 

used in the two datasets as a standard value for the 

evaluation of drug sensitivity, with a lower AUC value 

indicating better drug sensitivity. The drug sensitivity of 

each sample was predicted by the “pRophetic” package 

by calculating the AUC value of each compound in 

every TNBC sample. The correlation between the CIS 

score and the AUC of each drug was calculated, 

potentially sensitive agents were screened based on the 

relationship between AUC and CIS with the criterion of 

Spearman r > 0.3, and components with significantly 

different AUC values between the high- and low- CIS 

groups. Potential responses to immunotherapies (anti-

PD1 and anti-CTLA4) of high- and low-risk groups 

were predicted by the Tumor Immune Dysfunction and 

Exclusion (TIDE) online Tool (http://tide.dfci.harvard. 

edu/) and Subclass Mapping method (https://cloud. 

genepattern.org/gp).  

 

qRT-PCR assays 

 

Total RNA was extracted from TNBC cells by RNAiso 

Plus (TaKaRa, Kyoto, Japan). The PrimeScript® RT 

Master Mix Perfect Real Time kit Q12 (TAKARA) was 

used to reverse transcription. PCR amplifications were 

performed with the SYBR PremixEx Taq II (TAKARA) 

and Bio-Rad system according to manufacturers’ 

protocols. All the primer pairs used in qRT‐PCR were 

listed in Supplementary Table 3.  

 

Immunohistochemistry staining 

 

We collected 20 pairs of paraffin-embedded TNBC 

tissues and adjacent normal tissues from Peking 

University Cancer Hospital, and this study has been 

approved by the Ethics committees of Peking University 

Cancer Hospital. The TNBC tissues and adjacent normal 

breast tissues were fixed with 10% formalin, embedded 

by paraffin, and sectioned. After heating in tris-EDTA 

buffer, we blocked slides using 5% goat serum and 

incubated slides with primary antibody (anti-IDO1 [1:100 

dilution, Cat No.: 13268-1-AP, Proteintech, China],  

http://portals.broadinstitute.org/ctrp/
https://www.theprismlab.org/
https://www.theprismlab.org/
http://tide.dfci.harvard.edu/
http://tide.dfci.harvard.edu/
https://cloud.genepattern.org/gp
https://cloud.genepattern.org/gp
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anti-THY1/CD90 [1: 500 dilution, Cat No.: 66766-1-Ig, 

Proteintech, China]) at 4° C overnight. Then, the slides 

were incubated with a secondary antibody. The sections 

were scanned to obtain high-resolution digital images 

using a 3DHISTECH scanner (Pannoramic, Taipei). 

Protein expression levels were evaluated semi-

quantitatively following the Allred scoring system 

guidelines and scored separately by two qualified 

pathologists [46].  

 

Statistical analysis 

 

In the present experiment, all statistical analysis was 

conducted by R 4.3. The Wilcoxon test and the 

Kruska-Wallis test were used for comparisons 

between two independent samples and comparisons 

among multiple samples for nonparametric data, 

respectively. The t-test was used for parametric data. 

P-value < 0.05 was considered statistically significant. 

Related R packages including “ggplot2”, “ggpubr”, 

“survival”, “survminer” and other related R packages 

were downloaded from Bioconductor packages or R 

packages. 

 

Data availability statement 

 

The datasets presented in this study can be found in 

online repositories. The names of the 

repository/repositories and accession number(s) can be 

found in the article/Supplementary Material 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Validation of the cuproptosis-related immune signature in the GSE81540 dataset. (A) The Kaplan-

Merier curves for the overall survival of risk groups in the validation set. (B) The predictive accuracy of signature for 1-,3- and 5-year OS in the 
validation set. (C) The distribution of TNBC patients according to risk score and survival status. (D) The different expressions of nine selected 
genes between high- and low-risk groups. (E) Univariate Cox and multivariate Cox (F) analysis of prognostic factors in TNBC patients.  
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Supplementary Figure 2. Validation of the cuproptosis-related immune signature and two genes in datasets. (A) The Kaplan-

Merier curves for the overall survival of risk groups in the validation set GSE58812. (B) The predictive accuracy of signature for 1-,3- and 5-
year OS in GSE58812. (C, D) The distribution of TNBC patients according to risk score(C) and survival status (D). (E) Identification of seven 
significant cell clusters in TNBC scRNA-seq GSE188600. (F) Validation of THY1 and IDO1 expression in different cell clusters in TNBC scRNA-seq 
GSE188600.   
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Table 1. 

 

Supplementary Table 1. The DEGs between cuproptosis cluster A and cluster B. 

 

Supplementary Table 2. The GO enrichment analysis based on prognostic cuproptosis 
related-genes. 

Gene set name 
Genes in 

gene set (K) 

Genes in 

overlap (k) 
k/K p-value FDR q-value  

HALLMARK_INTERFERON_GAMMA_RES

PONSE 
200 13 0.065 0.00000000000377 0.0000000406  

GOBP_CIRCULATORY_SYSTEM_DEVELO

PMENT 
1214 23 0.0189 0.00000000207 0.0000107  

GOBP_BIOLOGICAL_PROCESS_INVOLVE

D_IN_INTERSPECIES_INTERACTION_BET

WEEN_ORGANISMS 

1693 24 0.0159 0.00000000299 0.0000107  

HALLMARK_INTERFERON_ALPHA_RESP

ONSE 
97 8 0.0825 0.00000000889 0.0000239  

GOBP_REGULATION_OF_LOCOMOTION 1139 20 0.0176 0.0000000863 0.000186  

GOBP_POSITIVE_REGULATION_OF_LOC

OMOTION 
609 14 0.023 0.00000036 0.000603  

GOBP_IMMUNE_RESPONSE 1903 25 0.0131 ;0.000000484 0.000603  

GOBP_TUBE_DEVELOPMENT 1155 19 0.0165 0.000000496 0.000603  

GOBP_CELL_MOTILITY 1783 24 0.0135 0.000000547 0.000603  

GOBP_DEFENSE_RESPONSE_TO_OTHER_

ORGANISM 
1169 19 0.0163 0.000000594 0.000603  

GOBP_DEFENSE_RESPONSE 1795 24 0.0134 0.000000616 0.000603  

GOBP_NUCLEOBASE_CONTAINING_SMA

LL_MOLECULE_METABOLIC_PROCESS 
673 14 0.0208 0.00000117 0.00105  

GOBP_CARBOHYDRATE_DERIVATIVE_M

ETABOLIC_PROCESS 
1114 18 0.0162 0.0000013 0.00108  

GOBP_ORGANOPHOSPHATE_BIOSYNTHE

TIC_PROCESS 
595 13 0.0218 0.00000167 0.00129  

GOBP_INNATE_IMMUNE_RESPONSE 919 16 0.0174 0.00000202 0.00131  

GOBP_POSITIVE_REGULATION_OF_IMM

UNE_SYSTEM_PROCESS 
1033 17 0.0165 0.00000203 0.00131  

GOBP_CELL_ADHESION 1524 21 0.0138 0.00000206 0.00131  

GOBP_VASCULATURE_DEVELOPMENT 816 15 0.0184 0.00000221 0.00132  

GOBP_INTRACELLULAR_OXYGEN_HOM

EOSTASIS 
7 3 0.4286 0.00000254 0.00144  

 

Supplementary Table 3. Primer sequences for qRT-PCR used in this study.  

Genes Forward primer Reverse primer  

IDO1 CTGGCCAGCTTCGAGAAAGA ATCTCCATGACCTTTGCCCC 

THY1 CGCTCTCCTGCTAACAGTCTT ACTGGATGGGTGAACTGCTG 

GAPDH TGTGGGCATCAATGGATTTGG TGTGGGCATCAATGGATTTGG 

 


