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INTRODUCTION 
 

Aging is a natural biological process in which 

physiological functions gradually decline [1, 2], 

increasing the risk of disease and ultimately death [3, 

4]. Therefore, many modern researches have the main 

goal of improving health and anti-aging, especially 

developing safe therapeutic agents for age-related 

diseases. Previous studies have identified many 

longevity compounds, including resveratrol [5, 6], 
rapamycin [7], metformin [8], spermidine [9], etc. 

Herbal medicine, which have a long history in Asian 

countries, also have anti-aging character and may 

therefore affects age-related disabilities. The efficacy of 

traditional Chinese medicine (TCM) depends on the 

function of various compounds in these herbs [10–16]. 

 

Because of the herbal medicinal properties, 

phytochemicals are attracting increasingly attention as 

potential treatments for a variety of age-related diseases 

[17, 18]. NecB isolated from Nutmeg is a typical 

example. Nutmeg is the seed of the Myristica fragrans 

tree which is an evergreen tree native to the Maluku 

Islands of Indonesia [19, 20]. Nutmeg powder or extract 

has been used as a flavoring agent and is also 

commercially utilized for nutmeg essential oil and 
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ABSTRACT 
 

Phytochemicals are increasingly recognized in the field of healthy aging as potential therapeutics against 
various aging-related diseases. Nutmeg, derived from the Myristica fragrans tree, is an example. Nutmeg has 
been extensively studied and proven to possess antioxidant properties that protect against aging and alleviate 
serious diseases such as cancer, heart disease, and liver disease. However, the specific active ingredient in 
nutmeg responsible for these health benefits has not been identified thus far. In this study, we present 
evidence that Nectandrin B (NecB), a bioactive lignan compound isolated from nutmeg, significantly extended 
the lifespan of the fruit fly Drosophila melanogaster by as much as 42.6% compared to the control group. NecB 
also improved age-related symptoms including locomotive deterioration, body weight gain, eye degeneration, 
and neurodegeneration in aging D. melanogaster. This result represents the most substantial improvement in 
lifespan observed in animal experiments to date, suggesting that NecB may hold promise as a potential 
therapeutic agent for promoting longevity and addressing age-related degeneration. 
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nutmeg butter production [20–23]. In addition to being 

used as a food ingredient, nutmeg has been used in 

traditional medicine for treating various disorders in 

Indonesia and China [20, 24–28]. Mace, the outer 

covering of the nutmeg seed, is widely used as a 

flavoring agent, hair dye, folk medicine, and also has 

anti-carcinogenic [29] and anti-inflammatory activities 

[30]. Nutmeg fruits are used as herbal medicines and 

spices for the treatment of abdominal pain, diarrhea, 

oral mucosal diseases, joint pain, and insomnia. Modern 

scientific research has shown that nutmeg fruits possess 

various pharmacological activities, including anti-

inflammatory, antibacterial, analgesic, anti-anxiety, 

liver function improvement, and anti-mutagenic 

properties [30–35]. 
 

It has been demonstrated that nutmeg extract contains 

seven 2,5-bis-aryl-3,4-dimethyltetrahydrofuran lignans, 

namely Tetrahydrofuroguaiacin B, Saucernetindiol, 

Verrucosin, NecA, NecB, Fragransin C1, and Galbacin 

[36]. Among these compounds, NecB was identified as 

a pharmacologically active compound. NecB functions 

as an activator of AMP-activated protein kinase 

(AMPK) [37], and NecB-mediated activation of the 

AMPK pathway has been demonstrated to lower 

intracellular ROS levels. Therefore, NecB-induced 

protection against cellular senescence appears to be 

arbitrated through ROS scavenging via AMPK 

activation [38]. 
 

The dramatic reduction of intracellular ROS levels by 

NecB has captured our attention [38, 39]. Considering 

that intracellular ROS plays a critical role in the aging 

process [40–42], we hypothesized that NecB might 

possess anti-aging efficacy. In research, we investigated 

the anti-aging effects of NecB by supplementing it in 

the diet of wild type Drosophila. Our research results 

revealed that NecB substantially extended the lifespan 

of wild type Drosophila, showing an increase of up to 

42.6% compared to the control group and 11.5% 

compared to Rapamycin (Rap). The extent of life 

extension achieved through this experimental study is 

the most effective achieved to date among other agents. 

We strongly believe that NecB urgently needs further 

attention and research, as we believe it has made a 

potential contribution to our understanding of the aging 

process as well as its application as a potential 

therapeutic agent for longevity and age-related. 

 

RESULTS 
 

NecB considerably extended the median lifespan of 

D. melanogaster 

 

To confirm the lifespan extension effect of NecB, 

lifespan was assessed using male and female of two 

wild-type strains of D. melanogaster, Oregon-RC and 

DGRP-100, respectively. The experiments were 

performed by feeding five types of diet to 
D. melanogaster: Ctrl diet (standard cornmeal diet for 

Drosophila), Rap-50 diet (addition of 50 μg/mL 

rapamycin to a standard cornmeal diet), Rap-200 diet 

(addition of 200 μg/mL rapamycin to a standard 

cornmeal diet), NecB-50 diet (addition of 50 μg/mL 

NecB to a standard cornmeal diet) and NecB-200 diet 

(addition of 200 μg/mL NecB to a standard cornmeal 

diet) (Supplementary Table 1). The survival rate was 

calculated by counting alive flies in each group according 

to age progression (Figure 1). Differences in survival 

rates were observed from day 30 of the experiment in 

which Oregon-RC and DGRP-100 flies were reared. 

 

The median lifespan of the Oregon-RC flies in the 

NecB-200 group was 74 days for males and 76 days for 

females, which were longer than that of the Rap-200 

group (68 days for males and 74 days for females), the 

Rap-50 group (65 days for males and 67 days for 

females), the NecB-50 group (70 days for males and 72 

days for females), and the Ctrl group (61 days for males 

and 65 days for females). We found that NecB-200 

significantly increased the median lifespan of Oregon-

RC flies compared to the control group (p < 0.0001 for 

both males and females) and Rap-50 group (p = 0.0003 

for males and p = 0.0008 for females) (Figure 1A, 1B). 

The extended median lifespan of the NecB-200 group 

was also observed in DGRP-100. The median lifespan 

of DGRP-100 flies in the NecB-200 group was 74 days 

for males and 74 days for females, which was longer 

than that of the RAP-200 group (78 days for males and 

85 for females), the Rap-50 group (73 days for males 

and 76 days for females), the NecB-50 group (70 days 

for both males and females), and the Ctrl group (67 

days for both males and females). We found that NecB-

200 also significantly prolonged the median lifespan of 

DGRP-100 flies compared to the Ctrl group (p < 0.0001 

for both males and females) (Figure 1C, 1D). Not only 

has the median lifespan increased, but the maximum 

lifespan of the NecB group has also increased compared 

to the Rap group and the Ctrl group (Figure 1). As a 

result, NecB significantly extended the median lifespan 

of all wild-type flies tested—Oregon-RC males, 

Oregon-RC females, DGRP-100 males, and DGRP-100 

females—by 13, 11, 7, and 7 days, respectively, 

compared to the Ctrl group (Figure 1). Additionally, 

NecB significantly extended the median lifespan of 

wild-type D. melanogaster than rapamycin. 

 

NecB improved the locomotor decline in 

D. melanogaster during aging process 

 

Locomotion assay is a clear way to assess muscle 

function. Because the lack of locomotor capacity is an 
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important indicator of aging [43], we analyzed the 

locomotor ability of D. melanogaster by measuring 

climbing ability to assess the anti-aging effect of NecB 

(Figure 2). The Ctrl group showed a steady decline in 

locomotor activity with age progression. However, the 

locomotor activity of Oregon-RC and DGRP-100 flies 

fed with NecB showed significantly higher motility 

compared to the Ctrl group from day 30. In particular, 

the NecB-200-fed Oregon-RC male and female flies at 

90 days were found to climb the tube 1.35 and 1.28 

times faster than the Ctrl group, respectively, which was 

better than the Rap-50 group (1.23 and 1.12 times in 

males and females) and the NecB-50 group (1.11 and 

1.06 times in males and females). Likewise, the NecB-

fed DGRP-100 male and female flies climbed 1.38 and 

1.35 times faster than the Ctrl groups, respectively, 

which was better than the Rap-50 group (1.16 and 1.2 

times in males and females) and the NecB-50 group 

(1.11 and 1.17 times in males and females). Especially, 

the NecB-200-fed Oregon-RC male and female flies 

climbed 1.03 times faster than the Rap-200 group, 

respectively. Similarly, the NecB-200-fed DGRP-100 

male and female flies climbed 1.03 and 1.06 times faster 

than the Rap-200-fed group, respectively. Therefore, 

we found that the NecB had a slightly greater effect on 

increasing fly locomotion compared to the Rap. 

 

 
 

Figure 1. NecB increased the lifespan of Drosophila melanogaster. (A) Oregon-RC males, (B) Oregon-RC females, (C) DGRP-100 

males and (D) DGRP-100 females. Ctrl represents standard cornmeal medium; Rap-50 represents cornmeal medium supplemented with 
Rapamycin at 50 μg/mL; Rap-200 represents cornmeal medium supplemented with Rapamycin at 200 μg/mL; NecB-50 represents cornmeal 
medium supplemented with NecB at 50 μg/mL; and NecB-200 represents cornmeal medium supplemented with NecB at 200 μg/mL 
(Supplementary Table 1). For the lifespan assay, the survival rate of 150 flies from each group was monitored with medium change every 2 
days. Comparisons were made using log-rank tests. The p values (log-rank tests) for each strain and each sex were as follows. (A) Oregon-
RC male flies: Ctrl versus RAP-50 (p = 0.004), RAP-200 (p < 0.0001), NecB-50 (p < 0.0001), and NecB-200 (p < 0.0001), respectively. (B) 
Oregon-RC female flies: Ctrl versus Rap-50 (p = 0.0015), Rap-200 (p < 0.0001), NecB-50 (p < 0.0001), and NecB-200 (p < 0.0001), 
respectively. (C) DGRP-100 male flies: Ctrl versus RAP-50 (p = 0.0006), Rap-200 (p < 0.0001), NecB-50 (p < 0.0001), and NecB-200 (p < 
0.0001), respectively. (D) DGRP-100 female flies: CTRL versus Rap-50 (p < 0.0001), Rap-200 (p < 0.0001), NecB-50 (p < 0.0001), and NecB-
200 (p < 0.0001), respectively. The percentage of surviving flies is shown along with the maximum lifespan in each group (n = 150). 
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These results showed that NecB significantly improved 

locomotor decline during age progression. 

 

NecB maintained body weight in D. melanogaster 

during aging process 

 

Since increase in body weight is one of the important 

indicators of aging, we measured the body weight of 

D. melanogaster to evaluate its anti-aging efficacy of 

NecB. Throughout the entire experiment, the body 

weight of both Oregon-RC and DGRP-100 flies 

increased consistently (Figure 3). However, the NecB 

group maintained healthy body weight (Figure 3), as 

expected from anti-aging data for extended lifespan and 

improved locomotor decline. Total significance in the 

NecB group was observed from day 30. At 90 days, 

body weight of the NecB-200 group of Oregon-RC flies 

was 1.68 ± 0.06 mg and 2.11 ± 0.07 mg for males and 

females, respectively, which was considerably lighter 

than that of the Rap-50 group (1.86 ± 0.06 mg and 2.37 

± 0.13 mg for males and females), the Rap-200 group 

(1.68 ± 0.02 mg and 2.13 ± 0.11 for males and females), 

the NecB-50 group (1.83 ± 0.09 mg and 2.35 ± 0.12 for 

males and females), and the Ctrl group (1.99 ± 0.01 mg 

and 2.49 ± 0.09 mg for males and females). Likewise, 

the body weights of DGRP-100 male and female flies 

fed with NecB at the same time point were 1.67 ± 0.06 

mg and 2.04 ± 0.05 mg, respectively, which was 

significantly lighter than that of the Rap-50 group (1.85 

± 0.07 mg and 2.55 ± 0.06 mg for males and females), 

the Rap-200 group (1.76 ± 0.04 mg and 2.15 ± 0.11 mg 

for males and females), the NecB-50 group (1.81 ± 0.06 

mg and 2.59 ± 0.06 mg for males and females), and the 

Ctrl group (2.05 ± 0.04 mg and 2.85 ± 0.09 for males 

and females). Overall, NecB demonstrated health 

benefits not observed in the other groups. 

 

NecB suppressed eye degeneration in 

D. melanogaster during aging process 

 

Because the changes in the tissue structure of the 

Drosophila eye are indicator for assessing the complex 

 

 
 

Figure 2. NecB improved the locomotion activity of D. melanogaster. (A) Oregon-RC males, (B) Oregon-RC females, (C) DGRP-100 

males and (D) DGRP-100 females. Ctrl represents standard cornmeal medium; Rap-50 represents cornmeal medium supplemented with 
Rapamycin at 50 μg/mL; Rap-200 represents cornmeal medium supplemented with Rapamycin at 200 μg/mL; NecB-50 represents cornmeal 
medium supplemented with NecB at 50 μg/mL; and NecB-200 represents cornmeal medium supplemented with NecB at 200 μg/mL 
(Supplementary Table 1). The locomotor activity was observed on the 30th, 60th, and 90th day and indicated as performance index. The 
data are from three independent experiments, and values are shown as mean ± s.e.m. An unpaired Student’s t-test was used for the 
statistical analysis; n = 15, *p < 0.05, **p < 0.01, ***p < 0.001. 
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effects of neurodegeneration and aging [44], we 

assessed morphological changes, including eye pigment 

loss, and damage during aging (Figure 4). Across both 

wild-type strains, eye pigmentation and damage were 

first observed at day 30 in the Ctrl group, the Rap-50 

group, and the NecB-50 group, and day 60 in the Rap-

200 group. However, the eyes of Oregon-RC and 

DGRP-100 flies in the NecB-200 group remained 

virtually intact at 90 days after the feeding experiment, 

unlike the other four groups whose eye phenotypes 

changed with age (Figure 4). These results indicate 

that NecB suppresses age-dependent eye degeneration 

in aging. 

 

NecB improved neurodegeneration in D. melanogaster 

during aging process 

 

Since previous experiments showed that NecB not only 

prevents aging in D. melanogaster but also improves 

age-related symptoms, we investigated the efficacy of 

NecB on brain tissue. Vacuolar lesions in brain tissue 

are a major indicator of neurodegeneration [45]. To 

confirm the effect of NecB on age-dependent neuro-

degeneration in D. melanogaster, we examined H&E-

stained brain sections (Figures 5, 6). Compared to the 

Ctrl group, both Rap- and NecB-fed diets had fewer 

vacuolar lesions, and the effect of NecB-200-fed diets 

was prominent (Figure 5). The NecB-200 group also 

showed significant inhibition of age-related 

neurodegeneration (Figure 6). Overall, histological 

observations indicate that NecB efficiently suppressed 

age-dependent neurodegeneration. 
 

DISCUSSION 
 

Today, one of the most difficult and important scientific 

research is to extend human lifespan. Despite the 

biological process of aging being well defined, research 

on effective prevention, treatment, and treatments for 

aging is lacking [46, 47]. Among various studies

 

 
 

Figure 3. The effects of NecB on changes in the body weights of D. melanogaster. (A) Oregon-RC males, (B) Oregon-RC females, 

(C) DGRP-100 males and (D) DGRP-100 females. Ctrl represents standard cornmeal medium; Rap-50 represents cornmeal medium 
supplemented with Rapamycin at 50 μg/mL; Rap-200 represents cornmeal medium supplemented with Rapamycin at 200 μg/mL; NecB-50 
represents cornmeal medium supplemented with NecB at 50 μg/mL; and NecB-200 represents cornmeal medium supplemented with NecB 
at 200 μg/mL (Supplementary Table 1). The body weights were measured on the 30th, 60th, and 90th day. The data are from three 
independent experiments, and values are shown as mean ± s.e.m. An unpaired Student’s t-test was used for the statistical analysis; n = 30, 
*p < 0.05, **p < 0.01, ***p < 0.001. 
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Figure 4. NecB suppressed the developmental eye defects in D. melanogaster. (A) Oregon-RC males, (B) Oregon-RC females, (C) 

DGRP-100 males and (D) DGRP-100 females. Ctrl represents standard cornmeal medium; Rap-50 represents cornmeal medium 
supplemented with Rapamycin at 50 μg/mL; Rap-200 represents cornmeal medium supplemented with Rapamycin at 200 μg/mL; NecB-50 
represents cornmeal medium supplemented with NecB at 50 μg/mL; and NecB-200 represents cornmeal medium supplemented with NecB 
at 200 μg/mL (Supplementary Table 1). Light microscopy studies of the Drosophila compound eyes were performed at the 30th, 60th and 
90th days post-eclosion, and the eye damages are indicated as arrows. 

 

 
 

Figure 5. NecB inhibited age-related neurodegeneration in D. melanogaster’s brain morphology. Ctrl represents standard 

cornmeal medium; Rap-50 represents cornmeal medium supplemented with Rapamycin at 50 μg/mL; Rap-200 represents cornmeal medium 
supplemented with Rapamycin at 200 μg/mL; NecB-50 represents cornmeal medium supplemented with NecB at 50 μg/mL; and NecB-200 
represents cornmeal medium supplemented with NecB at 200 μg/mL (Supplementary Table 1). A histological analysis was performed by H&E 

staining to examine the neurodegeneration of the Drosophila brains at the 90th days post-eclosion. n = 100; scale bars: 100 m. 
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attempting to extend lifespan, caloric restriction (CR) 

has been the most effective in extending lifespan in  

a variety of species [48–51]. In addition, various 

compounds that promote longevity have been 

discovered, such as resveratrol [5, 6], rapamycin [7], 

metformin [8], and spermidine [9], but the lifespan 

extension effect of these compounds was minimal. 

 

M. fragrans has been traditionally used in Asia as a 

therapeutic agent to treat many diseases, such as 

rheumatism, muscle spasm, loss of appetite, and 

diarrhea [52, 53]. Through a screening to find new 

AMPK activators from natural products, NecB isolated 

from this M. fragrans extract activated AMPK enzymes 

in differentiated C2C12 cells and affected various 

signaling pathway, including AMPK, sirtuin, and 

mTOR signaling pathways in nearly aged HDFs [36–

39]. Therefore, we thought that NecB might be useful in 

ameliorating age-related diseases and health through 

these pathways, and finally extending human lifespan. 

 

Our results showed that the NecB-200-fed Oregon-RC 

male increased the median and maximum lifespan of 

flies by 21.3% and 33.9%, the NecB-200-fed Oregon-

RC female increased the median and maximum lifespan 

of flies by 16.9% and 42.6%, the NecB-200-fed DGRP-

100 male increased the median and maximum lifespan 

of flies by 10.4% and 39.3% and the NecB-200-fed 

DGRP-100 female increased the median and maximum 

lifespan of flies by 10.4% and 38.1%, respectively 

(Figure 1 and Supplementary Figure 1). In particular, at 

90 days, Oregon-RC male and female flies fed NecB-

200 climbed the tube 1.35 and 1.28 times faster than the 

Ctrl group and DGRP-100 male and female flies fed 

NecB-200 climbed 1.38 and 1.35 times faster than the 

Ctrl group, respectively. These results showed that 

 

 
 

Figure 6. NecB suppressed age-dependent increase in vacuole area in D. melanogaster’s brain. (A) Oregon-RC males, (B) 

Oregon-RC females, (C) DGRP-100 males and (D) DGRP-100 females. Ctrl represents standard cornmeal medium; Rap-50 represents 
cornmeal medium supplemented with Rapamycin at 50 μg/mL; Rap-200 represents cornmeal medium supplemented with Rapamycin at 
200 μg/mL; NecB-50 represents cornmeal medium supplemented with NecB at 50 μg/mL; and NecB-200 represents cornmeal medium 
supplemented with NecB at 200 μg/mL (Supplementary Table 1). The quantification of the neurodegeneration and vacuolar lesions based 
on the histological analysis of the Drosophila brains were observed at the 90th days post-eclosion. The data are from three independent 
experiments, and values are shown as mean ± s.e.m. Statistical significance was analyzed with an unpaired Student’s t-test and indicated as 
*p < 0.05, **p < 0.01, and ***p < 0.001 from three independent experiments (n = 30). 
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NecB significantly improved locomotor decline during 

age progression (Figure 2). During the entire 

experiment, the body weight of both Oregon-RC and 

DGRP-100 flies continued to increase. However, flies 

in the NecB group maintained a healthy body weight 

(Figure 3). In addition, we confirmed the effect of NecB 

in preventing aging and neurodegeneration by observing 

the tissue structure of the Drosophila eye (Figure 4) and 

brain (Figures 5, 6), which can detect the progression of 

aging and neurodegeneration. Interestingly, the eyes of 

both Oregon-RC and DGRP-100 flies in the NecB-200 

group remained virtually intact at 90 days after the 

feeding experiment, unlike the other four groups whose 

eye phenotypes changed with age (Figure 4). The NecB 

group maintained healthy brain integrity and showed 

significantly suppressed neurodegeneration in aging 

(Figures 5, 6). These results indicated that NecB 

suppressed age-dependent eye degeneration in aging 

and histological observations indicated that NecB 

efficiently inhibited age-related neurodegeneration. 

 

Therefore, the effects of NecB may lead to insights into 

the development of therapeutic agents for longevity or 

age-related diseases. Furthermore, this study shows that 

exploring the synergistic interactions of bioactive 

chemicals or nutrients in vivo offers new hope for the 

development of therapeutics to improve health as well 

as nutritional supplements for longevity. 

 

MATERIALS AND METHODS 
 

Drosophila strains and maintenance 

 

The wild-type Oregon-RC strain of D. melanogaster 

was obtained from Isaac A. Adedara (Federal 

University of Santa Maria, Santa Maria, RS, Brazil), 

and the wild-type DGRP-100 of D. melanogaster was 

obtained from the Bloomington Drosophila Stock 

Center (Indiana University, Bloomington, IN, USA). 

The D. melanogaster was maintained at 18°C on 

standard cornmeal media in a 60% humidified 

incubator with a 12 h light–12 h dark cycle as 

described previously [6]. After adaptation, the 

D. melanogaster were divided into five groups to 

transfer onto standard cornmeal media (Ctrl), cornmeal 

media supplemented with Rapamycin-50 μg/mL (Rap-

50), cornmeal media supplemented with Rapamycin-

200 μg/mL (Rap-200), cornmeal media supplemented 

with NecB-50 μg/mL (NecB-50), and cornmeal media 

supplemented with NecB-200 μg/mL (NecB-200) for 

egg laying (Supplementary Table 1), and the larvae 

were maintained at 25°C in the media. Flies were 

collected within a few hours post-eclosion and 

incubated for 48 h at 25 for maturation. The mature 

flies were transferred to their respective diets as 

indicated above and incubated in the above-mentioned 

environment. After the flies matured, fly experiments 

were conducted at 18C. 

 

Lifespan assay 

 

Lifespan assays were performed as described previously 

[6, 54]. Briefly, each of the 150 adult male and 150 

adult female flies were flipped into fresh food every 2 

days and the number of deaths was scored. The survival 

data was analyzed using the Kaplan–Meier method. 

 

Locomotion assay 

 

The locomotion assay protocol was followed as 

previously described [6]. Briefly, flies were placed in an 

empty 15 mL plastic tube, which were wrapped with 

cotton wool to prevent escape. The tube was gently 

tapped, and the flies were allowed to climb for 30 s. 

After that, the number of flies above the 10-mL mark on 

the tube and below the 2-mL mark on the tube, was 

recorded. The climbing ability of the flies was tested 

three times for each group at 30, 60, and 90 days 

post-eclosion. The performance index (PI) was 

calculated for each wild-type Drosophila group of flies 

as described previously [55]. 

 

Body weight measurements 

 

The body weight of the individual adult flies was 

measured at 30, 60 and 90 days post-eclosion as 

described previously [5, 6]. 

 

Eye imaging by light microscopy 

 

The eye degeneration analysis was followed as 

previously described [6]. Briefly, adult flies were 

collected 30, 60 and 90 days post-eclosion. Ten male 

and ten female flies of Oregon-RC and DGRP-100 

strains from each respective media were anaesthetized 

with CO2 and transferred to Eppendorf tubes to fixed by 

freezing at −80C for 3~4 h before taking light 

microscopy images of the eyes. Eye images were 

observed on an AmScope 6.7 to 45 Boom Stereo 

Dissecting Microscope (AmScope, ZM-4TW3-FOR-

8M, Irvine, CA, USA) equipped with AmScope 

Microscope Eyepiece Camera (AmScope, MU1000), 

and analyzed using Image J software. 

 

Histological examination of the Drosophila 

 

The histological examination was followed as 

previously described [6]. Briefly, the 90 days post-

eclosion, flies were anesthetized with CO2 and then kept 

at −80C for 1 h. The fly heads were fixed in 10% 

neutral buffered formalin (Sigma Aldrich, St. Louis, 

MO, USA) at room temperature, embedded in paraffin, 
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and sectioned at 6 μm. Brain sections on glass 

microscope slides were washed in hot water to remove 

paraffin, air-dried, and baked at 65C overnight. The 

brain sections were stained with haematoxylin and 

eosin, and imaged at 10 magnification using Apero 

Scan Scope FL (Leica Biosystems, Nussloch, Germany) 

under a slide scanner microscope. 

 

Statistical analysis 

 

Survival data was performed using the Kaplan–Meier 

method with data preparation using Graph Pad Prism 

version 8.1.2 software (GraphPad Software, Inc., San 

Diego, CA, USA). All comparisons were made using 

the log-rank test. Statistical analysis was expressed as 

mean ± standard error mean (s.e.m.) as indicated. 

Significant differences between two groups were 

analyzed by unpaired Student’s t-test, and p < 0.05 was 

considered statistically significant. Statistical 

significance was indicated by *p < 0.05, **p < 0.01 and 
***p < 0.001 from three independent experiments. 

 

Data availability 

 

The Data that support the findings of this study are 

available from the corresponding author upon 

reasonable request. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figure 
 

 
 

Supplementary Figure 1. Nectandrin B increased the lifespan of Drosophila melanogaster. (A) Oregon-RC males, (B) Oregon-RC 

females, (C) DGRP-100 males and (D) DGRP-100 females. Ctrl represents standard cornmeal medium; Rap-50 represents cornmeal medium 
supplemented with Rapamycin at 50 μg/mL; Rap-200 represents cornmeal medium supplemented with Rapamycin at 200 μg/mL; NecB-50 
represents cornmeal medium supplemented with Nectandrin B at 50 μg/mL; and NecB-200 represents cornmeal medium supplemented 
with Nectandrin B at 200 μg/mL (Supplementary Table 1). For the lifespan assay, the survival rate of 150 flies from each group was 
monitored with medium change every 2 days. The data are from three independent experiments, and values are shown as mean ± s.e.m. 
Statistical significance was analyzed with an unpaired Student’s t-test and indicated as *p < 0.05, **p < 0.01, and ***p < 0.001 from three 
independent experiments (n = 50). 
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Supplementary Table 
 

Supplementary Table 1. Media compositions used to maintain the D. melanogaster Oregon-RC and DGRP-100 
strains. 

Ingredient Ctrl Rap-50 Rap-200 NecB-50 NecB-200 

Corn meal (g/L) 84 83.95 83.8 83.95 83.8 

Active dry yeast (g/L) 24 24 24 24 24 

Sucrose (g/L) 47 47 47 47 47 

Agar (g/L) 8 8 8 8 8 

Molasses (ml/L) 25 25 25 25 25 

10% Methyl 4-hydroxybenzoate (ml/L) 10 10 10 10 10 

Propionic acid (ml/L) 4 4 4 4 4 

Rap-50 µg/mL 0 0.05 0 0 0 

Rap-200 µg/mL 0 0 0.2 0 0 

NecB-50 µg/mL 0 0 0 0.05 0 

NecB-200 µg/mL 0 0 0 0 0.2 

 

 


