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INTRODUCTION  
 

It is estimated that about 90% of human pre-mRNA 

undergo alternative splicing events [1, 2]. However, the 

abnormal regulation of RNA alternative splicing is a 

crucial process in carcinogenesis [3]. RNA alternative 

splicing regulators play essential roles in this process 

and can act as oncogenes, leading to cancer progression 

and metastasis by producing some RNA subtypes in key 

oncogenic pathways [4ï6]. 

 

Serine/arginine-rich splicing factors (SRSFs) are 

important splicing regulators [7], usually consisting  

of 12 members (SRSF1-12), which play pivotal roles  

in mRNAôs turnover, output, and various post-

transcriptional regulation of other splices [8]. 

Dysregulation of SRSFs expression is closely related to 

carcinogenesis. It can lead to the change of alternative 

splicing patterns of essential genes [3, 9, 10]; On the 

other hand, it can also significantly disrupt genomic 

stability, resulting in abnormal biological function [11, 

12]. However, a global and comprehensive pattern to 

elaborate the molecular characteristics, mechanisms, 

and clinical links of SRSFs in multiple human cancer 

is still lacking. Here, we attempted to systematically 

uncover the molecular features and clinical impli-

cations of SRSFs from various levels, including 

genome (somatic mutation, copy number alteration), 

mRNA expression, transcriptional regulation (DNA 

methylation, N6-methyladenosine (m6A) modification, 
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ABSTRACT 
 

As critical splicing regulators, serine/arginine-rich splicing factors (SRSFs) play pivotal roles in 
carcinogenesis. As dysregulation of SRSFs may confer potential cancer risks, targeting SRSFs could provide 
important insights into cancer therapy. However, a global and comprehensive pattern to elaborate the 
molecular characteristics, mechanisms, and clinical links of SRSFs in a wide variety of human cancer is still 
lacking. In this study, a systematic analysis was conducted to reveal the molecular characteristics and 
clinical implications of SRSFs covering more than 10000 tumour samples of 33 human cancer types. We 
found that SRSFs experienced prevalent genomic alterations and expression perturbations in multiple 
cancer types. The DNA methylation, m6A modification, and miRNA regulation of SRSFs were all cancer 
context-dependent. Importantly, we found that SRSFs were strongly associated with cancer immunity, and 
were capable of predicting response to immunotherapy. And SRSFs had colossal potential for predicting 
survival in multiple cancer types, including those that have received immunotherapy. Moreover, we also 
found that SRSFs could indicate the drug sensitivity of targeted therapy and chemotherapy. Our research 
highlights the significance of SRSFs in cancer occurrence and development, and provides sufficient resources 
for understanding the biological characteristics of SRSFs, offering a new and unique perspective for 
developing cancer therapeutic strategies. 
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miRNA), immune links, survival prediction and drug 

sensitivity, in more than 10000 patients across 33 

cancer types. Our comprehensive analysis highlights 

the pivotal roles of SRSFs in cancer occurrence and 

development. This study provides rich resources for 

understanding the biological characteristics of SRSFs, 

offering a new and unique perspective for developing 

cancer therapeutic strategies based on RNA alternative 

splicing. The flowchart and important findings of this 

study were showed in Figure 1. 

 

MATERIALS AND METHODS  
 

Genomic, transcriptomic data acquisition and 

analysis 

 

Somatic mutation data and TCGA threshold SCNA 

scores from 33 human cancer types were obtained from 

the Genomic Data Commons (https://gdc.cancer.gov/) 

and processed as previously described [13ï16]. Our 

study defined copy number variation (CNV) ampli-

fication and deletion in the same way, as described  

by Knijnenburg et al. [17]. The frequency of genomic 

alterations (including mutation and SCNA) of specific 

genes in pan-cancer were shown as heatmaps. We also 

obtained the relevant data for genomic instability 

scores, including the mutation burden, the aneuploidy 

score, the SCNA burden, loss of heterozygosity (LOH) 

score and homologous recombination deficiency (HRD) 

score from the study of Knijnenburg et al. [17], and 

defined these scores as previously described [15, 17]. 

Additionally, we obtained the batch effects-corrected 

TCGA mRNA data (FPKM-based gene expression) 

and clinical information (including the survival status 

and survival time) for patients across 33 cancer types 

from TCGA Genomic Data Commons. 

 

Differential expression analysis and unsupervised 

consensus clustering 

 

19 cancer types, with at least 3 matched  

tumours and normal samples, were selected out of  

33 cancer types for differential expression analysis.  

Differentially expressed genes (DEGs) were identified by  

Wilcoxôs rank sum test, and the p-values were adjust- 

ted by BH method. We defined the DEGs as those  

whose expression differences were associated with  

adjusted p-values < 0.05. Additionally, unsupervised  

consensus clustering was performed to identify distinct  

patient clusters based on SRSFs mRNA expression  

in all tumor samples across 33 cancer types. The 

ñConsensuClusterPlusò R package [18] was used to 

carry out the steps above. To guarantee classification 

stability, 1000-time repetitions were conducted. 

 

DNA methylation, m6A modification and miRNA 

analysis 

 

DNA methylation data files across 33 cancer types 

were retrieved from the Genomic Data Commons. We 

 

 
 

Figure 1. Workflow chart of this study. 

https://gdc.cancer.gov/
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processed this data as previously described [15].  

We calculated median beta value of these 12 SRSFs  

in each sample for better assessment of their overall 

methylation levels. Subsequently, Pearson correlation 

analysis between DNA methylation beta values and 

mRNA expression values for each SRSF was conducted 

for deeper investigation of the regulation of SRSFs 

expression by DNA methylation (| Cor |> 0 and P-

value < 0.05 was set as the threshold). Also, 23  

m6A regulators (including 13 readers, 8 writers and  

2 erasers) were collected from previously published 

papers [19ï21]. As the most common type of RNA 

modification, m6A plays an essential role in the occur-

rence and development of tumors [22]. We investigated 

the Pearson correlation coefficients between m6A 

regulators and SRSFs in 33 cancer types to further 

investigate the regulation of SRSFs expression by 

m6A methylation. Additionally, normalized miRNA 

expression data were downloaded from the Genomic 

Data Commons. We calculated the Pearson correlation 

coefficients between miRNAs and SRSFs in 33 cancer 

types to further investigate the regulation of SRSFs 

expression by miRNA. We also screened the preliminary 

results, as in the method of Luo et al. [15]. By setting 

the more stringent criteria, we further filtered the 

miRNAs acting with these SRSFs. The specific criteria 

were as follows: 1) |Pearson correlation coefficient| Ó 

0.25 and p < 0.05; 2) In at least one-third of all cancer 

types (at least ten cancer types), this miRNA acts  

on the same SRSF. This miRNA-mRNA interaction 

network was displayed using Cytoscape v3.9.0. The 

interrelationship between miRNAs and SRSFs in 

specific cancer types was also shown in a heatmap. 

 
Biological pathway activity across cancer types 

 
FPKM-based gene expression was converted into  

Z-score using the ñzFPKMò R package [23] for 

assessing the activity of 50 hallmark pathways. Gene 

Set Variation Analysis (GSVA) was performed [24]. 

In addition, Pearson correlation coefficients between 

mRNA expression of SRSFs and pathway activity 

were calculated to identify the SRSFs related to 

pathway activation or inhibition. And SRSF-pathway 

pairs were identified by the criterion we set (|Pearson 

correlation coefficient| Ó 0.20 and p < 0.05). Genes  

do not function independently. To infer the overall 

SRSFs activity, ñSRSFscoreò was calculated based on 

12 SRSFs mRNA expression within each cancer type 

as previously described [15, 25, 26]. Identification of 

biological pathways associated with the SRSFscore 

was also performed in the same way as in Luo et al. 

[15]. Here, we reported only pathways that showed 

consistent significant correlations (q-value < 0.05) in 

at least 10 cancer types. 

Immune correlation analysis 

 
The Xcell algorithm [27] was used to quantify the 

infiltrating abundance of immune cell and tumor 

microenvironment scores for all tumor samples.  

We obtained a list of immunomodulators that are 

crucial in immunotherapy from previous publications 

[14]. To investigate the interconnection between cancer 

immunity and SRSFs, we examined the Pearson 

correlation coefficients between mRNA expression of 

immunomodulators or abundance of immune cells and 

the SRSFscore across 33 cancer types. Additionally,  

in order to explore the association between SRSFscore 

and the effect of immunotherapy as well as prog- 

nosis in patients receiving anti-PD-1 or anti-CTLA4 

treatment, we further obtained the transcriptome data 

before immunotherapy and clinical information from 

two cancer immunotherapy cohorts [28, 29]. In our 

study, responders to immunotherapy included the 

patients with complete and partial remission (CR/ 

PR), while non-responders included the patients with 

stable disease (SD) and progressive disease (PD). 

Wilcoxôs rank sum test was applied to compare the 

SRSFscore between the two groups (responders and 

non-responders). 

 
Survival analysis 

 
TCGA pan-cancer clinical data were down- 

loaded from Genomic Data Commons. We used  

the ñmaxstatò R package to determine the best cut 

point for the SRSFscore, and divided the patients  

into high and low SRSFscore groups. Probability  

of overall survival was estimated by the Kaplan- 

Meier method, with differences between two  

groups tested using the log-rank test. Using the 

ñsurvivalò R package, we also performed Cox 

regression analysis to test the association between 

SRSFs expression and survival. Moreover, to validate 

the potential of SRSFscore in pan-cancer survival 

prediction, from the Gene Expression Omnibus 

(https://www.ncbi.nlm.nih.gov/geo/), we also down-

loaded gene expression data and corresponding clinical 

information for 9 gene chips (GSE14520 [30, 31], 

GSE15459 [32ï34], GSE23554 [35], GSE30219 [36], 

GSE31210 [37, 38], GSE40967 [39], GSE50081 [40], 

GSE57303 [41], GSE72094 [42]) including 5 cancer 

types (OV, LUAD, LIHC, STAD and COAD) (Table 

1). According to the corresponding annotation files,  

we converted the probes to gene symbols. For genes 

with multiple probe set signals, their values were 

averaged to generate a single expression value. In each 

independent dataset, we calculated the SRSFscore  

for each sample in the same way and investigated  

its relationship with the prognosis. 

https://www.ncbi.nlm.nih.gov/geo/
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Table 1. Information on the nine GEO datasets included 
in this study. 

Datasets Cancer types No. of patients Platforms 

GSE14520 LIHC N = 21 GPL571 

GSE15459 STAD N = 192 GPL570 

GSE23554 OV N = 28 GPL96 

GSE30219 LUAD N = 85 GPL570 

GSE31210 LUAD N = 226 GPL570 

GSE40967 COAD N = 556 GPL570 

GSE50081 LUAD N = 127 GPL570 

GSE57303 STAD N = 70 GPL570 

GSE72094 LUAD N = 398 GPL15048 

 

CellMiner  analysis 

 

We downloaded the RNA data (RNA: RNA-seq)  

of 22379 genes identified in NCI-60 cell lines and  

the related data of 20503 compounds analyzed 

(compound activity: DTP NCI-60) from CellMiner 

(https://discover.nci.nih.gov/cellminer/home.do) [43]. 

We investigated the Pearson correlation coefficients 

between Z scores of clinical trials and FDA-approved 

drugs and mRNA expression values for each SRSF. 

We reported drug-SRSF pairs showing significant 

correlation (|Pearson correlation coefficient| Ó 0.3 and 

P-value < 0.01). 

 

Statistical analysis 

 

All of the analyses were performed in the R 3.6.3 

software. A P-value < 0.05 was considered statistically 

different. 

 

Data availability 

 

The datasets generated and analysed during the current 

study are available in the TCGA GDC repository, 

(https://portal.gdc.cancer.gov), GEO repository, (https:// 

www.ncbi.nlm.nih.gov/geo/), and CellMiner repository, 

(https://discover.nci.nih.gov/cellminer/home.do). 

 

 

RESULTS 
 

SRSFs experienced prevalent genomic alterations and 

expression perturbations in multiple cancer types 

 

As previously described [44], genomic alteration was 

defined as somatic mutations and SCNA (amplification 

and deep deletion). We first determined the overall 

genomic alteration level of SRSFs in human cancer. 

The frequencies were very low, only between 1% and 

4% (Figure 2A). Among the 12 SRSFs, SRSF2 and 

SRSF6 displayed the highest alterations (4%), mostly 

from CNV amplification. While SRSF5, SRSF9 and 

SRSF10 were in the opposite situations (Figure 2A). 

SCNA counted for the majority of genomic alterations. 

Thus, we speculated that at the genomic level, it was 

SCNA, especially CNV amplification, but not mutation, 

which was the major cause of SRSFs dysregulation in 

cancer. 

 
From an in-depth exploration of the genomic alteration 

pattern across 33 cancer types, we observed a low 

overall average mutation frequency of SRSFs from  

0 - 7.53%. Uterine Corpus Endometrial Carcinoma 

(UCEC), with a higher global mutation burden [45], 

presented higher mutation frequencies in all 12  

SRSFs, while Testicular Germ Cell Tumors (TGCT) 

and Pheochromocytoma and Paraganglioma (PCPG) 

lacked any mutation (Figure 2B). SRSF10 was slightly 

mutated (0.75%) only in UCEC, but not in other 

cancer types. Analogously, in LAMA, only SRSF2 

experienced somatic mutation (2.14%). We noted that 

individual SRSF exhibited a cancer-type-dependent 

CNV amplification or deep deletion pattern (Figure 

2C, 2D). For example, SRSF1 and SRSF2 presented 

relatively higher CNV amplification in the vast majority 

of cancer types, with the lack of deep deletion. SRSF12 

showed higher deep deletion in DLBC (10.64%) and 

PRAD (13.96%) (Figure 2D). Interestingly, among 

these SRSFs, SRSF6 displayed higher amplification  

in digestive tract tumors, such as ESCA (5.52%), 

STAD (8.77%), COAD (12.15%) and READ (19.57%) 

(Figure 2C). 

 
A thought-provoking question is whether these  

DNA alterations influence the expression of SRSFs. 

Thus, we investigated the expression perturbations  

of 12 SRSFs across 19 selected cancer types (Figure 

3A). As expected, the SRSFs with CNV amplification 

displayed significantly higher expression in tumor 

tissues compared to normal ones (e.g., SRSF1, SRSF2, 

https://discover.nci.nih.gov/cellminer/home.do
https://portal.gdc.cancer.gov/
https://discover.nci.nih.gov/cellminer/home.do
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SRSF3, and SRSF6). In addition, we also noticed  

that despite CNV amplification or deep deletion in 

some SRSFs, there was no corresponding increase  

or decrease in mRNA expression level. For example, 

SRSF12 displayed CNV deep deletion in LIHC, LUAD, 

and PRAD; however, showing higher expression  

in cancer tissues. It is not unique, for example, the  

CNV alteration of SRSF10 in CHOL and its mRNA 

expression was also not synergistic (Figures 2D,  

3A). We admit that gene expression is profoundly 

affected by CNV amplification and deletion [46].  

Our findings suggested that specific to individual 

cancer types or genes, this relationship may not be 

fully established. We therefore believe that the CNV 

alterations are only one of the mechanisms, but not 

only, leading to expression perturbations of SRSFs. 

Taken together, the results demonstrate a picture of 

highly heterogeneous genetic and expression alteration 

of SRSFs across cancer types, suggesting that SRSFs 

dysregulation plays a significant role in different 

cancer contexts. 

 

Cluster analysis based on the pan-cancer SRSFs 

expression profiles identified two patient subgroups 

with significant genomic heterogeneity 

 

To gain an insight into the integrated landscape of 

SRSFs expression, an unsupervised consensus clustering 

of all tumor samples from TCGA was performed, with 

the global expression pattern of SRSFs as the basis. Two 

 

 

 

Figure 2. The genomic alterations of SRSFs in human cancer. (A) Genomic alterations [non-silent mutation and SCNA] landscape in 
the SRSFs in 33 cancer types. (B) Distribution of mutation frequencies across cancer types. (C, D) Distribution of SCNA (C: CNV amplification; 
D: CNV deep deletion) frequencies across cancer types. The darkness of color is proportional to the frequency. 


