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ABSTRACT

As critical splicing regulators, serine/argininerich splicing factors (SRSFs)play pivotal roles in
carcinogenesisAs dysregulationof SRSFmay confer potential cancerrisks, targeting SRSFsould provide
important insights into cancertherapy. However, a global and comprehensivepattern to elaborate the
molecular characteristics,mechanisms.and clinical links of SRSF# a wide variety of human canceris still
lacking. In this study, a systematic analysiswas conducted to reveal the molecular characteristicsand
clinical implications of SRSFgovering more than 10000 tumour samplesof 33 human cancertypes. We
found that SRSF®xperienced prevalent genomic alterations and expression perturbations in multiple
cancertypes. The DNA methylation, m6A modification, and miRNA regulation of SRSFsvere all cance
context-dependent. Importantly, we found that SRSFwere strongly associatedwith cancerimmunity, and
were capable of predicting responseto immunotherapy. And SRSF&ad colossalpotential for predicting
survival in multiple cancertypes, including those that have receivedimmunotherapy. Moreover, we alsc
found that SRSFsould indicate the drug sensitivity of targeted therapy and chemotherapy.Our researct
highlightsthe significanceof SRSF81 canceroccurrenceand development,and providessufficient resource:
for understanding the biological characteristicsof SRSFspffering a new and unique perspective for
developingcancertherapeutic strategies.

INTRODUCTION transcriptional regulation of other splice$8].
Dysregulation ofSRSFE expression is closely relatem

It is estimated that about 90% of human -prRNA carcinogenesidt canlead to the change of alternative

undergoalternative splicingevents[1, 2]. However, the splicing patterns of essential gern8s 9, 10]; On the

abnormal regulation of RNA alternative splicing is a  other hand,t can also significantly disrupt genomic

crucial process in carcinogene$d}. RNA alternative stability, resulting in abnormal biological functi¢hl,

splicing regulators play essential roles in this process 12]. However, a global and comprehensive pattern to
and can act as oncogenes, leading to cancer progression elaborate the molecular characteristics, mechanisms,
and metastasis by producing some RNA subtypes in key and clinical links of SRSFs in multiple human cancer

oncogenic pathway4i 6]. is still lacking. Here, we attempted to systematically

uncover the moledar features and clinical impli
Serine/argininerich  splicing factors (SRSFs) are cations of SRSFs from various levels, including
important splicing regulatorg7], usually consisting genome (somatic mutation, copy number alteration),
of 12 members (SRSF12), which playpivotal roles MRNA expression, transcriptional regulation (DNA
i n MRNAOG s turnover, o ut p methylatioa, Némethyladenosme (m16A) pnodsidation,
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mMiRNA), immune links, survival prediction and drug
sensitivity, in more than 10000 patients across 33
cancer typesOur comprehensive analysis highlights
the pivotal roles of SRSFs in canceccurrence and
development. This studprovides rich resources for
understanding the biological characteristics of SRSFs
offering a new and uniquperspective for develapg
cancertherapeutic strategies based on RNA alternative
splicing. The flowchart and important findings of this
study were showed in Figure 1.

MATERIALS AND METHODS

Genomic,
analysis

transcriptomic data acquisition and

Somatic mutation data and TCGthreshold SCNA
scores from 33 humasancer typesvereobtained from
the Genomic Data Commongtfps://gdc.cancer.goy/
and processed as previously describd®i 16]. Our
study defined copy number variation (CNV) ampli
fication and deletion in the same way, as described
by Knijnenburg et al[17]. The frequency of genomic
alterations (including mutation and SCNA) of specific
genes in parcancer were shown as heatmaps. We also
obtained the relevant data for genomic instability
scores, including the mutation burden, the aneuploidy
score, the SCNA burden, loss of heterozygosity (LOH)
score and homologous recombination deficiency (HRD)
score from the study of Knijnenburg et &L7], and

Genomic landscape of SRSFs across cancer types

33 TCGA cancer types
Somatic mutations
SCNA (amplification and deep deletion)

mMRNA expression perturbations

Unsupervised consensus clustering based on SRSFs
mRNA expression in all TCGA tumor samples

e ﬁﬁ%ﬁ with significant genomic
B ﬁ%ﬁ% heterogeneity across cancer types

Transcriptional regulation of SRSFs
DNA methylation

m6A modification

cancer type-dependent

defined these scores as previously descriiéd 17]
Additionally, we obtained the batch effeatsrrected
TCGA mRNA data (FPKMbased gene expression)
and clinical information (including the survival status
and survival time) for patients across 33 cancer types
from TCGA Genomic Data Commons.

Differential expression analysis and unsupervised
consensus clustering

19 cancer types, with at least 3 matched
tumours and normal samples, were selected out of
33 cancertypes for differential expression analysis.
Differentially expressed genes (DEGs) were identifigd
Wilcox& rank sum test, anthé pvalues wereadjust

ted by BH methodWe defined the DE& as those
whose expression differences were associated with
adjusted pvalues <0.05. Additionally, unsupervised
consensus clustering was performed to identify distinct
patient clusters based on SRSFs mRNA expression
in all tumor samples across 33 cancer types. The
fiConsensuClusterPlasR package[18] was used to
carry out the steps above. To guarantee classification
stability, 1006time repetitions were conducted.

DNA methylation, m6A modification and miRNA
analysis

DNA methylation data files across 33 cancer types
were retrieved from the Genomic Data Commoie

SRSFs associated oncogenic pathways

‘ " " SRSFs play critical roles in regulating
cell cycle and proliferation.

- “ E Whether SRSFs inhibited or activated
SN the carcinogenic pathway was related
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. mm_t= to different cancer contexts.

Clinical relevance of SRSFs
Cancer immunity T
Immune infiltration
Immunomodulators :
IMvigor210 (metastatic urothelial carcinoma) .
GSE91061 (advanced melanoma)

Survival prediction

Gene expression data and clinical information from TCGA, GSE14520,
GSE15459, GSE23554, GSE30219, GSE31210, GSE40967, GSE50081,
GSE57303, and GSE72094.

Chemotherapy or targeted drug therapy

CellMiner analysis reveals the association of SRSFs to drug sensitivity

Figure 1. Workflow chart of this study.
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processed this data as previously descrijef].

We calculated median beta value of these 12 SRSFs
in eachsample for better assessment of their overall
methylation levels. Subsequently, Pearson correlation
analysis between DNA methylation beta values and

Immune correlation analysis

The Xcell algorithm[27] was used toquantify the
infiltrating abundance of immune cell and tumor
microenvironment scores for all tumor samples.

mRNA expression values for each SRSF was conducted \we optained a list of immunomodulators that are

for deeper investigation of the regulation of SRSFs
expression by DNA methylation (| Cor |> O aRd
value < 0.05 was set as the threshold). Also, 23
M6A regulators (including 13 readers, 8 writers and
2 erasers) were collected from previously published
papers[19i 21]. As the most common type of RNA
modification, m6A playsanessentiatole in the occur
rence and development of tum¢22]. We investigated
the Pearson correlation coefficients between m6A
regulators and SRSFs in 33 cancer types to further
investigate the regulation of SRSFs expression by
m6A methylation. Additionally, normalized miRNA
expression datavere downloadedfrom the Genomic
Data CommonsWe calculated the Pearson correlation
coefficients between miRNAs and SRSFs in 33 cancer
types to further investigate the regulation of SRSFs
expression by miRNA. We also screened the preliminary
results, as in the method of Luo et @5]. By setting

the more stringent criteria, we further filtered the
MiRNAs acting with these SRSFs. Tapecific criteria
were as follows: 1) |Pearson correlatioro e f f i c i
0.25 and p < 0.05; 2) In at least ethérd of all cancer
types (at least ten cancer types), this miRNA acts
on the same SRSHhis miRNA-mRNA interaction
network was displayed using Cytoscape v3.9.0. The
interrelationship between mMIRNAs and SRSFs in
specific cancer types was also shown in a heatmap

Biological pathway activity across cancer types

FPKM-based gene expression was converted into
Z-score using thefi z FPK Mo R
assessing the activity of 50 hallmark pathways. Gene
Set Variation Analysis (GSVA) was performéai].

In addition, Pearson correlation coefficiertistween
MRNA expression of SRSFs and pathway activity
were calculated to identify the SRSFs related to
pathway activation or inhibitianAnd SRSFpathway
pairswere identifiedby the criterion we seffearson
correlation coefficieqtO 0. 20 and p <
do not function independently. To infer the overall
SRSFs activityiSRSFscore was calculatedbased on

12 SRSFs mRNA expression within each cancer type
as previously described [15, 25, 2@&{entification of
biological pathways associated with the SRSFscore
was also performed in the same way as in Luo et al.
[15]. Here, we reported only pathwaylsat shoved
consistent significant correlatier(g-value < 0.05)in

at least 10 cancer types.

crucial in immunotherapy from previoysublicatiors

[14]. To investigate the interconnection between cancer
immunity and SRSFs, we examined the Pearson
correlation coefficients between mRNA expression of
immunomodulators or abundance of immune cells and
the SRSFscore across 33 cancer types. Additionally,
in order b explorethe association between SRSFscore
and the effect of immunotherapgs well asprog
nosis in patients receiving afRD-1 or anttCTLA4
treatment, we furtheobtainedthe transcriptome data
before immunotherapyand clinical information from
two cancer immunotherapy cohorf28, 29] In our
study, responders to immunotherapy included the
patients with complete and partial remission (CR/
PR), while norresponders included the patients with
stable disease (SD) and progressive disease (PD).
Wilcox& rank sum test was applied to compare the
SRSFscore between the two groups (responders and
nonrresponders).

€ gutrv#val a(r?alysis

TCGA pancancer tnical data were down
loaded from Genomic Data Commons. We used
the fAmaxstato R pledesage t
point for the SRSFscoreand divided the patients
into high and low SRSFscore groups. Probability
of overall survival was estimated by the Kaplan
Meier method, with differences between two
groups tested using the lognk test. Using the
fisurvivab R package, we also performed Cox

[2B]afork a g eegression analysis to test the association between

SRSFs expression and survival. Moreover, to validate
the potential of SRSFscore in paancer survival
prediction, from the Gene Expression Omnibus
(https://www.ncbi.nlm.nih.gov/gel/ we also down
loaded gene expression data and corresponding clinical
information for 9 gene chips(GSE14520[30, 31]
GSE1545932i 34], GSE23554[35], GSE3021936],
GSEB121)37, 36, e55E48967[39], GSE50081[40],
GSE57303[41], GSE72094[42]) including 5 cancer
types(OV, LUAD, LIHC, STAD and COAD) (Table

1). According to the corresponding annotation files,
we converted the probes to gene symbols. For genes
with multiple probe set signals, their values were
averaged to generate a single expression value. In each
independent dataset, we calculated the SRSFscore
for each sample in the same way and investigated
its relationship with the prognosis.
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Table 1. Information on the nine GEO datasets included

in this study.

DataseCancer No. of Pl at f
GSE145% LI HC N = 2. GPL57
GSE1514 STAD N = 1¢ GPL57
GSE235 oV N = 2¢ GPL9E
GSE302 LUAD N = 8! GPL57
GSE312 LUAD N = 22 GPL57
GSE40¢ COAD N 5E GPL57
GSE50C¢C LUAD N = 12 GPL57
GSE573 STAD N = 7( GPL57
GSE72¢C LUAD N = 3¢ GPL15(

CellMiner analysis

We downloaded the RNA data (RNA: RNgeq)

of 22379 genes identified in N0 cell lines and
the related data of 20503 compounds analyzed
(compound activity: DTP NG60) from CellMiner
(https://discover.nci.nih.gov/cellminer/home)dd43].

We investigated thd”earson correlation coefficients
between Z scoresf clinical trials and FDAapproved
drugs andmRNA expression values for each SRSF
We reported drugSRSF pairs showing significant
correlation (|earson correlation coefficignt O 0. 3
P-value< 0.01).

Statistical analysis

All of the analyses were performed in the R 3.6.3
software. AP-value< 0.05 was considered statistically
different.

Data availability

The datasets generated and analysed during the current

study are available in the TCGA GDC repository,
(https://portal.gdc.cancer.ggpVGEO repository,Https://
www.ncbi.nlm.nih.gov/ged/ and CellMiner repository,
(https://discover.nci.nih.gov/cellminer/home)do

RESULTS

SRSFs experienced prevalent genomic alterations and
expression perturbations in multiple cancer types

As previously describef¥4], genomic alteration was

defined as somatic mutations and SCNA (amplification
and deep deletion). We first determined the overall
genomic alteration level of SRSFs in human cancer.
The frequencies were very low, only between 1% and
4% (Figure 2A). Among the 12 SRSFs, SRSF2 and

SRSF6 displayed the highest alterations (4%), mostly
from CNV amplification. While SRSF5, SRSF9 and
SRSF10 were in the opposite situations (Figure 2A).
SCNA counted for the majority of genomic alterations.
Thus, we speculated that at the genomic level, it was
SCNA, especially CNV amplification, but not mutation,
which was the major cause of SRSFs dysregulation in
cancer.

From an indepth exploration of the genomic alteration
pattern across 33 cancer types, we observed a low
owverall average mutation frequency of SRSFs from
0 - 7.53%. Uterine Corpus Endometrial Carcinoma
(UCEC), with a higher global mutation burd¢b],
presented higher mutation frequencies in all 12
SRSFs, while Testicular Germ Cell Tumors (TGCT)
and Pheochromocytoma and Paraganglioma (PCPG)
lacked any mutation (Figure 2B). SRSF10 was slightly
mutated (0.75%) only in UCEC, but not in other
cancer types. Analogously, in LAMA, only SRSF2
experienced somatic mutation (2.14%). We noted that
individual SRSF exhibited a canestpedependent
CNV amplification or deep deletion pattern (Figure
2C, 2D). For example, SRSF1 and SRSF2 presented
relatively higher CNV amplification in the vast majority
of cancer types, with the lack of deep deletion. SRSF12
showed higher deep deletion in DLB0.64%) and
PRAD (13.96%) (Figure 2D). Interestingly, among
these SRSFs, SRSF6 displayed higher amplification
in digestive tract tumors, such as ESCA (5.52%),
STAD (8.77%), COAD (12.15%) and READ (19.57%)
(Figure 2C).

A thoughtprovoking question is whether these
DNA alterations influence the expression of SRSFs.
Thus, we investigated the expression perturbations
of 12 SRSFs across 19 selected cancer types (Figure
3A). As expected, the SRSFs with CNV amplification
displayed significantly higher expression in tumor
tissues compared to normal onegy(,SRSF1, SRSF2,

6660-TAFE2Y

MOHCGn !

DLbD


https://discover.nci.nih.gov/cellminer/home.do
https://portal.gdc.cancer.gov/
https://discover.nci.nih.gov/cellminer/home.do

SRSF3, and SRSF6). In addition, we also noticed
that despite CNV amplification or deep deletion in
some SRSFs, there was no corresponding increase
or decrease in mMRNA expression level. For example,
SRSF12 displayed CNV deep deletion in LIHC, LUAD,
and PRAD; however, showinghigher expression

in cancer tissues. It is not unique, for example, the
CNV alteration of SRSF10 in CHOL and its mRNA
expression was also not synergistic (FigurzD,
3A). We admit that gene expression is profoundly
affected by CNV amplification and deletiof46].
Our findings suggested that specific to individual
cancer types or genes, this relationship may not be
fully established. We therefore believe that the CNV
alterations are only one of the mechanisms, but not

only, leading to expression perturbations of SRSFs.
Taken together, the results demonstrate a picture of
highly heterogeneous genetic and expression alteration
of SRSFs across cancer types, suggesting that SRSFs
dysregulation plays a significant role in different
cancer contexts.

Cluster analysis based on the pagancer SRSFs
expression profiles identified two patient subgroups
with significant genomic heterogeneity

To gain an insight into the integrated landscape of
SRSFs expression, an unsupervised consensus clustering
of all tumor samples from TCGA was performed, with
the global expression pattern of SRSFs as the basis. Two

Figure 2. The genomic alterations of SRSFs in human ca®eGenomic alterations [noesilent mutation and SCNA] landscape in
the SRSFs in 33 cancer typ&.Oistribution of mutation frequencies across cancer typ€sD) Distribution of SCNAC(CNV amplification;
D: CNV deepleletion)frequencies across cancer types. The darkness of color is proportional to the frequency.
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