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INTRODUCTION 
 

Ovarian carcinoma (OC) is one of the most lethal 

gynecological malignancies and a paramount public 

health concern worldwide [1–3]. Ovarian carcinoma is 

often diagnosed at advanced stages due to its 

asymptomatic nature and the absence of effective early 

detection methods. Despite recent advancements in 

surgical and chemotherapeutic treatments, the overall 

survival (OS) rate of ovarian cancer patients remains 

poor, with only 46% surviving beyond 5 years [4, 5]. 

The high mortality rate associated with ovarian cancer 

highlights the urgent need for innovative diagnostic and 

treatment strategies. 

 

The role of the tumor immune microenvironment 

(TIME) in shaping cancer progression and determining 

the efficacy of cancer treatment is becoming 

increasingly recognized [6, 7]. The tumor micro-

environment (TME) consists of a multifaceted network 

of immune cells, stromal cells, extracellular matrix 

constituents, and signaling molecules collaboratively 

control the development, advancement, and metastasis 

of the tumor [8–10]. Recent studies have highlighted the 

www.aging-us.com AGING 2023, Vol. 15, No. 23 

Research Paper 

Prognostic role of long non-coding RNA USP30-AS1 in ovarian 
cancer: insights into immune cell infiltration in the tumor 
microenvironment 
 

Jian Xiong1,*, Junyan Chen2,*, Xiang Sun1,*, Rui Zhao1, Kefei Gao1 
 
1Department of Obstetrics and Gynecology, Guangzhou Women and Children’s Medical Center, Guangzhou 
Medical University, Guangzhou 510623, China 
2China Medical University, Shenyang 110122, China 
*Equal contribution 
 

Correspondence to: Rui Zhao, Kefei Gao; email: zhaorui_fezx@163.com, https://orcid.org/0009-0005-4096-7763; 
gaokefei_fezx@yeah.net, https://orcid.org/0009-0008-0291-4101 
Keywords: ovarian cancer, tumor microenvironment, USP30-AS1, immune cell infiltration, LncRNA 
Received: June 13, 2023 Accepted: October 16, 2023  Published: December 4, 2023 
 

Copyright: © 2023 Xiong et al. This is an open access article distributed under the terms of the Creative Commons Attribution 
License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original 
author and source are credited. 
 

ABSTRACT 
 

Ovarian cancer represents a formidable gynecologic malignancy bearing a dismal prognosis owing to the dearth 
of reliable early detection approaches and a high recurrence rate. Long non-coding RNAs (lncRNAs) have 
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cancer initiation and progression. The present study investigated the potential significance of lncRNA USP30-
AS1 in ovarian cancer prognosis, as well as its putative association with immune cell infiltration in tumor 
immune microenvironment (TIME). By analyzing publicly available datasets, we identified six lncRNAs with 
prognostic prediction ability, including USP30-AS1. The results revealed a significant positive correlation of 
USP30-AS1 expression with the infiltration of immune cells such as Th1 cells, TFH, CD8 T cells, B cells, antigen-
presenting dendritic cells (aDC), and plasmacytoid dendritic cells (pDC) in ovarian cancer specimens. These 
findings provide compelling evidence of the potential involvement of lncRNA in the regulation of the TME in 
ovarian carcinoma. The outcomes from this study underscore the potential of USP30-AS1 as a promising 
prognostic biomarker for ovarian cancer. Additionally, the findings offer significant insights into the plausible 
role of lncRNAs in modulating immune activities, thus adding to our understanding of the disease biology. 
Additional investigations are necessary to unravel the molecular mechanisms underpinning these connections 
and validate the results seen in independent cohorts and experimental models. 
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significance of immune cell infiltration within the TME, 

as it has been demonstrated to impact cancer prognosis 

and treatment effectiveness [11–13]. For example, an 

association has been demonstrated between a more 

favorable prognosis and the presence of cytotoxic T 

lymphocytes and so on. The converse has been 

observed with the presence of immunosuppressive cells 

such as Tregs, with poorer patient outcomes linked to 

the latter. 

 

Long non-coding RNAs (lncRNAs) are a group of RNA 

molecules that, unlike messenger RNAs (mRNAs), do 

not encode proteins but are critical in different 

biological processes, including cellular proliferation and 

growth, cellular differentiation, programmed cell death, 

and immunological response regulation. The aberrant 

expression of lncRNAs has been implicated in the 

progression of numerous cancers, such as ovarian 

cancer [14, 15]. Notably, lncRNAs have been proven to 

regulate the infiltration of immune cells in TIME, and 

influence both cancer prognosis and therapeutic 

responses [16, 17]. 

 

One such lncRNA, USP30-AS1, has been reported to be 

associated with Th1 cells and shows strong prognostic 

prediction ability in ovarian cancer [18, 19]. However, 

the underlying molecular mechanisms through which 

USP30-AS1 influences immune cell infiltration and 

ovarian cancer prognosis remain largely unknown. This 

investigation primarily investigated the potential 

implications of USP30-AS1 in ovarian cancer prognosis 

and its putative effects on immune cell infiltration. 

USP30-AS1 has emerged as a promising lncRNA 

molecule with an important role in the pathogenesis of 

various cancers, including ovarian cancer. Our research 

aimed to explore the underlying association between 

USP30-AS1 and immune activities in ovarian 

carcinoma. We examined a variety of immune cells, 

such as Th1 cells and CD8 T cells, which play crucial 

roles in regulating TIME and tumor progression. Our 

study not only aims to enrich our understanding of the 

molecular mechanisms underpinning ovarian cancer but 

also hopes to identify potential novel therapeutic targets 

for this cancer. This study provides valuable insights 

into how USP30-AS1 influences immune cell 

infiltration and aims to provide a comprehensive under-

standing of its role in tumor progression and its 

potential application in targeted therapies for ovarian 

cancer. 

 

Computational biology and high-throughput sequencing 

techniques have currently become integral and have 

revolutionized biomedical research methodologies, 
enabling us to process large amounts of genetic and 

genomic data with high precision and efficiency [20–

22]. To identify biomarkers in diverse tumors, Wang et 

al. employed computational biology approach, such as 

weighted correlation network analysis (WGCNA), 

hence laying a secure, scientific groundwork for 

investigating the causes of disease progression [23, 24]. 

Consequently, the goal of this scientific study was to 

provide novel insights into the complex mechanisms 

underlying the involvement of USP30-AS1 in the 

prognosis of ovarian cancer and its influence on the 

TIME. The findings may aid in expanding the current 

knowledge base and ultimately enhance the develop-

ment of innovative treatments for this cancer. 

Elucidating the potential associations between USP30-

AS1 expression and clinical outcomes would facilitate 

the emergence of pioneering diagnostic and therapeutic 

approaches that have the potential to enhance the 

clinical outcomes and survival rates of patients with 

ovarian cancer. 

 

MATERIALS AND METHODS 
 

Data acquisition and preprocessing 

 

We retrieved processed whole transcriptome data for 34 

cancer cohorts, including both normal and tumor 

tissues, from The Cancer Genome Atlas (TCGA) 

database through the UCSC XENA website 

(https://xena.ucsc.edu/). Clinical data and gene mutation 

data for Ovarian Cancer (TCGA-OV) were also 

obtained from the UCSC XENA platform. In addition, 

transcriptome data for ovarian cancer were sourced 

from the Genotype-Tissue Expression (GTEx) database 

(https://www.gtexportal.org/home/index.html). These 

databases are open-access, allowing unrestricted access 

and analysis, thus obviating the need for ethical 

approval. We ensured that data retrieval and analysis 

procedures adhered to the ethical requirements of the 

respective databases and journals. 

 

Transcriptomic data for tumor and normal tissue 

specimens were acquired from gene expression data 

records, following TCGA's unique specimen naming 

conventions. Gene expression data was standardized 

using Log2(FPKM+1). Information on immune therapy 

cohorts was obtained from the “IMvigor210” dataset. 

The list of genes related to TLS (Tertiary Lymphoid 

Structures) was derived from literature searches, and the 

detailed gene list is provided in Supplementary Table 1. 

 

Differential TLS gene selection and further 

analysis 

 

Initially, we integrated ovarian cancer whole 

transcriptome data from GTEx and TCGA (Normal=88, 

Tumor=379) and employed the “limma” package to 

analyze the differential expression of TLS genes 

between tumor and normal groups. The selection 

https://xena.ucsc.edu/
https://www.gtexportal.org/home/index.html
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criteria were set at false discovery rate (FDR) < 0.05 

and | logFC | > 1. A volcano plot was generated to 

visually represent the differentially expressed genes. 

Subsequently, we utilized the protein-protein interaction 

visualization feature of the STRING website 

(https://www.string-db.org/) to illustrate the interaction 

relationships among differential TLS genes. Univariate 

Cox analysis was employed to assess the impact of 

differential TLS genes on prognosis, considering genes 

with p < 0.01 as those significantly affecting prognosis. 

Subsequently, a Venn diagram was employed to 

identify the intersection between differential TLS genes 

and prognostically impactful TLS genes. The resulting 

genes were then visualized in a heatmap to observe their 

expression patterns in tumor and normal tissues. Based 

on the median expression values of the identified genes, 

tumor patients were stratified into high and low 

expression groups. Kaplan-Meier (KM) curves were 

applied to analyze the overall survival differences 

between the two expression groups for each gene. 

Finally, leveraging IMvigor immune therapy cohort 

data, we analyzed the expression differences of each 

gene between effective and ineffective immune therapy 

groups, presenting the results through violin plots. 

 

Non-negative matrix factorization (NMF) analysis 

and subsequent investigations 

 

Building upon the TLS genes identified through the 

intersection of the Venn diagram in Section 2.2, we 

conducted NMF clustering analysis on ovarian cancer 

patients from TCGA. The final number of clusters was 

determined by selecting the value of 'k' that exhibited a 

“high cohesion, low coupling” pattern in the consensus 

matrix plot. Subsequently, Kaplan-Meier survival 

curves were generated for the two clusters. Following 

this, we conducted a comprehensive analysis of the 

tumor immune microenvironment (TIME) for these 

two clusters, encompassing the evaluation of Immune 

Score, Stromal Score, Estimate Score, and tumor 

purity. We further assessed the expression profiles of 

eight immune molecules (IgG, HCK, MHC-I I, LCK, 

STAT1, Interferon, B7-CD28, TNF) in these two 

clusters, visualizing differences in survival status, 

cancer stage, TIME, and the expression of these eight 

immune molecules using heatmaps. Single-sample 

Gene Set Enrichment Analysis (ssGSEA) was 

employed to investigate differences in the infiltration 

of 29 immune cell types between the two clusters. 

Additionally, a differential gene expression analysis 

was conducted on these two clusters, with the selection 

criteria set at | logFC | > 1 and P-adj < 0.05. The 

resultant differentially expressed genes were subjected 

to Kyoto Encyclopedia of Genes and Genomes 

(KEGG) and Gene Ontology (GO) pathway enrich-

ment analyses [25–27]. 

Construction and validation of a prognostic model 

based on TLS gene-associated lncRNA 

 

Utilizing the transcriptome data of TCGA-OV tumor 

patients, we conducted an analysis of lncRNAs co-

expressed with TLS genes, as identified through the 

intersection of the Venn diagram in Section 2.2. 

LncRNAs were selected based on the criterion of a 

correlation coefficient greater than 0.35 and a p-value 

less than 0.05 for each gene. Subsequently, Spearman 

correlation analysis was performed for each TLS gene 

with its four strongest correlated lncRNAs, and the 

results were visualized using scatterplots. Next, the 

identified lncRNAs were incorporated into The Least 

Absolute Shrinkage and Selection Operator (LASSO) 

machine learning algorithm. Ten-fold cross-validation 

was employed for further refinement of the selected 

lncRNAs, ultimately leading to the construction of a 

risk model. Our random seed for this analysis was set to 

“1997.” The risk score was defined by multiplying the 

expression value of each gene (i) by its corresponding 

coefficient (βi), as follows: 

 

n

i 1

Risk score

[ ]
=

=

 i iexpressionvalueof gene 
     (1) 

 

Where β_i represents the coefficient corresponding to 

the model gene [28–30]. Subsequently, we performed 

univariate Cox analysis on the model lncRNAs to assess 

their impact on prognosis and conducted Kaplan-Meier 

survival curve analysis to evaluate the influence of each 

lncRNA's expression on prognosis. Receiver operating 

characteristic curve (ROC) analysis was employed to 

assess the model's performance in predicting 2-year, 3-

year, and 5-year outcomes. An area under the curve 

(AUC) greater than 0.6 indicated good predictive 

performance. Patients were then categorized into high-

risk and low-risk groups based on the median risk score, 

and Kaplan-Meier analysis was performed separately 

for overall survival (OS) and progression-free survival 

(PFS) in these two groups. Furthermore, a risk factor 

plot was generated to illustrate how patient survival 

time, survival status, and the expression of model 

lncRNAs change with increasing risk scores. 

Additionally, we utilized Cytoscape software to 

visualize the expression correlations between TLS 

genes and model lncRNAs, which were presented using 

chord diagrams to enhance interpretability and 

understanding. 

 

Establishment and validation of the prognostic 

nomogram 

 

We integrated age, stage, grade, and risk score to 

comprehensively construct a nomogram model for 

https://www.string-db.org/
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predicting patient survival at 2, 3, and 5 years. To assess 

the accuracy of the model, we plotted calibration curves 

at 2, 3, and 5 years to observe the extent of deviation 

from the ideal values. To validate the clinical utility of 

the model, we performed a 5-year Decision Curve 

Analysis (DCA) for age, stage, grade, risk score, and 

the nomogram. Finally, we conducted three-

dimensional Principal Component Analysis (PCA) 

separately for the entire transcriptome genes, TLS 

genes, TLS-related lncRNA genes, and model lncRNA 

genes. This allowed us to examine whether there were 

significant differences in the three-dimensional data 

space dimensions between the high-risk and low-risk 

sample groups. 

 

Multiple analytical approaches reveal the intrinsic 

mechanisms of TLS-related lncRNAs 

 

In our study, we conducted an immune subtype analysis 

on the TCGA-OV dataset, eliminating subtypes with 

limited sample sizes. We then proceeded to analyze the 

differences in lncRNA model risk scores among the 

remaining subtypes. Utilizing Sankey diagrams, we 

illustrated the associations between NMF subtypes, risk 

score risk groups, and immune subtypes. Subsequently, 

we performed differential analysis of risk scores between 

groups categorized by treatment outcomes and tumor 

recurrence status. We employed the “oncopredict” tool to 

investigate the sensitivity differences of 200 drugs 

between the two risk groups. Violin plots were created to 

visualize the sensitivity differences of three specific 

drugs: LCL161, Ribociclib, and Topotecan. We 

conducted differential analysis between the two risk 

groups and subjected the obtained genes to Gene 

Ontology (GO) analysis. The analyses were carried out 

using packages such as “limma”, “scales”, “ggplot2”, 

“ggtext”, “reshape2”, “tidyverse”, and “ggpubr”. 

 

Furthermore, we conducted differential analysis of 16 

immune cell infiltrations between the two risk groups 

and visualized the results using box plots. Subsequently, 

we employed Weighted Correlation Network Analysis 

(WGCNA) to identify lncRNAs co-expressed with the 

ssGESA scores of various immune cells. The relevant 

parameters included a cutline of 600 and a power value 

of 4. We selected the immune cell with the strongest 

statistical significance from the previous two risk group 

analyses as the target phenotype for further analysis. 

We identified the WGCNA module with the strongest 

correlation to this immune cell phenotype and 

intersected the lncRNAs within this module with  

the model lncRNAs. We conducted an analysis of 

immune checkpoints based on the obtained lncRNAs. 
Additionally, we performed differential expression 

analysis of the obtained lncRNAs between different risk 

groups, followed by Kaplan-Meier survival curve 

analysis for progression-free survival (PFS) and TIDE 

analysis for Exclusion scores in different risk groups. 

Based on these three analyses, we filtered out lncRNAs 

without statistical significance and compared the 

remaining lncRNAs for their expression differences 

between different grades and between tumor and normal 

tissues. We selected USP30-AS1 for further analysis. 

 

To stratify OC patients into two groups based on the 

median expression value of USP30-AS1, we analyzed 

the most significantly mutated genes between the two 

groups and visualized them using waterfall plots. 

Subsequently, we performed multiple Gene Set 

Enrichment Analyses (GSEA) to observe enriched 

pathways in these two groups. We selected the most 

significantly mutated genes from the waterfall plot and 

retrieved their immunohistochemistry images in normal 

ovarian tissues and cancer tissues from The Human 

Protein Atlas (HPA) website (https://www.proteinatlas. 

org/) [31]. Finally, we generated scatter plots to illustrate 

the correlation between USP30-AS1 and six immune cell 

types in the TCGA-OV dataset. 

 

Pan-cancer analysis of USP30-AS1 

 

To understand the expression pattern of USP30-AS1 in 

other cancers, we downloaded processed transcriptomic 

data of 34 cancer cohorts, including both normal  

and tumor tissues, from the UCSC XENA website 

(https://xena.ucsc.edu/). Subsequently, we conducted 

differential analysis of USP30-AS1 expression between 

tumor and normal tissues in each cancer cohort and 

visualized the results using violin plots. We employed the 

“xCELL” algorithm from the R package “IOBR” (version 

0.99.9) to calculate scores for 67 immune cell infiltration 

in each cancer cohort [32]. Next, we computed the 

correlation between immune cell infiltration scores and 

USP30-AS1 expression levels in each cancer cohort using 

the “Pearson” correlation method. A p-value less than 

0.05 was considered statistically significant for the 

correlation between immune cell infiltration scores and 

USP30-AS1 expression levels. We visualized the 

correlation between each immune cell score and USP30-

AS1 expression using heatmaps for each cancer cohort. 

Finally, we selected the cancer cohort with the highest 

absolute correlation coefficient between Th1 cell score 

and USP30-AS1 expression. We illustrated the correlation 

between Th1 cell score and USP30-AS1 expression using 

scatter plots to visualize the relationship. 

 

Cell culture, total RNA extraction and RT-qPCR 

 

We purchased three human ovarian cancer cell lines, 
SK-OV-3, OVCAR-3, CAOV-3, and one human normal 

ovarian epithelial cell line, IOSE-29, from the Cell 

Bank of the Chinese Academy of Sciences. SK-OV-3 

https://www.proteinatlas.org/
https://www.proteinatlas.org/
https://xena.ucsc.edu/
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cells were cultured in McCoy's 5A medium (HyClone, 

USA), OVCAR-3 cells were cultured in Roswell Park 

Memorial Institute (RPMI-1640) medium (HyClone, 

USA), CAOV-3 cells were cultured in Dulbecco's 

Modified Eagle Medium (DMEM, HyClone, USA), and 

IOSE-29 cells were cultured in a 1:1 mixture of MCDB 

105 and M-199 media (HyClone, USA). All media were 

supplemented with 10% fetal bovine serum (FBS, BI, 

USA), 100 U/ml penicillin (HyClone, USA), and 100 

µg/ml streptomycin (HyClone, USA). All cell lines 

were maintained in a cell culture incubator at 37° C 

with 5% CO2. 

 

For total RNA extraction, we employed trypsin (BI, 

USA) to digest the cells grown in cell culture flasks, 

and collected them in EP tubes. Subsequently, 900 μl of 

Trizol (Takara, Japan) was added to lyse the cells, 

followed by a 5-minute incubation on ice. Then, 200 μl 

of chloroform (SINOPHARM, China) was added, and 

vigorous shaking was performed, followed by 

centrifugation at low temperature for 15 minutes. The 

clear aqueous phase was carefully transferred to a fresh 

tube, and an equal volume of isopropanol and absolute 

ethanol (SINOPHARM, China) was added successively. 

After each addition, the mixture was incubated on  

ice for 5 minutes, followed by centrifugation at low 

temperature. The organic solvents were discarded, and 

the RNA pellet obtained was air-dried, resembling a 

feather-like appearance. The RNA pellet was dissolved 

in an appropriate amount of DEPC-treated water, and 

the concentration was measured. Subsequently, 

following the manufacturer's instructions, cDNA 

synthesis was performed using the PrimeScript RT Kit 

(TaKaRa, Japan). For subsequent real-time fluorescence 

quantitative PCR, we utilized the SYBR GreenER 

Supermix (TaKaRa, Japan) kit. The PCR reactions were 

conducted on a 7500 Real-Time PCR System (Thermo 

Fisher Scientific, USA). The PCR reaction conditions 

comprised an initial denaturation step at 95° C for 1 

minute, followed by 35 cycles of 95° C for 90 seconds, 

60° C for 30 seconds, and 72° C for 30 seconds, and a 

final extension step at 72° C for 10 minutes. The 

relative expression of USP30-AS1 was analyzed using 

the 2-ΔΔCt method, with β-actin as the reference gene for 

normalization. The primer sequences used were as 

follows: β-actin: Forward: 5’- CCTGGCACCCAGC 

ACAAT-3’, Reverse: 5’- GGGCCGGACTCGTCAT 

AC-3’; USP30-AS1: Forward: 5rward: 5’- CCTG 

GCACCCA -3rward: 5rward: TGAAAACCAAGCAG 

CCCCA -3AA. 

 

Statistical analysis 

 
For statistical analysis, R (version 4.1.0) was utilized. 

The two groups were contrasted using the Student’s t-

test or Wilcoxon test. Comparisons between several 

groups were evaluated using the Kruskal-Wallis test. 

Kaplan-Meier plots, which show survival curves, were 

used to compare them to the log-rank test. Results with 

a p-value < 0.05 were considered significant from a 

statistical perspective. 

 

RESULTS 
 

Differential selection and further analysis of TLS 

genes 

 

The workflow of this study is illustrated in Figure 1. A 

total of 14 TLS genes exhibited differential expression 

between the tumor and normal groups. With the 

exception of CCL21, all other genes were upregulated 

in the tumor group (Figure 2A). Protein interaction 

networks revealed that several genes, including CCL21, 

CCL2, CXCL10, CCL5, CXCL13, and CCL8, exhibited 

close interactions with other genes (Figure 2B). 

Univariate Cox analysis demonstrated that CXCL9, 

CXCL10, CXCL11, and CXCL13 were protective 

factors in ovarian cancer (HR < 1, p < 0.01, Figure 2C). 

Subsequently, we intersected the differentially 

expressed TLS genes with these four genes, indicating 

that these four genes were both differentially expressed 

and prognostically protective (Figure 2D). Heatmaps 

displayed high expression of these four genes in the 

tumor group (Figure 2E). Kaplan-Meier curves 

indicated that patients with high expression had a more 

favorable prognosis (p < 0.001, Figure 2F). In the 

Imvigor cohort, the effective treatment group showed 

elevated expression of CXCL9, CXCL10, CXCL11, 

and CXCL13 compared to the treatment-resistant group. 

 

Non-negative matrix factorization (NMF) analysis 

and further analysis 

 

In accordance with the principle of “high cohesion, low 

coupling,” we categorized TCGA-OV patients into 2 

clusters (Figure 3A). Kaplan-Meier (KM) curves 

indicated that patients in cluster 1 had a better prognosis 

(p = 0.037, Figure 3B). TIME (Tumor Immune 

Microenvironment) analysis revealed that cluster 1 had 

higher Immune Score, Stromal Score, and Estimate 

Score, whereas cluster 2 exhibited higher tumor purity 

(Figure 3C). The heatmap illustrated higher survival 

rates among patients in cluster 1. IgG, HCK, MHC-I I, 

LCK, B7-CD28, and TNF were expressed at higher 

levels in cluster 1, whereas STAT1 and Interferon were 

expressed at higher levels in cluster 2 (Figure 3D). 

Immune analysis demonstrated significant differences 

in the infiltration of various immune cells between the 2 

clusters (p < 0.05). The immune cell infiltration scores 

in cluster 1 were notably higher than those in cluster 2, 

consistent with the TIME results (Figure 3E). 

Furthermore, we conducted differential gene expression 
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analysis for the 2 clusters (Supplementary Table 2). 

KEGG pathway analysis of the differentially expressed 

genes indicated upregulation in pathways related to 

protein polysaccharides, chemokine signaling, ECM-

receptor interaction, cytokine-cytokine receptor inter-

action, and PI3K-Akt signaling in cancer (Figure 3F). 

GO analysis revealed upregulation of differentially 

expressed genes in various extracellular matrix com-

ponents and cellular constituents (Figure 3G). 

 

Construction and validation of a prognostic model 

based on TLS gene-associated lncRNA 

 

Based on the transcriptome data of TCGA-OV tumor 

patients, we conducted an analysis of long non-coding 

RNAs (lncRNAs) co-expressed with TLS genes, as 

obtained from the Venn diagram intersection in Figure 

4A. Spearman analysis revealed a strong positive 

correlation (p < 0.001, R > 0.5, Supplementary Figure 1) 

 

 
 

Figure 1. The flow chart of this study. 
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between CXCL9, CXCL10, CXCL11, CXCL13, and 

their respective top 4 correlated lncRNAs. By 

employing LASSO analysis, we derived a 15-gene risk 

model (MICB-DT, AL078582.1, LINC01943, 

AC012181.1, AL365361.1, AC012236.1, USP30-AS1, 

AL353699.1, AP002954.1, LINC01094, TRBV11-2, 

AC002511.2, DTNB-AS1, LINC01857, PSMB8-AS1) 

(Figure 4B, 4C, and Supplementary Table 3). Univariate 

Cox analysis demonstrated that 13 lncRNAs 

significantly impacted patient prognosis, with the 

majority serving as protective factors. This observation 

was further corroborated by KM survival curves  

 

 
 

Figure 2. Differential expression analysis and identification of TLS_differentially expressed genes (DEGs) in ovarian cancer. 
(A) Volcano plot of DEGs in ovarian cancer with screening criteria fdr < 0.05 and |logFC| > 1. (B) Protein-protein interaction (PPI) analysis of 
the 14 DEGs. (C) Univariate COX analysis of the TLS_DEGs. (D) Venn diagram showing the intersection of TLS_DEG and TLS_COX genes. (E) 
Heatmap displaying the expression of CXCL13, CXCL10, CXCL9, and CXCL11 genes in ovarian cancer. (F, G) Survival analysis and differential 
expression of CXCL13, CXCL9, CXCL10, and CXCL11 genes in ovarian cancer. 
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(Supplementary Figure 2). ROC curves indicated 

excellent diagnostic performance of the model at 2, 3, 

and 5 years (AUC > 0.6, Figure 4D). Patients in the 

high-risk group exhibited worse overall survival (OS) 

and progression-free survival (PFS) (p < 0.01, Figure 

4E). Risk factor analysis illustrated an increasing 

number of deceased patients and a gradual reduction 

in the expression of model lncRNAs with rising risk 

scores (Figure 4F). There was a wide-ranging 

association between CXCL9, CXCL10, CXCL11, 

CXCL13, and the model lncRNAs (Figure 4G). 

Additionally, strong positive correlations were 

observed among the model lncRNAs themselves 

(Figure 4H). 

 

 
 

Figure 3. Non-negative matrix factorization (NMF) subtyping of the training set and functional analysis. (A) Consensus plot 

showing the classification of patients into two clusters (C1 and C2) using NMF analysis. (B) Kaplan-Meier survival curve comparing the two 
clusters (C1 and C2). (C) Comparison of StromalScore, ImmuneScore, and ESTIMATEScore of C1 and C2. (D) Heatmap of the two clusters with 
respect to immune inflammation. (E) Enrichment scores of 29 immune cells in the two clusters. (F) Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway analysis of differentially expressed genes between the two clusters. (G) Gene Ontology (GO) analysis results, 
classifying the genes into Biological Process (BP), Cellular Component (CC), or Molecular Function (MF) categories. 
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Establishment and validation of the nomogram 

prognostic model 

 

In our study, we incorporated age, stage, grade, and 

risk score to comprehensively construct a nomogram 

model for predicting patients' 2-year, 3-year, and  

5-year survival outcomes (Figure 5A, and Sup-

plementary Table 4). Calibration curves demonstrated 

the excellent predictive accuracy of the nomogram  

at all three time points (Figure 5B). Decision curve 

analysis (DCA) curves further indicated that  

the nomogram model yielded superior decision-

making benefits (Figure 5C). Moreover, the results  

of a three-dimensional principal component analysis 

(3D PCA) revealed that under the context of  

lncRNA in the model, there was better differentiation 

between high-risk and low-risk groups of samples 

(Figure 5D). 

 

 
 

Figure 4. Development of a four-gene risk model and its correlation with lncRNA. (A) Correlation analysis between CXCL9, CXCL10, 

CXCL11, and CXCL13 and lncRNA (cor=0.35, p < 0.05). (B, C) Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis of 
the 42 differentially expressed mRNAs (DEMs), with 16 selected as valuable prognostic indicators. (D) Receiver operating characteristic (ROC) 
curve of the four-gene model at 2, 3, and 5 years. (E, F) Comparison of overall survival (OS) and progression-free survival (PFS) between the 
high- and low-risk groups. (G) Visualization of the associations between the four genes of interest (CXCL9, CXCL10, CXCL11, and CXCL13) and 
15 lncRNAs using Cytoscape. (H) Chord plot showing correlations between the four genes and the 15 model lncRNAs. 
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Multiple analytical modes reveal the underlying 

mechanisms of TLS-related lncRNAs 

 

The risk scores among TCGA immune subtypes exhibit 

significant differences (p < 0.0001, Figure 6A). The 

Sankey plot illustrates that a majority of patients in 

cluster 2 occupy both risk groups, while cluster 1 

patients are in the minority. Patients in the low-risk 

group are primarily distributed within immune subtype 

2, whereas those in the high-risk group are scattered 

across various immune subtypes (Figure 6B). The 

ineffective treatment group shows higher risk scores (p 

= 7.5e-05), and the recurrence group exhibits even 

higher risk scores (p = 0.0092, Figure 6C). Sensitivity 

analysis of 200 drugs (Supplementary Table 5) reveals 

that patients in the high-risk group are more sensitive to 

 

 
 

Figure 5. Prognostic model based on four related genes and clinical pathological factors. (A) Nomogram combining the expression 
of CXCL9, CXCL10, CXCL11, and CXCL13 genes and independent clinical risk factors (age and pathological stage). (B) Calibration plot for the 
nomogram, showing good agreement between predicted and observed results. (C) Decision curve analysis (DCA) curve comparing the 
established ovarian cancer (OV) nomogram and classical TNM tumor staging. (D) Three-dimensional principal component analysis plots for all 
genes, TLS genes, TLS-related LncRNA genes, and model Lnc, showing improved separation. 
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three drugs, LCL161, Ribociclib, and Topotecan, 

compared to the low-risk group (p < 0.0001, Figure 

6D). These drugs are currently under investigation, and 

our results suggest their potential in ovarian cancer 

treatment. Gene Ontology (GO) analysis of 

differentially expressed genes in the two risk groups 

indicates that neutrophil and lymphocyte functions are 

prominent in biological processes (BP). Plasma cell 

function ranks highest in cellular components (CC), 

while chemotaxis tops molecular functions (MF). This 

underscores the significance of tumor immunity as a 

crucial factor distinguishing high and low-risk groups 

(Figure 6E). Analysis of eight immune cell infiltrations 

reveals significant differences in immune cell scores 

 

 
 

Figure 6. Immune subtypes, treatment response, and gene ontology (GO) analysis in high and low-risk groups. (A) Differences 
in risk scores among C1, C2, and C4 immune subtypes. (B) Sankey plot showing high and low expression trends of different clinical features of 
C1, C2, and C4 subtypes in samples of patients with ovarian cancer. (C) Comparison of risk scores in treatment response (Well vs. Poor) and 
recurrence (Recurrence vs. Non-Recurrence). (D) Drug sensitivity analysis for LCL161, ribociclib, and topotecan treatments in ovarian cancer. 
(E) GO analysis in high and low-risk groups. (F) Correlations between tumor immunity and ovarian cancer using data from various databases. 
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between high and low-risk groups, implying a strong 

association between the lncRNA risk formula based on 

TLS and various immune cells (Figure 6F). 

 

In the low-risk group, most immune cell infiltrations are 

higher than those in the high-risk group, with the most 

significant difference observed in Th1 cells (p = 3.5e-12, 

Figure 7A). We conducted a correlation analysis between 

the six immune cells with the smallest p-values and 

various modules of WGCNA. Darkgreen module exhibits 

the highest correlation with Th1 (cor = 0.79, p = 9e-89, 

Figure 7B, 7C). We selected 16 lncRNAs with correlation 

coefficients greater than 0.4 from this module and 

identified six genes that intersect with model genes, 

demonstrating strong prognostic prediction capabilities 

related to Th1 (Figure 7D). The co-expression relationship 

between these six intersected genes and immune 

checkpoints is significant (Figure 7E). 

 

 
 

Figure 7. Differential immune cells between high and low-risk groups and Th1-related LncRNAs. (A) Most significant difference in 

Th1_cells between high and low-risk groups. (B) Weighted correlation network analysis (WGCNA) results showing the dark-green module as 
the most related to Th1. (C) Identification of 16 lncRNAs with a correlation coefficient > 0.4. (D) Venn diagram intersection of Th1-related 
lncRNA and model genes, identifying six genes with Th1 correlation and strong prognostic prediction ability. (E) Co-expression relationships 
between the six genes and immune checkpoints (P < 0.05). 
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Subsequent analysis focused on the six intersected genes. 

We employed TIDE scoring, PFS survival curves, and 

TIDE Exclusion scoring to screen out USP30-AS1 and 

Al365261.1 (Figure 8A–8C). USP30-AS1 exhibited 

differences between Grade 2 subgroups, while 

Al365261.1 did not. Consequently, we decided to 

proceed with the analysis of USP30-AS1 (Figure 8D). 

We categorized the expression of USP30-AS1 into high 

and low expression groups based on its median 

expression value. We analyzed the mutation differential 

genes between the two groups and presented the top 15 

significant genes in a waterfall plot. LRP1B exhibited the 

highest mutation level (Figure 9A). Multiple GSEA 

analyses of the two expression groups indicated  

the involvement of RYR1 and CACNA1E in the  

calcium channel pathway: CALCIUM SIGNALING 

PATHWAY. This suggests that USP30-AS1 may 

interfere with the tumor immune response of immune 

cells such as Th1 by affecting the physiological opening 

of calcium channels, thereby promoting/inhibiting tumor 

immune escape (Figure 9B). Immunohistochemical 

analysis demonstrated higher expression of LRP1B in 

 

 
 

Figure 8. Differential expression and functional analysis of the six Th1-related genes. (A) Tumor immune dysfunction and 
exclusion (TIDE) score analysis showing significant differential expression of USP30-AS1, PSMB8-AS1, MICB-DT, AL365361.1, and LINC01943 
genes in tumors, while the score of LINC01857 is not significant. (B) Survival probability analysis showing a significant difference in the 
expression of the USP30-AS1 gene. (C) Exclusion analysis showing significant expressions of USP30-AS1, PSMB8-AS1, MICB-DT, AL365361.1, 
and LINC01857 genes. (D) Grade and type grouping analysis revealing significant differences in the expression of USP30-AS1 gene. 
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tumor tissues (Figure 9C). The infiltration of multiple 

immune cells is positively correlated with the expression 

of USP30-AS1 (R > 0.2, p < 0.001, Figure 9D). 

 

Pan-cancer analysis of USP30-AS1  

 

The results of the differential expression analysis 

indicate that USP30-AS1 exhibits differential 

expression across multiple cancer cohorts, except for 

uterine carcinosarcoma (UCS), pheochromocytoma and 

paraganglioma (PCPG), adrenocortical carcinoma 

(ACC), and kidney chromophobe (KICH). In most 

cancer types, USP30-AS1 is upregulated (P < 0.05, 

Figure 9A). From a macroscopic perspective, immune 

cell infiltration scores are inversely correlated with 

USP30-AS1 expression in most cancers. However, in 

the case of immune cells such as aDC, CD8+ T cells, 

Macrophages M1, and USP30-AS1 expression, a 

positive correlation is observed in most cancer cohorts 

(Figure 9B). Given that the differential analysis of 

immune cells between high and low-risk groups 

previously revealed the most significant statistical 

 

 
 

Figure 9. Differential expression and functional analysis of the USP30-AS1 gene in ovarian cancer. (A) Identification of 15 most 

significantly mutated genes in high and low expressing groups of USP30-AS1. (B) Gene Set Enrichment Analysis (GSEA) of USP30-AS1 gene in 
high and low expression groups. (C) Immunohistochemical images of the LRP1B gene in normal and tumor tissue from the HPA database 
(HPA069094). (D) Correlation analysis between USP30-AS1 gene expression and various immune cells, suggesting a potential role in immune 
cell infiltration regulation in ovarian cancer. 
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difference in Th1 cells between the two risk groups, we 

have selected the four cancer cohorts with the highest 

absolute correlation coefficients between Th1 cell 

infiltration scores and USP30-AS1 expression for 

scatter plot representation of their correlation. In uterine 

corpus endometrial carcinoma (UCEC), head and neck 

squamous cell carcinoma (HNSC), and Cervical 

squamous cell carcinoma (CESC), Th1 cell infiltration 

positively correlates with USP30-AS1 expression (P < 

0.0001, correlation coefficient >0.3). Conversely, in 

glioblastomas (GBM), Th1 cell infiltration exhibits a 

negative correlation with USP30-AS1 expression (P < 

0.0001, correlation coefficient = -0.36, Figure 9C). 

 

USP30-AS1 is highly expressed in ovarian cancer 

cell lines 

 

We conducted RT-qPCR analysis on three ovarian 

cancer cell lines and one normal ovarian epithelial cell 

line. The results revealed a significantly higher 

expression of USP30-AS1 in the ovarian cancer cell 

lines compared to the normal ovarian epithelial cell line 

(p < 0.01). Among them, the OVCAR-3 cell line 

exhibited the highest expression level (Figure 10). 

Hence, we conclude that USP30-AS1 is highly 

expressed in ovarian cancer cell lines. 

 

DISCUSSION 
 

This study aimed to find the underlying implications of 

the USP30-AS1 gene in the prognosis of ovarian  

 

 
 

Figure 10. RT-qPCR analysis of ovarian cancer cell line and 
normal ovarian cell line. 

cancer, and examine its potential influence on the 

infiltration of immune cells. We found a significant 

association of USP30-AS1 expression with Th1_cells, 

TFH, CD8_T cells, B cells, aDC, and pDC cells. These 

observations underscore the possible regulatory 

function of USP30-AS1 in governing immune activities 

within the TIME and its potential impact on ovarian 

cancer treatment responses and prognosis. The findings 

offer novel insights into the complicated correlations 

between the tumor and the immune system, paving the 

way for the development of precision immuno-

therapeutic interventions in cancer treatment. Our 

finding adds to the growing pool of proof suggesting the 

vital function of lncRNAs in terms of the emergence 

and advancement of cancer. Earlier studies have linked 

several lncRNAs to the control of immune cell 

penetration in TIME. For instance, LINC01943, another 

lncRNA scrutinized in our research, has been 

documented to govern the entry of CD8+ T cells and 

natural killer cells in non-small cell lung cancer [33]. 

Likewise, studies have also indicated that LINC01857 

regulates the penetration of immune cells like 

macrophages and Tregs in stomach cancer [34]. Our 

discoveries about USP30-AS1 underline the importance 

of lncRNAs in cancer prognosis. 

 

The direct link seen between USP30-AS1 levels and 

Th1 cells, TFH, CD8 Tcells, and Bcells suggests its 

potential role in creating an active TME. The presence 

of these immune cells is widely linked with a favorable 

prognosis in various malignancies, such as ovarian 

cancer [35–37]. For example, increased infiltration of 

Th1 lymphocytes is associated with more favorable 

survival results among ovarian cancer patients [38]. 

Likewise, the existence of CD8+ T lymphocytes and B 

lymphocytes in TIME has been associated with better 

predictive outcomes in ovarian cancer. Our discoveries 

conform with these prior findings, implying that 

USP30-AS1 could have significant predictive 

consequences in ovarian cancer [39, 40]. 

 

An intriguing observation was made in this study 

wherein we discovered a positive association of the 

expression levels of USP30-AS1 with aDC and pDC. 

Both aDCs and pDCs are involved in tumor immunity, 

with aDCs primarily being essential in activating T-cell 

responses, thereby mitigating the tumor growth [41]. 

The positive association between USP30-AS1 expres-

sion and aDCs plays a paramount role for USP30-AS1 

in promoting T-cell activation, which could contribute 

to improved prognosis. We also conducted a pan-cancer 

analysis of USP30-AS1. USP30-AS1 exhibits up-

regulation in the majority of cancers and demonstrates a 
significant correlation with various immune cell 

infiltrations. The infiltration of immune cells such as 

aDC, CD8+ T cells, Macrophages M1, and USP30-AS1 
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expression shows a positive correlation in most cancers, 

consistent with our previous findings. We hypothesize 

that USP30-AS1 may play a crucial role in multiple 

cancers and potentially exerts its pro-cancer effects 

through close interactions with immune cells. Further 

in-depth research is warranted to validate our 

hypothesis. However, the role of pDCs in cancer 

remains debatable, with some studies reporting pro-

tumorigenic functions and others suggesting anti-

tumorigenic roles [42, 43]. Our findings warrant further 

investigation into the functional significance of the 

observed relationship of USP30-AS1-pDC in ovarian 

cancer. We conducted RT-qPCR analysis on ovarian 

cancer cell lines and normal ovarian cell lines, revealing 

that USP30-AS1 is highly expressed in ovarian cancer 

cell lines as compared to normal ovarian cell lines. The 

results of our wet experiment confirmed the conclusion 

of our analysis. 

 

Comparing our findings with previous studies on 

USP30-AS1, we observed some similarities and 

differences. Li et al. The research conducted by Li 

revealed aberrant USP30-AS1 expression in colorectal 

cancer, with a marked increase in levels. Interestingly, 

this increased expression apparently correlated  

with the promotion of several aggressive processes, 

including enhanced cancer cell proliferation, 

migration, and invasion. These findings also strongly 

suggest a potential pivotal role of USP30-AS1 in the 

neoplastic progression of colorectal cancer by 

promoting the malignant behaviors of cancer cells, 

thereby suggesting an undeniable pro-tumorigenic 

function of USP30-AS1 in this setting [44]. In 

contrast, our current study provides significant insights 

into the potential mechanisms by which USP30-AS1 

may contribute to ovarian cancer tumorigenesis. We 

discovered that this lncRNA is capable of modulating 

immune cell infiltration within the TIME, and 

profoundly impact the progression and prognosis of 

the tumor. Our investigations indicate that the 

overexpression of USP30-AS1 is positively associated 

with increased infiltration of Th1 and dendritic cells 

within the TME, which in turn is directly associated 

with improved prognoses of ovarian cancer patients. 

This novel finding suggests the potentially vital role of 

USP30-AS1 in shaping the TME by regulating the 

local immune response. These discoveries may pave 

the way for novel therapeutic approaches that target 

this lncRNA, to enhance host immune responses 

against ovarian cancer cells and ultimately improve 

patient outcomes. These discrepancies could be 

attributed to the tissue-specific functions of lncRNAs 

or differences in the underlying molecular mechanisms 
in colorectal and ovarian cancers. To gain further 

insight into the tumor biology of various cancer types, 

studies in the near future are aiming to delineate the 

underlying mechanisms by which USP30-AS1 

regulates pathological processes, such as cancer cell 

proliferation, migration, and invasion. It is also 

imperative to further investigate the potential tissue-

specificity of USP30-AS1 functions in the context of 

cancer development and elucidate how USP30-AS1 

may affect distal signaling pathways and genomic 

regulatory networks. Such research may provide novel 

avenues for identifying specific markers for cancer 

prognosis and developing targeted therapies against 

various malignant neoplasms. 

 

Our study has several limitations that should be 

acknowledged. First, our analysis was based on 

bioinformatics and publicly available datasets. While 

the findings of our study indicate a promising role of 

USP30-AS1 in modulating immune cell infiltration 

within the TIME, we acknowledge that the potential 

role of this lncRNA cannot be fully understood based 

on our current research. The complex interactions 

between USP30-AS1 and immune cells within the TME 

require extensive and more comprehensive investiga-

tions for a deeper understanding of their mechanistic 

underpinnings. Further studies combining different 

methodologies, such as transcriptomics, proteomics, and 

functional assays, will aid in thoroughly understanding 

the molecular and cellular mechanisms of USP30-AS1 

in tumor-immune crosstalk and TME modulation. These 

findings can provide invaluable insights into  

the potential clinical applications of USP30-AS1 

modulation for precision immune-oncology approaches 

in cancer management. Our findings need to be 

confirmed in the future studies through experimental 

validation using in vitro and in vivo models. Second, the 

functional roles of USP30-AS1 in immune cell 

infiltration and its downstream molecular mechanisms 

were not explored in this study, and need to be 

investigated to elucidate the molecular pathways 

through which USP30-AS1 modulates immune cell 

infiltration in ovarian cancer. 

 

Despite certain limitations, our research presents novel 

insights on the underlying role of USP30-AS1 in 

ovarian cancer progression and immune modulation. 

The study findings indicate that the aberrant expression 

of USP30-AS1 may hold promise as a distinctive 

prognostic marker for ovarian cancer, with significant 

therapeutic implications. Additional research is required 

to elucidate the molecular mechanisms underpinning the 

relationship between USP30-AS1 and the immune 

system and to validate these observations in varied 

independent patient cohorts and experimental models. 

These future studies could improve our understanding 
of the molecular circuits regulated by USP30-AS1, 

eventually allowing for innovative treatments against 

ovarian cancer. 
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To conclude, our study offers crucial insights into the 

likely role of USP30-AS1 in determining prognostic 

features of ovarian cancer and its potential impact on 

the TIME. Our research effectively demonstrates the 

positive association between USP30-AS1 expression 

levels and several types of immune cells, like Th1 cells, 

suggesting a vital role of this gene in shaping the 

immune landscape in ovarian carcinoma. Overall, our 

findings contribute to the ever-increasing pool of 

evidence indicating the significance of lncRNAs in the 

context of cancer immunity and highlights the urgent 

need of studies investigating the functional significance 

of USP30-AS1 in modulating immune responses in 

ovarian cancer. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Correlation scatter plots of CXCL9, CXCL10, CXCL11 and CXCL13 with the four lncRNAs with the 
highest correlation degree, respectively. (A) Correlation scatter plot of CXCL9 and the 4 lncRNAs with the highest correlation degree. (B) 
Correlation scatter plot of CXCL10 and the 4 lncRNAs with the highest correlation degree. (C) Correlation scatter plot of CXCL11 and the 4 
lncRNAs with the highest correlation degree. (D) Correlation scatter plot of CXCL13 and the 4 lncRNAs with the highest correlation degree. 
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Supplementary Figure 2. Forest plot and survival curve of 13 lncRNAs. (A) Forest plot of 13 lncRNAs. (B) Survival curve of PSMB8-
AS1. (C) Survival curve of HCP5. (D) Survival curve of AP002954.1. (E) Survival curve of AL365361.1. (F) Survival curve of DTNB.AS1. (G) 
Survival curve of AL353699.1. (H) Survival curve of LINC01943. (I) Survival curve of AC002511.2. (J) Survival curve of USP30AS1. (K) Survival 
curve of AL078582.1. (L) Survival curve of TRBV11.2. (M) Survival curve of AC012236.1. (N) Survival curve of MICB.DT. 
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Supplementary Tables 
 

Please browse the Full Text version to see the data of Supplementary Tables 2, 4, 5. 

 

Supplementary Table 1. List of TLS related genes. 

CETP 

CCR7 

SELL 

CD79B 

CCL19 

CXCL13 

LAMP3 

CXCL9 

CXCL11 

CCL8 

CCL18 

CCL5 

CXCL10 

RBP5 

CCL21 

SKAP1 

CD1D 

CCL2 

PTGDS 

CCL4 

CCL3 

 

Supplementary Table 2. Analysis results of differentially expressed genes between two clusters. 
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Supplementary Table 3. LASSO analysis 
of the obtained genes and corresponding 
coefficients. 

Variable lambda.min 

PSMB8-AS1 -0.024854969 

LINC01857 -0.007698824 

DTNB-AS1 -0.247195127 

AC002511.2 0.036814435 

TRBV11-2 -0.015803963 

LINC01094 0.177261565 

AP002954.1 -0.107738165 

AL353699.1 0.03021951 

USP30-AS1 -0.013455828 

AC012236.1 -0.082114301 

AL365361.1 -0.002645583 

AC012181.1 0.016359778 

LINC01943 -0.104857848 

AL078582.1 0.212567266 

MICB-DT -0.110934382 

 

Supplementary Table 4. Prediction results by nomogram model. 

Supplementary Table 5. Drug sensitivity analysis results. 

 

 

 

 


