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INTRODUCTION 
 

Diabetes mellitus (DM) is a serious metabolic disease 

with increasing complications and mortality associated 

with DM. According to epidemiological surveys, nearly 

400 million diabetes patients are diagnosed annually in 

the world, of which 90–95% are type 2 diabetes mellitus 

(T2DM) [1]. It is expected that by 2035, the number of 

worldwide diabetic patients will reach 600 million [2]. 

Multiple serious complications are reported on T2DM, 
including CI [3]. Therefore, it is urgent to seek methods 

for treating DM complications. Significant cognitive 

decline is reportedly observed in DM patients, about 

70% of which eventually develop into Alzheimer’s 

disease (AD). A much higher risk of AD is reported in 

DM patients [4, 5]. CI refers to the early stage of 

dementia, in which patients show cognitive dysfunction 

at the time of testing while retaining their basic ability 

to live [6]. Compared to subjects with normal blood 

glucose, the risk of CI in patients with diabetes is 0.5- 

times higher and the risk of dementia is 1- time higher 

[7]. Diabetes-related CI has a negative impact on 

learning ability, memory, attention, and executive 

ability, and even causes emotional disorders such as 

depression and anxiety [8, 9]. Inflammatory response is 

one of the important causes of CI in diabetes. Long-
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ABSTRACT 
 

Diabetes mellitus (DM) significantly influences the normal health of patients with its severe complications, 
including diabetes-related cognitive impairment (CI). Recently, neuroinflammation and oxidative stress (OS) 
have been reported to participate in the pathogenesis of diabetes-related CI. Teneligliptin, an inhibitor of DDP-
IV, was developed for treating DM and is claimed with promising effects against inflammation. Herein, in the 
current study, we examined the potential therapeutic function of Teneligliptin against diabetes-related CI. 
Db/m or diabetic mice were orally administered with teneligliptin (60 mg/kg/day) for 10 weeks. Elevated levels 
of total cholesterol (TC), triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C), increased escape 
latency, declined time in the platform quadrant and decreased number of platform crossings in the Morris 
water maze test, reduced freezing index in the fear conditioning test, and lessened time spent in the novel arm 
and percentage of alterations in the Y-maze test were observed in diabetic mice, all of which were sharply 
improved by teneligliptin. Furthermore, increased levels of inflammatory cytokines and activated OS state were 
observed in the hippocampus of diabetic mice, which were markedly repressed by Teneligliptin. Lastly, the 
activation of the NOD-like receptor family pyrin domain containing 3 (NLRP3) signaling and the endoplasmic 
reticulum (ER) stress pathway in the hippocampus of diabetic mice were notably inhibited by teneligliptin. 
Collectively, teneligliptin mitigated diabetes-related CI by repressing the ER stress and NLRP3 inflammasome in 
diabetic mice. 
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term hyperglycemia is a major feature of diabetes, 

which induces the inflammatory response by activating 

the NLRP3 inflammasome to promote the production of 

interleukin (IL)-1β [10]. Furthermore, the glycolysis 

intermediates are accumulated by persistent hyper-

glycemia to induce the accumulation of advanced 

glycation end products (AGEs), which further activate 

the NF-κB pathway to induce the secretion of a variety 

of inflammatory factors by microglia. By binding to the 

RAGE, AGEs induce the release of reactive oxygen 

species (ROS) to activate NF-κB signaling, which 

finally contributes to the excessive production of 

inflammatory factors [11, 12]. Therefore, controlling 

neuroinflammatory response may become an important 

direction for treating diabetes-related CI. 

 

As an inhibitor of DDP-IV, teneligliptin is a novel 

antidiabetic drug that inhibits the degradation of 

glucagon-like peptide 1 (GLP-1) via repressing the 

activity of DDP-IV. It exerts its antidiabetic function by 

increasing the blood concentration of GLP-1 [13, 14]. 

Teneligliptin was first developed by Mitsubishi Tanabe 

Pharma and approved for treating T2DM in Japan in 

2012, with its promising antidiabetic function proven in 

several clinical trials [15, 16]. DPP-4 inhibitors could  

be classified into peptidomimetic (i.e., sitagliptin, 

vildagliptin, saxagliptin, and anagliptin) and non-

peptidomimetic (i.e., alogliptin and linagliptin) subtypes. 

Teneligliptin has a different structure and pharma-

codynamic characteristics from other gliptins. These 

features could confer properties diverse from or additive 

to other DPP-4 inhibitors. Firstly, it is a potent, selective, 

and long-lasting inhibitor of DPP-4, and exhibits strong 

inhibitory activity via its J-shaped structure and ‘anchor 

lock domain’. Secondly, teneligliptin has high tissue 

distribution [17]. An X-ray co-crystal structure of 

teneligliptin with DPP-4 demonstrates that the key 

interaction occurs between the phenyl ring on the 

pyrazole and the S2 extensive subsite of DPP-4, which 

not only enhances the potency of the drug but also 

increases its selectivity [18]. Recently, several 

researches have claimed that teneligliptin shows 

prominent inhibitory effects against inflammation [19–

21]. Also, teneligliptin was found to ameliorate high 

glucose-induced ER stress in endothelial cells [22]. 

However, the function of teneligliptin in diabetes-related 

CI remains uncertain. Herein, the preliminary 

investigation of teneligliptin against diabetes-related CI 

was conducted in db/db mice. 

 

MATERIALS AND METHODS 
 

Animals and grouping 

 

12 non-diabetic (db/m) and 12 db/db mice (7–9 weeks) 

were obtained from the Vital River (China). After one 

week of adaptive feeding, db/m mice and db/db mice 

were orally administered with teneligliptin (60 

mg/kg/day) for 10 weeks. The mice were divided into 

four groups: db/m, db/m+ teneligliptin, db/db, and 

db/db+ teneligliptin. 

 

The detection of serum levels of TC, TG, and LDL-C 

 

The peripheral blood was collected to obtain the serum, 

followed by detecting the TC, TG, and LDL-C levels in 

the serum using the fully automatic biochemical 

analyzer (HITACHI, Japan). 

 

Morris water maze test 

 

The black maze was divided into 4 quadrants and the 

platform was placed in the 3rd quadrant. Water was 

poured into the maze to cover the platform, and 

differentiated by shapes and colors. The training was 

initiated by putting the mouse’s head toward the wall of 

the pool in the other 3 quadrants however it halted- 

when the mouse climbed to the platform. The escape 

latency was recorded as the time the mouse took to find 

the hidden underwater platform. On the 6th day of 

training, the mouse was put in the maze to test its spatial 

memory. The mouse was submerged in water for 60 s, 

and its spatial memory was assessed based on the time 

spent in the platform quadrant and the number of 

platform crossings. 

 

Fear conditioning test 

 

The experiment was divided into two stages: 

conditioned fear experimental training and situational 

conditioned fear experimental testing. The activity 

trajectory of the mouse was automatically tracked using 

the image automatic monitoring system (XR-XC404, 

Xinruan Information, China). The conditioned fear test 

was performed on the second day after the operation. 

Mice were placed in a sound-proof training box for 180 

s, after which they received sound (30 s, 75 dB, 3 000 

Hz) and plantar shock (2 s, 0.75 mA, and the last 2 s of 

shock before the end of the sound). 24 h after training, 

the situational fear conditioning test was performed. 

Mice were put back into the original experimental 

chamber without any stimulation, and the time of 

freezing (an inactive state with no other behavior except 

breathing) within 5 min was recorded. 

 

Y-maze test 

 

The equipment consisted of three identical arms (40 cm 

× 8.5 cm × 15 cm, angle 120°), designated as A, B, and 

C, respectively. Each mouse was put in the middle area 

of the maze at the beginning of the experiment. 

Subsequently, the mouse was allowed to probe freely 
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for 8 mins, and the Noldus movement trajectory 

tracking system was used to record the time spent in the 

novel arm and the number of correct rotations 

(continuously entering 3 different arms, such as ABC, 

BCA, etc.). The percentage of alterations was calculated 

as (number of rotations/maximum number of rotations -

2) ×100. 

 

Enzyme-linked immunosorbent assay (ELISA) for 

the cytokine level and glutathione peroxidase (GSH-

PX) activity detection 

 

The mice were sacrificed in a sealed container collected 

with a CO2 tanker. The hippocampus of each mouse was 

collected and homogenized, followed by centrifugation 

and collection of the supernatant. 50 μL supernatant was 

diluted at a 1:1 ratio and loaded into the well. Then, 50 

μL Biotin-labeled antibody was introduced and cultured 

for 60 min at 37°C, followed by removing the reagent 

and adding 80 μL horseradish peroxidase (HRP)-loaded 

secondary antibody. Following half an hour of culturing 

at 37°C, 50 μL TMB substrates were added and cultured 

at 37°C for 10 min, followed by loading 50 μL stop 

solution. Lastly, the optical density (OD) value was 

achieved using a microplate reader (MD, USA). 

 

The measurement of malondialdehyde (MDA) level, 

Superoxide dismutase (SOD) activity in the 

hippocampus 

 

The hippocampus was collected and homogenized, 

followed by centrifugation and collecting the super-

natant. The MDA level (Jiancheng, China) and SOD 

activity (Solarbio, China) in the hippocampus were 

determined with a commercial kit using the TBA and 

WST-1 methods, respectively. The instructions were 

strictly followed. 

 

Real-time polymerase chain reaction (RT-PCR) 

assay 

 

Total RNAs were obtained from the hippocampus using 

the TRIzol reagent and were quantified with the 

ultraviolet spectrophotometer (Hach, USA). A cDNA 

synthesis kit (SolelyBio, China) was utilized for 

conducting the transcription from RNAs to cDNAs, 

followed by performing the PCR reaction utilizing an 

SYBR Premix Ex TaqII kit (Takara, Japan). The 2−ΔΔCt 

method was used for the calculation of gene levels. The 

primer sequences for the genes used in this experiment 

are listed as follows: IL-1β FW5′-TTCGA GGCAC 

AAGGC ACAA-3′; RV5′-CCATC ATTTC ACTGG 

CGAGC-3′; MCP-1 FW5′-GCTCA GCCAG ATGCA 
AT-3′; RV5′-GCTTG TCCAG GTGGT CCATG-3′; IL-

6 FW5′-GACAA AGCCA GAGTC CTTCA GAGAG 

ATACA G-3′; RV5′-TTGGA TGGTC TTGGT CCTTA 

GCCAC-3′; β-actin-FW5′-CATGT ACGTT GCTAT 

CCAG GC-3′; RV5′-CTCCT TAATG TCACG 

CACGA T-3′. 

 

Western blot analysis 

 

The hippocampus was collected and lysed to obtain total 

proteins and quantified with the BCA method. After 

separation using the sodium dodecyl sulfate (SDS)-

polyacrylamide gel (PAGE), proteins were delivered to 

the polyvinylidene fluoride (PVDF) membrane, 

followed by blocking in 5% skim milk. Primary anti-

bodies against thioredoxin-interacting protein (TXNIP) 

(1:2000, Cat#abs136992, Absin, China), apoptosis-

associated speck-like protein (ASC) (1:1000, 

Cat#abs155599, Absin, China), NLRP3 (1:2500, 

Cat#abs151715, Absin, China), C/EBP Homologous 

Protein (CHOP) (1:1000, Cat#abs131376, Absin, 

China), phosphorylated-PERK (1:1000, Cat#abs137056, 

Absin, China), PERK (1:1000, Cat#abs124201, Absin, 

China), phosphorylated inositol-requiring enzyme 

1alpha (p-IRE1α) (1:1000, abs127778, Absin, China), 

IRE1α (1:1000, abs127778, Absin, China), ATF6 

(1:2000, #65880, CST, USA), or β-actin (1:2000, 

Cat#8457CST, USA), the HRP-linked, Anti-rabbit IgG 

(1:2000, Cat#7074, CST, USA) were introduced and 

cultured at 4°C overnight. Subsequently, the HRP-

linked, anti-rabbit IgG (1:2000, Cat#7074, CST, USA) 

was loaded and cultured for 90 min at 37°C. Lastly, ECL 

solution was utilized for the exposure of the bands and 

the ImageJ software was used for expression level 

analysis. 

 

Statistical analysis 
 

Data were listed as mean ± Standard Deviation (SD), 

which were analyzed using the one-way analysis of 

variance (ANOVA) method by Tukey’s test with the 

software SPSS (Version 24.0). P < 0.05 was considered 

statistically significant. 

 

Data availability 
 

The data is available upon reasonable request from the 

corresponding author. 

 

RESULTS 
 

Teneligliptin alleviated dyslipidemia in diabetic mice 
 

Firstly, the biochemical indexes were detected following 

administration. The TC level was maintained around 3.6 

mM in the db/m and db/m+ teneligliptin groups and was 
signally increased to 6.18 mM in the db/db group, then 

markedly reduced to 4.92 mM by teneligliptin 

(Figure 1A). Furthermore, the TG levels in the db/m, 
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db/m+ teneligliptin, db/db, and db/db+ teneligliptin 

groups were 1.25, 1.33, 3.46, and 2.52 mM, res-

pectively (Figure 1B). Moreover, the LDL-C level was 

slightly altered in the db/m+ teneligliptin group and 

notably elevated in the db/db group but was 

dramatically declined in the db/db+ teneligliptin group 

(Figure 1C). 

 

Teneligliptin alleviated the behavioral dysfunction of 

diabetic mice in the Morris water maze test 

 

The escape latency to reach the escape platform in the 

db/m, db/m+ teneligliptin, db/db, and db/db+ 

teneligliptin groups was 21.4, 22.7, 38.9, and 29.3 s, 

respectively (Figure 2A). The time spent on the platform 

(Figure 2B) was kept around 18.0 s in the db/m and 

db/m+ teneligliptin groups, and was markedly reduced 

to 10.8 s in diabetic mice, then signally increased to 

16.2 s by teneligliptin. Furthermore, the average number 

of platform crossings in the db/m, db/m+ teneligliptin, 

db/db, and db/db+ teneligliptin groups was 3.5, 3.4, 1.3, 

and 2.5, respectively (Figure 2C). 

 

Teneligliptin mitigated the behavioral dysfunction of 

diabetic mice in the fear conditioning test 

 

Subsequently, the behavior change in diabetic mice was 

confirmed using the fear conditioning test. The freezing 

index was minorly changed from 50.1% to 49.2% in the 

db/m+ teneligliptin group and largely decreased to 

21.8% in the db/db group, then greatly reversed to 

40.7% by teneligliptin (Figure 3). 

 

Teneligliptin ameliorated the behavioral dysfunction 

of diabetic mice in the Y-maze test 

 

In the Y-maze test, the time spent in the new arm was 

minorly changed from 148.2 s to 152.4 s, largely 

declined to 75.4 s in diabetic mice, then dramatically 

increased to 107.2 s by teneligliptin (Figure 4A). 

Moreover, the percentage of alterations in the db/m, 

db/m+ teneligliptin, db/db, and db/db+ teneligliptin 

groups was 52.3%, 55.1%, 32.9%, and 44.7%, 

respectively (Figure 4B). 

 

Teneligliptin repressed the production of 

inflammatory cytokines in diabetic mice 

 

The state of neuroinflammation in the hippocampus was 

investigated. The gene levels of IL-1β, MCP-1, and IL-

6 were mildly changed in the db/m+ teneligliptin group, 

markedly elevated in the db/db group, then memorably 

reduced in the db/db+ teneligliptin group (Figure 5A–

5C). The IL-1β levels in the db/m, db/m+ teneligliptin, 

db/db, and db/db+ teneligliptin groups were 32.4, 33.8, 

77.4, and 57.3 pg/mg protein, respectively (Figure 5D).

 

 
 

Figure 1. Teneligliptin improved the dyslipidemia in db/db mice. (A) Total cholesterol (TC) level; (B) Triglyceride (TG) in level; (C) 

Low-density lipoprotein cholesterol (LDL-C) level (*, **P < 0.05, 0.01 vs. db/db mice group; †, ††P < 0.05, 0.01 vs. Teneligliptin group). 

 

 

 
 

Figure 2. Teneligliptin alleviated the behavioral dysfunction of db/db mice in the Morris water maze test. (A) The escape 

latency to reach the escape platform; (B) The time spent in the platform quadrant; (C) The number of platform crossings (*, **P < 0.05, 0.01 
vs. db/db mice group; †, ††P < 0.05, 0.01 vs. Teneligliptin group). 

8339



www.aging-us.com 5 AGING 

The MCP-1 level was kept around 400.0 ng/mg protein 

in the db/m and db/m+ teneligliptin groups was 

markedly increased to 702.5 ng/mg protein in diabetic 

mice, then greatly decreased to 569.8 ng/mg protein by 

teneligliptin (Figure 5E). Furthermore, the IL-6 levels in 

the db/m, db/m+ teneligliptin, db/db, and db/db+ 

teneligliptin groups were 54.9, 56.3, 114.7, and 71.9 

pg/mg protein, respectively (Figure 5F). 

 

Teneligliptin reversed the OS in diabetic mice 

 

The OS state in the hippocampus of each mouse was 

further studied. The increased MDA level in diabetic 

mice was found markedly repressed by teneligliptin 

(Figure 6A). The SOD activity in the db/m, db/m+ 

teneligliptin, db/db, and db/db+ teneligliptin groups was 

42.3, 43.7, 21.5, and 33.6 U/mg protein, respectively 

(Figure 6B). The GSH-PX activity was retained around 

45.0 U/mg protein in the db/m and db/m+ teneligliptin 

groups was notably decreased to 17.8 U/mg protein in 

diabetic mice, then markedly reversed to 28.4 U/mg 

protein by teneligliptin (Figure 6C). 

 

Teneligliptin inhibited the NLRP3 inflammasome in 

diabetic mice 

 

NLRP3 signaling has a claimed correlation to the 

development of diabetes-related CI [23]. Herein, the 

mildly altered TXNIP, ASC, and NLRP3 levels in the 

db/m+ teneligliptin group were markedly promoted in 

diabetic mice, and then signally repressed by 

teneligliptin (Figure 7A–7D). 

 

Teneligliptin alleviated the ER stress in diabetic 

mice 

 

ER stress is another important mechanism contributing 

to the pathogenesis of diabetes-related CI [24]. Herein, 

the levels of ER stress-related proteins, including 

GRP78, CHOP, p-PERK, p-IRE1α, and ATF6, were 

 

 
 

Figure 3. Teneligliptin mitigated the behavioral dysfunction of db/db mice in the fear conditioning test. The freezing index (%) 
(*, **P < 0.05, 0.01 vs. db/db mice group; †P < 0.05 vs. Teneligliptin group). 

 

 

 
 

Figure 4. Teneligliptin ameliorated the behavioral dysfunction of db/db mice in the Y-maze test. (A) Time spent in the novel 
arm; (B) Percentage of alterations (%) (*, **P < 0.05, 0.01 vs. db/db mice group; †P < 0.05 vs. Teneligliptin group). 
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minorly altered in the db/m+ teneligliptin group, largely 

increased in the db/db group, then markedly suppressed 

in the db/db+ teneligliptin group (Figure 8A–8F). 

 

DISCUSSION 
 

DPP-4 inhibitors are potent drugs used to treat patients 

with T2DM [25, 26]. Inhibition of DPP-4 increases 

levels of biologically intact incretins, improving glucose 

metabolism through the upregulation of insulin 

secretion and the suppression of glucagon release [27]. 

Recently, several articles have reported on its 

neuroprotective effects in both in vivo and in vitro 

models [28, 22]. The inflammatory response is a critical 

mechanism in DM and diabetes-related CI [29]. 

Hyperglycemia and ROS are critical factors inducing an 

inflammatory response in diabetes-related CI patients. 

When an inflammatory response occurs, microglia in 

the hippocampus related to learning and memory 

function release a large number of inflammatory factors, 

which further contribute to neuronal degeneration [30]. 

The persistent occurrence of chronic inflammation 

changes the permeability of the blood-brain barrier 

(BBB) [31], and a large number of toxic and harmful 

substances cross the BBB and enter the brain, 

increasing the burden on the nervous system and 

causing neurodegenerative diseases. The secretion of 

pro-inflammatory factor IL-1β is found to induce 

neuroinflammation, which is the key to the pathogenesis 

of diabetes-related CI [32]. The levels of inflammatory 

factors in diabetes-related CI patients are dramatically 

higher than those in DM patients [29]. Herein, changed 

biochemical criteria observed in diabetic mice were 

consistent with data reported previously [33]. 

 

 
 

Figure 5. Teneligliptin repressed the production of inflammatory cytokines in the hippocampus of db/db mice. (A) mRNA 

level of IL-1β, (B) mRNA level of MCP-1, and (C) mRNA level of IL-6; (D) Protein level of IL-1β, (E) Protein level of MCP-1, and (F) Protein level 
of IL-6 (**P < 0.01 vs. db/db mice group; ††0.01 vs. Teneligliptin group). 

 

 

 
 

Figure 6. Teneligliptin reversed the oxidative stress in the hippocampus of db/db mice. (A) MDA level; (B) SOD activity; (C) GSH-
PX activity (**P < 0.01 vs. db/db mice group; ††0.01 vs. Teneligliptin group). 
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Figure 7. Teneligliptin inhibited the NLRP3 inflammasome in the hippocampus of db/db mice. (A) Protein level of genes were 

determined using western blots; (B) Protein level of TXNIP; (C) Protein level of ASC; (D) Protein level of NLRP3 (**P < 0.01 vs. db/db mice 
group; ††0.01 vs. Teneligliptin group). 

 

 
 

Figure 8. Teneligliptin alleviated the ER stress in the hippocampus of db/db mice. (A) Protein level of genes were detected by 
western blots; (B) Protein level of GRP78; (C) Protein level of CHOP; (D) Protein level of p-PERK; (E) Protein level of p-IRE1α; (F) Protein level 
of ATF6 (*, **P < 0.05, 0.01 vs. db/db mice group; †, ††P < 0.05, 0.01 vs. Teneligliptin group). 

8342



www.aging-us.com 8 AGING 

Furthermore, in diabetic mice, behavioral dysfunction 

was observed in the Morris water maze, the fear 

conditioning, and the Y-maze tests, in line with the 

research published by Wu [34]. After the administration 

of teneligliptin, biochemical criteria were markedly 

improved, accompanied by alleviation of the behavioral 

dysfunction, implying that teneligliptin exerted a 

promising protective function on CI in diabetic mice. 

Moreover, similar to data presented by Shang [35], 

severe neuroinflammation and activated OS state were 

observed in diabetic mice, both of which were sharply 

ameliorated by teneligliptin, suggesting that the 

protection of teneligliptin against CI in diabetic mice 

might be correlated to its repression on the inflam-

mation and OS. 

 

The secretion and maturation of IL-1β is regulated by 

the inflammatory activation of NLRP3, which induces 

various forms of inflammatory response, thereby 

promoting the development of central nervous system 

diseases [36–38]. IL-1β is also an important mediator of 

accelerating neurodegenerative diseases and diabetes-

related CI [39], and significantly increased hippocampal 

IL-1β levels are associated with cognitive and 

emotional changes in diabetic mice [40]. Animal studies 

have shown that diabetic complications are alleviated 

by the inhibitor of the NLRP3 inflammasome [41, 42]. 

Herein, high levels of IL-1β were observed in diabetic 

mice, accompanied by an activation of the NLRP3 

inflammasome, consistent with data reported by Tian 

[43] and Lu [44]. Moreover, the level of IL-1β and the 

activation of the NLRP3 inflammasome were notably 

suppressed by teneligliptin, indicating that the function 

of teneligliptin in diabetic mice was correlated to the 

inhibition of NLRP3 signaling. In future work, the 

association between the NLRP3 inflammasome and 

teneligliptin in diabetes-related CI will be identified by 

co-administering the diabetic mice with teneligliptin 

and the agonist of the NLRP3 inflammasome. 

 

ER is an important organelle that participates in protein 

folding, transport, and maintaining calcium ion balance. 

When the pressure load of protein folding in the cell is 

low, Bip/GRP78 in the ER binds to the luminal segment 

of the ER transmembrane proteins ATF6, IRE-1, and 

PERK, which is in an inactive state. However, when the 

folding capacity of ER cannot meet the demand of 

newly synthesized unfolded protein or the calcium ion 

balance is broken, cells will be in the ER stress state 

[45, 46]. ER stress signaling is closely related to various 

pathological factors and states of cognitive decline in 

diabetes, such as metabolic abnormalities, cerebral 

ischemia, insulin resistance, neuronal calcium homeo-
stasis, neurotransmitter changes, inflammatory 

response, and oxidative stress [47]. ER stress induces 

neuronal apoptosis through GSK3/3β, C/EBP-

homologous protein (CHOP), and Caspase-12 signaling 

pathways or interacting with the mitochondrial 

apoptosis pathway [48–51]. Herein, consistent with the 

research by He [52], the remarkably activated ER stress 

pathway in diabetic mice was markedly repressed by 

teneligliptin, implying that the function of teneligliptin 

in diabetic mice was correlated to the suppression of the 

ER stress pathway. The involvement of the ER stress 

pathway in the regulatory mechanism of teneligliptin in 

diabetes-related CI will be further confirmed by co-

administering diabetic mice with teneligliptin and 

tunicamycin, the activator of ER stress. 

 

In conclusion, teneligliptin alleviated diabetes-related 

CI by repressing the ER stress and NLRP3 

inflammasome in diabetic mice. Further studies can 

help clarify whether a sufficient improvement in 

cognitive impairment could result from long-term use of 

teneligliptin therapy in diabetic patients. 
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