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INTRODUCTION 
 

Statins are commonly used lipid-lowering drugs that 

target 3-hydroxy-3-methylglutaryl coenzyme A re-

ductase (HMGCR) [1]. As first-line agents to lower 

plasma LDL cholesterol (LDL-C), statins have shown 

consistent benefits in both primary and secondary 

prevention for atherosclerotic cardiovascular disease 

(ASCVD) as supported by numerous clinical trials [2, 

3]. However, even with optimal statin therapy, there are 

still notable residual ASCVD risks [4]. In addition, 
statin adherence is not clinically sufficient due to a 

potential risk of newly diagnosed type 2 diabetes [5] 

and intolerance of adverse events such as myopathy and 
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ABSTRACT 
 

Background: Despite the widespread use of statins, newer lipid-lowering drugs have been emerging. It remains 
unclear how the long-term use of novel lipid-lowering drugs affects the occurrence of cancers and age-related 
diseases. 
Methods: A drug-target Mendelian randomization study was performed. Genetic variants of nine lipid-lowering 
drug-target genes (HMGCR, PCKS9, NPC1L1, LDLR, APOB, CETP, LPL, APOC3, and ANGPTL3) were extracted as 
exposures from the summary data of Global Lipids Genetics Consortium Genome-Wide Association Studies 
(GWAS). GWAS summary data of cancers and noncancerous diseases were used as outcomes. The inverse-
variance weighted method was applied as the main statistical approach. Sensitivity tests were conducted to 
evaluate the robustness, pleiotropy, and heterogeneity of the results. 
Results: In addition to marked effects on decreased risks of atherosclerotic cardiovascular diseases, genetically 
proxied lipid-lowering variants of PCKS9, CETP, LPL, LDLR, and APOC3 were associated with longer human 
lifespans (q<0.05). Lipid-lowering variants of ANGPTL3 and LDLR were associated with reduced risks of 
colorectal cancer, and ANGPTL3 was also associated with lower risks of gastric cancer (q<0.05). Lipid-lowering 
LPL variants were associated with decreased risks of hypertension, type 2 diabetes, nonalcoholic fatty liver 
disease, and bladder cancer (q<0.05). Lipid-lowering variants of PCKS9 and HMGCR were associated with 
decreased risks of osteoporosis (q<0.05). Lipid-lowering APOB variants were associated with a decreased risk of 
thyroid cancer (q<0.05).  
Conclusions: Our study provides genetic evidence that newer nonstatin lipid-lowering agents have causal 
effects on decreased risks of several common cancers and cardiometabolic diseases. These data provide genetic 
insights into the potential benefits of newer nonstatin therapies. 
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hepatopathy [6]. Therefore, to improve lipid-lowering 

effects, new nonstatin lipid-lowering pharmaceutical 

agents have emerged.  

 

In recent years, several gene-target drugs have been 

developed due to their favorable lipid-lowering effect. 

Cholesterol absorption inhibitors, proprotein convertase 

subtilisin/kexin type 9 (PCSK9) inhibitors, and bempedoic 

acid (BA) are several newer nonstatin medications with 

cholesterol-lowering effects [7, 8], while angiopoietin-like 

protein 3 (ANGPTL3) inhibitors and antisense oligo-

nucleotides targeting the mRNA of apoprotein C-III 

(APOC3) have effects on lowering serum triglyceride 

levels [9]. As clinical trials investigating the effectiveness 

and safety of several newer nonstatin drugs are still 

currently in progress [10], the impact of long-term use of 

these drugs on morbidity and mortality remains unclear. 

Therefore, in our study, we aim to investigate the genetic 

impact of different lipid-lowering drugs on cardio-

metabolic diseases, the risk of cancers, and age-related 

outcomes by examining gene targets. 

 

Mendelian randomization (MR) is an analytical 

approach that has been widely applied to investigate the 

causal relations between exposures and outcomes [11]. 

A drug-target MR analysis belongs to the MR study but 

only retains genetic variants in or near the target gene of 

the drug substance [12]. The effects of genetic variants 

within the encoding gene of a drug target can illustrate 

the potential causal effect of controlling a drug target on 

modulating exposures and outcomes. Therefore, we 

performed a two-sample MR study with drug-target MR 

analysis, mimicking the long-term administration of 

different lipid-lowering agents in randomized clinical 

trials, to provide genetic insights into the safety of 

different lipid-lowering drugs on age-related traits. 

 

MATERIALS AND METHODS 
 

Study design and data sources 

 

Our MR study followed the Strengthening the 

Reporting of Observational Studies in Epidemiology 

using Mendelian Randomization (STROBE-MR) guide-

lines (Supplementary Table 1). A two-sample MR 

analysis with drug-target analysis was designed. The 

exposures comprised LDL-cholesterol- or triglyceride-

lowering genetic variants in or near various drug-target 

genes. The classification of lipid-lowering drugs and 

their target genes was based on the latest expert 

consensus and guidelines regarding lipid-lowering 

therapies [10, 13], which are summarized in Table 1. To 

enhance the credibility of the causal effects of gene 

variants, we performed positive control analyses, given 

the recognized benefits of lipid-lowering drugs in 

coronary artery disease. 

The outcome data included multiple GWAS summary 

data of cardiometabolic diseases (coronary athero-

sclerosis, major coronary heart disease events, 

hypertension, type 2 diabetes, nonalcoholic fatty liver 

disease (NAFLD)), risk of cancers (colorectal cancer, 

gastric cancer, esophageal cancer, hepatocellular 

carcinoma, pancreatic cancer, lung cancer, thyroid 

cancer, bladder cancer, and cerebral tumors), and age-

related outcomes (parental lifespan and longevity, 

telomere length, chronic obstructive pulmonary disease 

(COPD), Alzheimer's disease/dementia, and osteo-

porosis). All the data sources used in this study were 

derived from publicly accessible GWAS summary data 

of European populations, and detailed information is 

presented in Table 2. 

 

Figure 1 presents the main MR assumptions. As the 

main effect of lipid-lowering drugs is to reduce LDL-C 

or triglyceride levels, we used the associations of these 

selected genetic instruments with circulating lipid 

concentrations to proxy the pharmacological modula-

tion of the drug-target protein (relevance assumption). 

The assumption is that genetic variants are not 

associated with confounders (independence assumption) 

and affect human lifespan through other pathways 

(exclusion restriction assumption) [14]. This study 

employed publicly available summary statistics for 

analysis, and no ethical approval was needed. 

 

Selection of genetic variants 

 

For drug-target MR, information on pharmacologically 

active protein targets and their encoding genes was 

extracted from the DrugBank (https://go.drugbank.com/) 

and NCBI Gene Database (https://www.ncbi.nlm. 

nih.gov/gene/). A total of 11 target genes were identified, 

including low-Density Lipoprotein Receptor (LDLR), 3-

hydroxy-3-methylglutaryl coenzyme A reductase 

(HMGCR), ATP-citrate synthase (ACLY), proprotein 

Convertase Subtilisin/Kexin Type 9 (PCKS9), 

Niemann-Pick C1-like 1 (NPC1L1), apoprotein B-100 

(APOB), cholesteryl ester transfer protein (CETP), 

lipoprotein lipase (LPL), peroxisome proliferator 

activated receptor alpha (PPARA), angiopoietin-related 

protein 3 (ANGPTL3), and apoprotein C-III (APOC3). 

Genetic variants within these genes that encode protein 

targets of lipid-lowering drugs (cis-variants) were 

extracted from the GWAS summary data from the 

Global Lipids Genetics Consortium [15]. Cis-variants 

are defined as genetic variants located on the same 

DNA molecule as the target gene [16]. The serum levels 

of LDL-C and TG were used as proxies for LDL-C-

lowering and TG-lowering targets, respectively. Drug-
target SNPs, clumped to an LD threshold of r2<0.3 with 

a 100 kb window distance, were identified at a genome-

wide level of significance (p≤5×10−8) within ±100 kb 

https://go.drugbank.com/
https://www.ncbi.nlm.nih.gov/gene/
https://www.ncbi.nlm.nih.gov/gene/
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Table 1. Summary of genetically proxied lipid-lowering drug targets. 

Drug 

effect 
Drug class Drug target 

Encoding 

genes 

Gene location  

(GRCh37 from ensembl) 
Drug substance 

Eligible 

IVs 

↓LDL-C 

Key Modulator LDL Receptor LDLR CHR:19:11,200,038-11,244,492 - yes 

HMGCR inhibitors HMG-CoA reductase HMGCR CHR:5:74,632,154-74,657,929 
Atorvastatin 

Rosuvastatin etc. 
yes 

ACLY inhibitors ATP-citrate synthase ACLY CHR:17:40,023,161-40,086,795 Bempedoic acid no 

PCSK9 inhibitors 
Proprotein Convertase 

Subtilisin/Kexin Type 9 
PCSK9 CHR:1:55,505,221-55,530,525 

Evolocumab 

Alirocumab 
yes 

TC absorption inhibitors Niemann-Pick C1-like 1 NPC1L1 CHR:7:44,552,134-44,580,914 Ezetimibe yes 

ASO targeting ApoB 

mRNA 
Apo B100 APOB CHR:2:21,224,301-21,266,945 Mipomersen yes 

ASO targeting CETP 

mRNA 

Cholesteryl Ester 

Transfer Protein 
CETP CHR:16:56,995,762-57,017,757 Torcetrapib yes 

BA sequestrants Bile acids - - 
Cholestyramine 

Colestipol 
no 

↓TG 

Key Modulator Lipoprotein Lipase LPL CHR:8:19,759,228-19,824,769 - yes 

Fibrates 
Peroxisome Proliferator-

Activated Receptor-alpha 
PPARA CHR:22:46,546,424-46,639,653 

Fenofibrate 

Gemfibrozil 
no 

ANGPTL3 inhibitors 
Angiopoietin-related 

protein 3 
ANGPTL3 CHR:1:63,063,158-63,071,830 Evinacumab yes 

ASO targeting ApoC-III 

mRNA 
Apo C-III APOC3 CHR:11:116,700,422-116,703,788 Volanesorsen yes 

Abbreviations: LDL-C, Low-Density Lipoprotein Cholesterol; TG, Total triglyceride; LDLR, Low-Density Lipoprotein Receptor; 
HMGCR, 3-hydroxy-3-methylglutaryl coenzyme A reductase; PCKS9, Proprotein Convertase Subtilisin/Kexin Type 9; NPC1L1, 
Niemann-Pick C1-like 1; APOB, Apoprotein B-100; CETP, Cholesteryl Ester Transfer Protein; LPL, Lipoprotein Lipase; ANGPTL3, 
Angiopoietin-related protein 3; APOC3, Apoprotein C-III. 

 

regions of the corresponding genes. PPARA and ACLY 

were excluded from further analysis due to insufficient 

numbers of SNPs identified as drug proxies. Steiger 

filtering [17] was also used to identify the bidirectional 

effects, and variants with reverse causal effects were 

removed accordingly. SNPs with inconsistent alleles 

(i.e., A/G vs. A/C) were strictly excluded.  

 

Statistical analysis 

 

The inverse variance weighting (IVW) method [18] was 

primarily used to estimate the causal effects. This 

approach estimates the causality of a 1 standard 

deviation increase in exposure to genetic predictors of 

outcome. Beta estimates were utilized to evaluate 

GWAS data with continuous outcomes, while odds 

ratios were used to estimate the GAWS data with binary 

outcomes. The association estimates of the same trait 

were combined using a meta-analysis of the fixed or 

random effects model based on heterogeneity [19]. 

 

To test the MR assumptions in the study design, we first 

calculated the F statistic for each instrument using the 

following formula: F=R2(n−1−k)/(1−R2)k, (R2 stands 

for the proportion of variation explained, k stands for 

the number of eligible SNPs, and n stands for the 

sample size) [20]. No significant weak instrumental bias 

was defined as eligible SNPs with F-statistics greater 

than 10. Statistical power was estimated using the 

mRnd website (https://shiny.cnsgenomics.com/mRnd/). 

To validate the results from the IVW method, we 

conducted sensitivity tests using MR-Egger regression, 

weighted median, maximum likelihood, and weighted 

mode methods [21]. We estimated heterogeneity and 

horizontal pleiotropy using the Cochran Q test and MR 

Egger’s intercept test. Additionally, we utilized “leave-

one-out” analysis to identify heterogeneous SNPs by 

omitting each instrumental SNP in turn. P-values were 

adjusted from multiple testing using the false discovery 

rate (FDR, q-value) with the Benjamin-Hochberg 

method.  

 

All analyses were implemented in R software version 

4.1.0 using the TwosampleMR (github.com/MRCIEU/ 

TwpSampleMR), MendelianRandomiszation, and coloc 

R packages. Forest plots were derived from the ggplot 

and ggplot2 R packages, and heatmaps were derived 

from the pheatmap R packages. The figure illustrating 

the pharmacological mechanisms of lipid-lowering 

drugs was drawn using the FigDraw platform 

(https://www.figdraw.com/). 

 

Availability of data and materials 

 

All data generated or analysed during this study are 

included in this published article and its Supplementary 

https://shiny.cnsgenomics.com/mRnd/
https://www.figdraw.com/
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Table 2. Data resources of the exposures and outcomes used in this study. 

GWAS traits GWAS consortium First author Year PMID Population Data type Sample size Case/control Unit 

Circulating Lipids          

LDL cholesterol GLGC Willer CJ 2013 24097068 96% European Continuous 173,082 - SD (mg/dL) 

Total cholesterol GLGC Willer CJ 2013 24097068 96% European Continuous 187,365 - SD (mg/dL) 

Total Triglycerides GLGC Willer CJ 2013 24097068 96% European Continuous 177,861 - SD (mg/dL) 

Age-related Outcomes          

Parental lifespan UKBiobank Timmers PR 2019 30642433 European Continuous 500,193 - SD 

Telomere length UKBiobank Codd V 2021 34611362 European Continuous 472,174 - SD 

Chronic obstructive pulmonary 

disease 
MRC-IEU Ben Elsworth 2018 - European Binary 462,933 1,605/461,328 LogOR 

Alzheimer's disease/dementia MRC-IEU Ben Elsworth 2018 - European Binary 399,793 19,255/380,538 LogOR 

Osteoporosis MRC-IEU Ben Elsworth 2018 - European Binary 462,933 7,547/455,386 LogOR 

Cardiometabolic Diseases          

Coronary atherosclerosis FinnGen  - 2022 - European Binary 328,042 42,421 / 285,621 LogOR 

Major coronary heart disease 

events 
FinnGen  - 2022 - European Binary   LogOR 

Hypertension MRC-IEU Ben Elsworth 2018 - European Binary 463010 54,358/408,652 LogOR 

Type 2 Diabetes DIAMANTE Mahajan A 2018 30297969 European Binary 898,130 74,124 / 824,006 LogOR 

Nonalcoholic fatty liver disease  Namjou B 2019 31311600 European Binary 9677 1,106/8,571 LogOR 

Maligant Tumors          

Colorectal cancer GECCO 
Fernandez-

Rozadilla C 
2023 36539618 European Binary 185,616 78,473/107,143 LogOR 

Gastric cancer FinnGen  - 2022 - European Binary 260810 1,227/259,583 LogOR 

Esophageal cancer FinnGen  - 2022 - European Binary 260086 503/259,583 LogOR 

Pancreatic cancer FinnGen  - 2022 - European Binary 260832 1,249/259,583 LogOR 

Hepatocelullar cancer FinnGen  - 2022 - European Binary   LogOR 

Lung cancer UKBiobank Burrows K 2021 - European Binary 374687 2,761/372,016 LogOR 

Thyroid cancer FinnGen  - 2022 - European Binary 261108 1,525/259,583 LogOR 

Bladder cancer FinnGen  - 2022 - European Binary 259667 84/259,583 LogOR 

Brain tumors FinnGen  - 2022 - European Binary 260357 774/259,583 LogOR 

 

Information Files. The availability of all the data used in 

the study was summarized in Supplementary Table 2. 

 

Consent for publication 
 

This manuscript has not been previously published. All 

authors have consented to the publication of the 

manuscript in this journal. 

 

RESULTS 
 

Effects of genetic variation in lipid-lowering drug 

targets on human lifespan 
 

We used the largest GWAS dataset that contains the 

largest-scale lifespan-associated GWAS summary data 

among 500,193 European individuals [22]. Figure 2 

presents the causal effects of 9 genetically proxied lipid-

lowering gene targets on human lifespan or longevity-

related traits. After Steiger filtration, 13 variants were 

selected to proxy LDL lowering through LDLR 

modulator, 7 for HMGCR, 12 for PCKS9, 3 for 
NPC1L1, 21 for LPL, 18 for APOB, 4 for CETP, 4 for 

ANGPTL3, and 10 for APOC3, with all F statistics 

greater than 10 (Supplementary Table 2).  

We identified six lipid-lowering variants that were 

associated with increased lifespan, including PCKS9 

(Beta 0.11; 95% CI: 0.06 to 0.15; p-IVW=4.55×10-6, 

FDR=5.95×10-5), CETP (Beta 0.24; 95% CI: 0.14 to 

0.34; p-IVW=3.72×10-06, FDR=5.31×10-5), APOC3 

(Beta 0.08; 95% CI: 0.04 to 0.12; p-IVW=4.67×10-5, 

FDR=4.58×10-4), LDLR (Beta 0.15; 95% CI: 0.11 to 

0.19; p-IVW=1.08×10−11, FDR=2.83×10-10), and LPL 

(Beta 0.12; 95% CI: 0.09 to 0.195; p-IVW=1.62×10-15, 

FDR=8.48×10-14). There was little statistical evidence 

of longevity-associated effects among NPC1L1 (Beta 

0.06; 95% CI: -0.16 to 0.28; p-IVW=0.58, FDR=0.76) 

and HMGCR (Beta 0.08; 95% CI: 0.01 to 0.15; p-

IVW=0.03, FDR=0.11). Sensitivity tests (Supplementary 

Table 3) showed consistent trends in the estimates, with 

no statistical evidence of bias from horizontal 

pleiotropy and heterogeneity (Supplementary Table 4).  

 

Results of positive control analysis 

 

In the positive control analysis (Figure 3), we identified 

significant associations between most lipid-lowering 
gene targets (HMGCR, LDLR, PCSK9, NPC1L1,  

and LPL) and a decreased risk of both coronary 

atherosclerosis and major coronary heart disease (CHD) 
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Figure 1. Flowchart of the study design and MR assumptions. Assumptions of the Mendelian randomization study: in this study, 

genetic instruments were selected to represent the pharmacological modulation of drug target proteins based on their associations with 
circulating lipid concentrations (relevance assumption). Additionally, it was assumed that the selected genetic variants are not associated 
with confounding factors (independence assumption). The third assumption was that genetic variants should not affect human lifespan 
through other pathways (exclusion restriction assumption). Abbreviations: LDL-C, Low-Density Lipoprotein Cholesterol; TC, Total cholesterol; 
TG, Total triglyceride; LDLR, Low-Density Lipoprotein Receptor; HMGCR, 3-hydroxy-3-methylglutaryl coenzyme A reductase; PCKS9, 
Proprotein Convertase Subtilisin/Kexin Type 9; NPC1L1, Niemann-Pick C1-like 1; APOB, Apoprotein B-100; CETP, Cholesteryl Ester Transfer 
Protein; LPL, Lipoprotein Lipase; ANGPTL3, Angiopoietin-related protein 3; APOC3, Apoprotein C-III; CHD, Major coronary heart disease; CAS, 
Coronary atherosclerosis; T2D, Type 2 diabetes. 

 

 
 

Figure 2. Forest plot visualizing the causal effects of the genetically proxied lipid-lowering drug targets on longevity-related 
traits. The forest plot showed the estimated effects of 1 mmol/L lower LDL-C or TG concentration by target-specific variants in each drug 

target gene on longevity-related traits, using the IVW method. Beta and 95% CI were used in quantitative outcomes. 
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events, except for APOB, CETP, and APOC3 (only 

associated with reduced coronary atherosclerosis risks) 

and ANGPTL3 (no association with either CHD or 

coronary atherosclerosis).  

 

Lipid-lowering drug targets and age-related 

noncancerous diseases 

 

We also investigated the genetic association between 

different lipid-lowering drugs and cardiometabolic 

diseases. In addition to marked effects on decreased 

risks of atherosclerotic cardiovascular diseases in 

positive control analysis, lipid-lowering variants of 

CETP (OR 0.41; 95% CI: 0.26 to 0.64; p-
IVW=7.48×10-5, FDR=6.52×10-4) and LPL (OR 0.61; 

95% CI: 0.55 to 0.68; p-IVW=5.27×10-3, FDR=0.03) 

were associated with decreased risks of hypertension. 

Genetically proxied lipid-lowering variants of LDLR 

(OR 1.15; 95% CI: 1.08 to 1.23; p-IVW=2.86×10-5, 

FDR=2.99×10-4), HMGCR (OR 1.29; 95% CI: 1.13 to 

1.45; p-IVW=9.71×10-5, FDR=7.62×10-4), and APOB 

(OR 1.09; 95% CI: 1.16 to 1.03; p-IVW=2.92×10-3, 

FDR=1.48×10-2) were associated with increased risks 

of T2D. Lipid-lowering variants of LPL were 

associated with decreased risks of both T2D (OR 

0.71; 95% CI: 0.65 to 0.77; p-IVW=9.81×10-3, 

FDR=3.85×10-12) and NAFLD (OR 0.52; 95% CI: 

0.32 to 0.84; p-IVW=7.02×10-3, FDR=3.34×10-2). 

Lipid-lowering variants of HMGCR (OR 1.01; 95% 

CI: 1.004 to 1.02; p-IVW=1.39×10-3, FDR=7.27×10-3) 

were associated with a slightly increased risk of 

osteoporosis whereas PCKS9 (OR 0.99; 95% CI: 0.99 

to 0.997; p-IVW=9.89×10-4, FDR=5.75×10-3) was 

associated with decreased risks of osteoporosis. In 

addition, we found that none of the nine drug-target 

genes were associated with COPD and Alzheimer's 

disease/dementia (with all q-values>0.05). Sensitivity 

tests showed consistent trends in the estimates, with 

no statistical evidence of bias from horizontal 

pleiotropy and heterogeneity (Supplementary  

Tables 5, 6). 
 

Lipid-lowering drug targets and risk of cancers 
 

Next, we explored the genetic associations between 

lipid-lowering drugs and cancers (Figure 4). We

 

 
 

Figure 3. Causal effects of the genetically proxied lipid-lowering drug targets on age-related noncancerous diseases. The 
forest plot showed the estimated effects of 1 mmol/L lower LDL-C or TG concentration by target-specific variants in each drug target gene on 
age-related noncancerous diseases, using the IVW method. OR and 95% CI indicated the effect estimates of a 1mmol/L change of circulating 
lipids on outcomes.  
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identified that lipid-lowering variants of ANGPTL3 (OR 

0.83; 95% CI: 0.72 to 0.95; p-IVW=7.65×10-3, 

FDR=3.53×10-2) and LDLR (OR 0.83; 95% CI: 0.82 to 

0.93; p-IVW=7.39×10-5, FDR=6.52×10-4) were 

associated with decreased risks of colorectal cancers, 

and ANGPTL3 (OR 0.13; 95% CI: 0.04 to 0.41; p-
IVW=4.64×10-4, FDR=2.91×10-3) was also associated 

with lower risks of gastric cancers. Lipid-lowering LPL 

variants were associated with decreased risks of bladder 

cancers (OR 0.56; 95% CI: 0.39 to 0.79; p-

IVW=1.06×10-3, FDR=5.94×10-3). Lipid-lowering 

APOB variants were associated with a decreased risk of 

thyroid cancer (OR 0.52; 95% CI: 0.36 to 0.75; p-

IVW=4.29×10-4, FDR=2.81×10-3). None of the nine 

drug-target genes were genetically associated with 

esophageal cancers, pancreatic cancers, hepatocellular 

cancers, lung cancers, or brain cancers (with all q-

values>0.05). Sensitivity tests showed consistent trends 

in the estimates, with no statistical evidence of bias 

from horizontal pleiotropy and heterogeneity 

(Supplementary Tables 7, 8). 

 

All the statistical powers of the MR results are presented 

in Supplementary Table 9. The main results of the study 

are summarized in Figures 5, 6. The leave-one-out 

analyses were presented in Supplementary Figure 1. 

 

DISCUSSION 
 

Lipid metabolism has been reported to play an important 

role in the human lifespan and aging process [23]. 

However, findings were mostly derived from the data of  

 

 
 

Figure 4. Causal effects of the genetically proxied lipid-lowering drug targets on cancers. The forest plot showed the estimated 
effects of 1 mmol/L lower LDL-C or TG concentration by target-specific variants in each drug target gene on cancers, using the IVW method. 
OR and 95% CI indicated the effect estimates of a 1mmol/L change of circulating lipids on outcomes. 
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animal models such as shorter-lived yeast, flies, and 

rodents, as lifespan research involving human subjects 

requires large amounts of time and cost [24]. By 

utilizing MR analysis, we were able to directly examine 

the genetic links between circulating lipids  

and longevity in humans. In this study, we used drug-

targeted MR and identified several newer nonstatin 

lipid-lowering agents, such as those targeting LPL, 

ANGPTL3, and LDLR, which were associated with 

increased human lifespans and decreased risks of 

several common cancers and cardiometabolic 

disorders.  

 

LDLR and LPL are two key modulators in lipid 

metabolism. In our study, both genes had causal effects 

on human lifespans. The LDLR gene can be affected by 

statin therapies, because interfering with the hepatic 

cholesterol synthesis could compensate for the increase 

in the de novo synthesis of LDLR and cause transport of 

more LDLR to the hepatocellular membranes [25]. We 

 

 
 

Figure 5. Sensitivity test in drug-target MR analyses. Scatter plots of four statistical tests showing representative lipid-lowering drug 

target genes that had a causal relationship on the different outcomes. Each black dot represents an SNP significantly associated with lipid-
lowering effects. The gray lines around the dot represent the 95% confidence intervals of each SNP. Four lines generated by different MR 
tests were colored as red (Inverse Variance Weighted, IVW), blue (MR Egger), purple (Weighted Median), and green (Weighted mode). the X-
axis represents the SNPs effects of certain lipid-lowering genes, and the Y-axis represents the SNPs effects of different outcomes. 
Abbreviations: HTN, hypertension; NAFLD, non-alcoholic fatty liver disease; OS, osteoporosis; CRC, colorectal cancer; GC, gastric cancer; TC, 
thyroid cancer, BC, bladder cancer. 
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identified two other genes, PCSK9 and CETP, which 

were also associated with prolonged lifespans, and these 

two genes could also affect LDLR expression in lipid 

metabolism. The PCSK9 inhibitor prevents LDLR 

degradation, increases LDLR expression, and ultimately 

aids in the elimination of circulating LDL-C [26]. The 

CETP inhibitor works by increasing LDLR expression 

and thus lowering LDL-C levels [27]. As the discovery 

of new drugs such as PCSK9 or CETP inhibitors is still 

ongoing, their impact on cardiovascular morbidity and 

mortality, as well as lifespan, remains uncertain. Several 

clinical trials are currently in progress to determine their 

 

 
 

Figure 6. Summary of the study. (A) Summary of the mechanisms of action of lipid-lowering pharmaceutical agents included in our study. 

(B) Heatmap visualization of the Beta or OR estimates of lipid-lowering drug targets on different outcomes. The figure displays a matrix with 
rows representing gene targets of lipid-lowering agents and columns representing outcomes from different GWAS consortiums. The values in 
each square indicate the Beta or OR estimates and are color-coded based on their specific values. (B) Heatmap applied the gradually 
deepening orange, indicating the increasing Beta values. (C) Heatmap applied the deepening red indicating the increasing OR values and the 
deepening green representing the decreasing ORs. Abbreviations: TL, telomere length; CHD, Major coronary heart disease; CAS, Coronary 
atherosclerosis; T2D, Type 2 diabetes; HTN, hypertension; NAFLD, non-alcoholic fatty liver disease; OS, osteoporosis; CRC, colorectal cancer; 
GC, gastric cancer; EC, esophageal cancer; HCC, hepatocellular carcinoma; LC, lung cancer; PC, pancreatic cancer; TC, thyroid cancer, BC, 
bladder cancer; BT, brain tumors; COPD, chronic obstructive pulmonary disease; AD, Alzheimer's disease/dementia, OS, osteoporosis. 
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efficacy [10, 28]. Therefore, our findings provide 

promising evidence for developing these novel LDL-C-

lowering agents. 
 
In addition to LDL-C-lowering drugs through the 

LDLR pathway, we found that variants in the genes that 

encode the targets of TG through the LPL pathway were 

associated with lower risks of several cardiometabolic 

diseases. We observed that statin use was associated 

with increased risks of T2D, which is consistent with 

previous clinical trials reporting potential T2D risks 

with long-term statin use [29, 30]. In contrast to 

HMGCR inhibitors, LPL targets were associated with 

reduced risks of cardiovascular events, T2D, hyper-

tension, and NAFLD, indicating the promising roles of 

developing newer nonstatin therapies through the LPL 

pathway. To gain a better understanding, it is imperative 

to focus on large-scale epidemiological and long-term 

randomized trials to specifically investigate the 

magnitude of the expected clinical benefit of newer 

nonstatin therapies. 

 
Another finding in our MR study is the potential 

association between lipid-lowering genes and colorectal 

cancer (CRC). Although we did not find a direct causal 

effect of statin-targeted HMGCR on CRC risks, we 

confirmed that lipid-lowering LDLR variants, which are 

the key downstream genes in cholesterol metabolism, 

were associated with reduced CRC risks. Previous in 

vivo and in vitro studies have demonstrated a potential 

correlation between lipid metabolism and CRC [31, 32]. 

These studies have suggested that LDLR could be an 

important target for CRC chemoprevention. Further 

investigation is needed to study the role of the LDLR 

gene in preventing CRC. In addition, our findings 

indicate that targeting the lipid-lowering ANGPTL3 

gene may decrease the risk of CRC. ANGPTL3 plays a 

role in lipid metabolism via the LPL pathway. Previous 

research has shown a correlation between ANGPTL3 

and liver metastasis in CRC [33, 34]. Our results 

suggest that the TG pathways may also contribute to the 

development of CRC, and ANGPTL3 could be 

considered an additional chemopreventive target for 

CRC. 

 
As a promising approach, this MR study provided 

genetic associations regarding statin use and human 

longevity traits. However, these MR results must be 

interpreted with caution. First, although statistical 

powers in most MR results exceed 90%, a few results 

still lack sufficient statistical powers. Thus, these results 

still need further validation in larger-scale GWAS data 

that may be available in the future. Third, our study 

employed multiple genetic proxies of lipid-lowering 

drugs, which suggests that the observed causal effects 

on lifespan may be attributed to genetically proxied 

drug-target genes rather than the whole impact of a 

specific drug in the real world. While drug-target MR 

analysis can provide insight into causal effects, it is 

important to note that it cannot accurately quantify the 

clinical benefits. Hence, there is a need for additional 

high-quality randomized trials or large-scale epidemio-

logical studies.  

 

Our study has several limitations. First, we were 

unable to investigate the causal effects of bempedoic 

acid or fibrates on human longevity due to the 

insufficient numbers of target-specific SNPs in the 

Global Lipids Genetics Consortium. Second, it is 

worth mentioning that our findings are limited to 

individuals of European ancestry and should be 

verified in other populations. To gain a comprehensive 

understanding, it is crucial to conduct large-scale 

epidemiological studies and long-term randomized 

trials to specifically examine the extent of the 

anticipated clinical benefits of lipid-lowering drugs on 

age-related outcomes. 

 

CONCLUSIONS 
 

Our study provides genetic evidence that newer 

nonstatin lipid-lowering agents have causal effects on 

decreased risks of several common cancers and 

cardiometabolic diseases. These data provide genetic 

insights into the potential benefits of newer nonstatin 

therapies. Long-term and large-scale clinical trials 

should also focus on the efficacy of these newer lipid-

lowering drugs on age-related outcomes. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figure 

 

 

 

 
 

Supplementary Figure 1. Leave-one-out plots for the causal effects of representative lipid-lowering drug target genes 
(Exposure) that had a causal relationship with the different diseases (outcomes). (A) Causal effects of LDLR on CRC; (B) Causal 
effects of LDLR on lifespan; (C) Causal effects of PCSK9 on lifespan; (D) Causal effects of PCSK9 on OS; (E) Causal effects of APOB on lifespan; 
(F) Causal effects of APOB on TC; (G) Causal effects of CETP on lifespan; (H) Causal effects of CETP on HTN; (I) Causal effects of LPL on lifespan; 
(J) Causal effects of LPL on HTN; (K) Causal effects of LPL on NAFLD; (L) Causal effects of LPL on BC.  
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1–8. 

 

Supplementary Table 1. The STROBE statement guideline checklist of this study. 

 

Supplementary Table 2. Genetically instrumented lipid-lowering genetics variants of target genes in Longevity-
related traits. 

 

Supplementary Table 3. Sensitivity analysis of genetically proxied lipid-lowering variants on human lifespan. 

 

Supplementary Table 4. Results of heterogeneity and pleiotropy tests for the causal effects of lipid-lowering 
gene targets on human lifespan. 

 

Supplementary Table 5. Sensitivity analysis of genetically proxied lipid-lowering variants on age-related 
noncancerous diseases. 

 

Supplementary Table 6. Results of heterogeneity and pleiotropy tests for the causal effects of lipid-lowering 
gene targets on age-related noncancerous diseases. 

 

Supplementary Table 7. Sensitivity analysis of genetically proxied lipid-lowering variants on cancers. 

 

Supplementary Table 8. Results of heterogeneity and pleiotropy tests for the causal effects of lipid-lowering 
gene targets on cancers. 

 

Supplementary Table 9. Statistical power for drug-target MR analyses. 

Drug target R2 
Statistical power 

Lifespan CAS CHD T2D Hypertension NAFLD Osteoporosis CRC GC EC TC BC 

LDLR 0.11% 98% 92% 100% 100% 99% 12% 90% 100% 91% 100% 61% 33% 

HMGCR 0.10% 74% 95% 100% 100% 96% 6% 99% 100% 38% 100% 48% 80% 

PCSK9 0.15% 72% 98% 100% 100% 100% 10% 96% 100% 67% 43% 89% 66% 

NPC1L1 0.06% 16% 68% 100% 100% 93% - - 100% - 64% - - 

APOB 0.14% 86% 100% 100% 100% 99% 25% 100% 100% 93% 25% 41% 80% 

CETP 0.08% 18% 63% 99% 100% 91% 6% 100% 99% 87% 20% 13% 19% 

LPL 0.16% 96% 82% 93% 100% 98% 19% 100% 100% 31% 13% 26% 16% 

ANGPTL3 0.19% 10% 100% 98% 100% 88% 6% 100% 100% 24% 68% 100% 100% 

APOC3 0.19% 70% 100% 99% 100% 99% 20% 100% 100% 21% 13% 26% 16% 

 


