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INTRODUCTION 
 

According to the Global Cancer Statistics 2020,  

liver cancer accounted for nearly 906,000 diagnosed 

cases worldwide, with hepatocellular carcinoma (HCC) 

being the most prevalent subtype [1]. Hepatocellular 

carcinoma (HCC) arises from various factors, such  

as chronic infections like hepatitis B virus (HBV) or 

hepatitis C virus (HCV), alcohol misuse, non-alcoholic 

fatty liver disease, obesity, and diabetes, all playing 

significant roles in its development [2]. Although 

various treatment approaches for HCC exist, such  

as liver transplantation, surgical resection, ablation, 

radiation, and systemic therapy, the mortality rate  

of HCC remains high, with a 5-year survival rate  

of approximately 18% [3]. To improve therapeutic 

outcomes, it is crucial to explore novel biomarkers or 

predictive signatures that can predict patient survival 

and identify optimal candidates for different treatment 

approaches. 
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ABSTRACT 
 

The accumulation of intracellular disulfides induces a novel and unique form of metabolic-related cell death 
known as disulfidptosis. A previous study revealed the prognostic value of a risk model of disulfidptosis-related 
genes in hepatocellular carcinoma (HCC). However, to date, no studies have investigated the relationship 
between disulfidptosis-related long non-coding RNAs (DRLs) and HCC. In this study, we collected and analyzed 
RNA sequencing data from 370 HCC samples to explore the DRLs in the tumorigenesis and development of HCC. 
By employing Lasso Cox regression and multivariate Cox regression analyses, we identified five prognostic DRLs, 
which were used to construct a prognostic signature. The signature was subsequently validated using receiver 
operating characteristic (ROC) curves, Kaplan-Meier analysis, Cox regression analyses, nomograms, and 
calibration curves. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and gene set 
enrichment analysis (GSEA) were performed, revealing that the DRLs signature was associated with HCC and 
several cancer-related pathways. Furthermore, the DRLs signature showed correlations with the infiltration of 
M0 and M1 macrophages, immune-related functions, and multiple immune checkpoints, including PDCD1, 
LAG3, CTLA4, TIGIT, CD47, and others. Analysis using the tumor immune dysfunction and exclusion (TIDE) 
approach demonstrated that the DRLs signature could predict the response to immunotherapy. Finally, we 
screened potential chemotherapy drugs that could sensitize HCC. In conclusion, our novel DRLs signature 
provides valuable insights into predicting patient survival and immunotherapy responses. 
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A previous study demonstrated that ectopic upregulation 

of disulfides induces high disulfide stress, leading to 

cell death, which can be counteracted by the reduced 

form of nicotinamide adenine dinucleotide phosphate 

(NADPH) [4, 5]. Recently, Liu et al. investigated the 

mechanism of disulfide-induced cell death by con-

structing a model combining ectopic high expression  

of solute carrier family 7 member 11 (SLC7A11) with 

glucose starvation. They observed that upregulation  

of SLC7A11 promotes disulfide accumulation, while 

glucose starvation depletes NADPH [6]. They further 

found that high disulfide stress induces the formation of 

disulfide bonds in actin cytoskeleton proteins, resulting 

in F-actin contraction and actin network collapse, leading 

to a novel form of cell death termed “disulfidptosis.” 

This type of cell death cannot be rescued by known  

cell death inhibitors [6]. Additionally, Zhong et al. 

discovered that treatment with thioredoxin reductase  

1 (TXNRD1) inhibitors induces intracellular cystine 

accumulation and disulfidptosis of osteoclast precursors, 

thereby reducing bone loss. This process was promoted 

by nuclear factor of activated T-cells 1 (NFATc1)-

mediated upregulation of SLC7A11 [7]. Moreover, 

Zhao et al. developed a disulfidptosis-related signature 

that showed promising predictive value for survival  

and immunotherapy outcomes in bladder cancer [8].  

In addition, several studies revealed the potential 

relationships between disulfidptosis and cancers [9, 10]. 

Based on a previous study that identified 14 actin-

related genes with increased disulfide bond formation 

following glucose starvation, including ACTB, ACTN4, 

CAPZB, CD2AP, DSTN, FLNA, FLNB, INF2, 

IQGAP1, MYH10, MYH9, MYL6, PDLIM1, and 

TLN1 [6]. These genes were defined as disulfidptosis-

related genes (DRGs) and were included in our  

study. 

 
Over 98% of the genome consists of noncoding 

sequences that produce numerous noncoding RNAs 

[11]. Long noncoding RNAs (lncRNAs), a subgroup of 

noncoding RNAs spanning at least 200 nucleotides, 

have been associated with the onset and advancement  

of diverse diseases [12]. Dysregulation of lncRNA 

expression has been reported in various malignancies, 

including HCC, due to epigenetic modification, tran-

scriptional activation, and RNA processing, etc., [13]. 

LncRNAs primarily function by interacting with  

DNA, mRNA, microRNA, and proteins to engage  

in promoting or inhibiting tumorigenesis [13]. The 

expression of lncRNAs exhibits differences between 

HCC and normal liver tissues [14]. Research has 

confirmed the multifaceted involvement of lncRNAs in 

the onset and progression of HCC. Firstly, lncRNAs 

promote cell proliferation by upregulating cyclin D1 

expression [15] and regulate apoptosis in HCC [16]. 

Secondly, lncRNAs regulate HCC cell invasion and 

metastasis by controlling epithelial-mesenchymal 

transition procession [17, 18] and interacting with 

miRNAs [19]. Thirdly, lncRNAs modulate the tumor 

microenvironment in HCC [20]. Fourthly, lncRNAs 

regulate liver cancer stem cells which are related to 

tumorigenesis and metastasis [21]. Several studies have 

identified ferroptosis- or cuproptosis-related lncRNAs 

as prognostic biomarkers for predicting patient survival 

in malignancies such as lung adenocarcinoma [22], 

glioma [23], colorectal cancer [24], breast cancer [25], 

and HCC [26, 27]. Until now, there have been no studies 

exploring the relationship between disulfidptosis-related 

lncRNAs (DRLs) and the prognosis of patients with 

HCC. 

 

In this study, we employed RNA sequencing  

data sourced from The Cancer Genome Atlas-Liver 

hepatocellular carcinoma (TCGA-LIHC) database to 

identify DRLs. Following that, we actively developed 

and confirmed a distinctive signature reliant on DRLs to 

anticipate both the prognosis and the effectiveness of 

immunotherapy for individuals with HCC. 

 

RESULTS 
 

Recognition of the disulfidptosis-related prognostic 

lncRNA 

 

The process of data analysis is depicted in Figure  

1A. We acquired the data encompassing both the 

expression profiles and clinical information from  

the TCGA-LIHC cohort and performed differential 

expression analysis and survival analysis of DRGs  

in this cohort (Supplementary Figures 1 and 2). 

Additionally, we investigated the protein expression 

levels of DRGs by referencing the Human Protein Atlas 

(HPA) (https://www.proteinatlas.org/) database and 

provided the immunohistochemistry findings for DRGs 

within HCC. (Supplementary Figure 3). Correlation 

analysis revealed that a total of 738 lncRNAs were 

associated with DRGs (Figure 1B). The results of the 

differential expression analysis of 738 disulfidptosis-

related lncRNAs was showed in Supplementary Table 

1. Subsequently, we partitioned the TCGA-LIHC cohort 

into a training set and a testing set, maintaining a ratio 

of 7:3. The baseline characteristics of the training and 

testing cohorts are presented in Table 1, demonstrating 

no significant differences between the two groups. We 

conducted univariate regression analysis in the training 

cohort and identified 218 lncRNAs significantly cor-

related with patient survival (Supplementary Table  

2). After applying Lasso Cox regression for filtering 

(Figure 1C, 1D) and conducting multivariate Cox 

regression analysis, we identified the five best DRLs for 

constructing a prognostic signature: JMJD1C-AS1, 

AC108752.1, MKLN1-AS, AL031985.3, and ACVR2B-

https://www.proteinatlas.org/
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AS1 (Figure 1E). The survival analysis findings 

revealed a correlation between elevated expression 

levels of these five DRLs and a diminished overall 

survival (OS) among HCC patients (Figure 1F–1J). 

Furthermore, correlation analysis revealed a generally 

positive correlation between the five DRLs and DRGs 

in HCC (Figure 1K). 

 

Construction of the prognostic signature of DRLs in 

HCC 

 

Through the assessment of the expression levels of 

five DRLs in individuals with HCC, we computed a 

risk score for each patient. Subsequently, the training 

cohort, testing cohort, and TCGA cohort were stra-

tified into low-risk and high-risk groups, with the 

division being determined by the median DRLs risk 

score calculated from the training cohort. (Figure 2A). 

Our analysis revealed that patients in the high-risk 

group exhibited poorer OS and higher mortality rates 

(Figure 2B), along with upregulated expression of the 

five DRLs (Figure 2C). Subsequently, Kaplan-Meier 

survival analysis was conducted and demonstrated  

that HCC patients in the high-risk group had shorter 

OS (Figure 2D) and progression-free survival (PFS) 

(Figure 2E) compared to patients in the low-risk group 

across all three cohorts. 

Furthermore, upon contrasting the clustering of  

HCC patients according to the gene expression of  

all genes (Figure 2F), DRGs (Figure 2G), and all 

DRLs (Figure 2H), the principal component analysis 

(PCA) results demonstrated a clear distinction in the 

clustering of HCC patients into high- and low-risk 

groups (Figure 2I). 

 

The predictive performance of the prognostic 

signature of DRLs in HCC 

 

Figure 3A–3C illustrated the ROC curves of the DRLs 

signature for predicting the 1-, 3-, and 5-year OS in  

the training cohort, testing cohort, and TCGA cohort, 

respectively. The AUC values for the prediction of  

1-, 3-, and 5-year OS were 0.752, 0.685, and 0.727 

respectively in the training cohort, 0.715, 0.764, and 

0.685 respectively in the testing cohort, and 0.739, 

0.702, and 0.682 respectively in the TCGA cohort. 

Furthermore, the clinical ROC curve showcased the 

DRLs signature’s superior predictive accuracy for 3-

year OS, displaying an AUC value of 0.702 within  

the TCGA cohort (Figure 3D). This finding was in  

line with the outcomes of the C-index curve analysis 

(Figure 3E). Moreover, the results of univariate and 

multivariate Cox regression analyses indicated the 

independence of the DRLs risk score as a prognostic

 

 
 

Figure 1. Screening of prognostic DRLs in the TCGA-LIHC database. (A) Data analysis flow of this study. (B) Correlation analysis 

between DRGs and lncRNAs. (C, D) Lasso Cox regression analysis. (E) Multivariate Cox regression analysis to determine the DRLs and their 
corresponding coefficients. (F–J) Kaplan-Meier (K-M) analyses of OS for five DRLs in the TCGA-LIHC cohort. (K) Correlations between DRGs 
and the five DRLs. Abbreviations: DRGs: disulfidptosis-related genes; DRLs: disulfidptosis-related lncRNAs. *p < 0.05, **p < 0.01,  
***p < 0.001. 
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Table 1. Comparisons of patient characteristics between testing and training cohorts. 

Characteristics 
Total  

(n = 370) 
Testing cohort  

(n = 111) 
Training cohort  

(n = 259) 
p 

Age 

≤65 232 (62.7%) 65 (58.56%) 167 (64.48%) 
0.336 

>65 138 (37.3%) 46 (41.44%) 92 (35.52%) 

Sex 

Male 249 (67.3%) 83 (74.77%) 166 (64.09%) 
0.059 

Female 121 (32.7%) 28 (25.23%) 93 (35.91%) 

Histologic grade 

G1 55 (14.86%) 16 (14.41%) 39 (15.06%) 

0.329 

G2 177 (47.84%) 46 (41.44%) 131 (50.58%) 

G3 121 (32.7%) 42 (37.84%) 79 (30.5%) 

G4 12 (3.24%) 5 (4.5%) 7 (2.7%) 

Unknown 5 (1.35%) 3 (1.62%) 2 (1.08%) 

T stage 

T1 181 (48.92%) 55 (49.55%) 126 (48.65%) 

0.953 

T2 93 (25.14%) 27 (24.32%) 66 (25.48%) 

T3 80 (21.62%) 24 (21.62%) 56 (21.62%) 

T4 13 (3.51%) 3 (2.7%) 10 (3.86%) 

Unknown 3 (0.81%) 2 (1.8%) 1 (0.39%) 

N stage 

N0 252 (68.11%) 76 (68.47%) 176 (67.95%) 

0.448 N1 4 (1.08%) 0 (0%) 4 (1.54%) 

Unknown 114 (30.81%) 35 (31.53%) 79 (30.5%) 

M stage 

M0 266 (71.89%) 78 (70.27%) 188 (72.59%) 

>0.999 M1 4 (1.08%) 1 (0.9%) 3 (1.16%) 

Unknown 100 (27.03%) 32 (28.83%) 68 (26.25%) 

TNM stage 

I 171 (46.22%) 54 (48.65%) 117 (45.17%) 

0.775 

II 85 (22.97%) 25 (22.52%) 60 (23.17%) 

III 85 (22.97%) 22 (19.82%) 63 (24.32%) 

IV 5 (1.35%) 1 (0.9%) 4 (1.54%) 

Unknown 24 (6.49%) 9 (8.11%) 15 (5.79%) 

 

indicator. (Figure 3F, 3G). Based on the results of the 

multivariate Cox regression analysis, we developed a 

prognostic nomogram for predicting patient survival 

in HCC (Figure 3H). The calibration curve in Figure 

3I indicated that the nomogram performed well in 

accuracy for predicting 1-, 3-, and 5-year OS in HCC 

patients, and the C-index of the nomogram was 0.72 

(95% CI 0.69–0.75).” 

Functional enrichment analysis of differential risk 

genes 

 

We utilized the “limma” R package to extract the genes 

that were differentially expressed (DEGs) between  

the high-risk and low-risk groups. Subsequently, we 

conducted the Gene Ontology (GO) function analysis 

on these DEGs to explore their biological functions. 
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Figure 4A illustrates that DEGs were enriched in 

biological processes (BP) such as “nuclear division”, 

“organelle fission” and “mitotic nuclear division”. In 

terms of cellular composition (CC), enrichment was 

observed in “chromosomal region”, “chromosome, 

centromeric region” and “condensed chromosome”. 

Additionally, for molecular function (MF), DEGs were 

associated with “ATP-dependent activity, acting on 

 

 
 

Figure 2. Evaluation and validation of the DRLs signature in the training, testing, and TCGA cohorts. (A) Distribution of 

normalized DRLs risk scores. (B) Survival status and survival time in relation to DRLs risk scores. (C) Heatmaps showing high- and low-risk 
groups. Kaplan-Meier analyses of OS (D) and PFS (E) for high- and low-risk groups. (F) PCA analysis of all genes. (G) PCA analysis of DRGs. (H) 
PCA analysis of all DRLs. (I) PCA analysis of DRLs risk score. Abbreviations: DRLs: disulfidptosis-related lncRNAs; OS: overall survival; PFS: 
progression-free survival; PCA: principal component analysis; DRGs: disulfidptosis-related genes. 
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DNA”, “single-stranded DNA helicase activity” and 

“DNA helicase activity”. These observations indicated 

that the DEGs played a significant role in functions 

associated with chromosomes. 

 

Furthermore, the Kyoto Encyclopedia of Genes and 

Genomes (KEGG) enrichment analysis revealed pre-

dominant enrichment of DEGs in pathways including 

“cell cycle”, “ECM-receptor interaction” and “protein 

digestion and absorption”. Notably, they were 

significantly correlated with pathways associated with 

hepatocellular carcinoma, cancer, wnt signaling, and 

TGF-beta signaling (Figure 4B). 

 

For an in-depth investigation into the role of DRLs  

in the development and advancement of HCC, we 

conducted gene set enrichment analysis (GSEA). The 

results, consistent with the KEGG analysis, indicated 

 

 
 

Figure 3. Predictive performance of the DRLs signature and establishment of clinicopathologic nomogram.  ROC curves of the 

DRLs signature for predicting 1-, 3-, and 5-year OS in the training (A), testing (B), and TCGA cohorts (C). (D) ROC curves of the DRLs risk 
signature and clinical parameters for predicting 3-year OS in the TCGA cohort. (E) C-index of the DRLs signature and clinical parameters in 
the TCGA cohort. Univariate (F) and Multivariate (G) Cox regression analyses of the DRLs signature and clinical parameters. 
(H) Development of a prognostic nomogram for predicting patient survival in HCC. (I) Calibration curve of the prognostic nomogram. 
Abbreviations: DRLs: disulfidptosis-related lncRNAs; OS: overall survival; C-index: concordance index. 
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that gene sets related to “ECM-receptor  

interaction,” “cell cycle,” and “neuroactive ligand 

receptor interaction” were enriched in the high-risk 

group. Additionally, cancer-related pathways, including 

“hepatocellular carcinoma,” “pathways in cancer,” “Wnt 

signaling pathway,” and “TGF-beta signaling pathway,” 

showed enrichment as well (Figure 4C). 

 

Mutation profiles of HCC and survival analysis 

 

We subsequently analyzed the somatic mutation 

spectrum of HCC patients in the high-risk and low-risk 

groups within the TCGA cohort. The results, displayed 

as waterfall plots in Figure 5A, 5B, revealed the top 15 

genes with the highest mutation frequencies. TP53, 

CTNNB1, and TTN were identified as the three most 

frequently mutated genes. The high-risk group generally 

demonstrated elevated mutation frequencies across most 

genes, with TTN, however, showing an inverse trend. 

And patients in the high-risk group exhibited notably 

elevated TP53 mutation frequencies compared to those 

in the low-risk group (Figure 5C). 

 

Additionally, we evaluated the tumor mutation burden 

(TMB) within the high-risk and low-risk groups, 

observing no substantial variances between the two 

groups (Figure 5D). However, the survival analysis 

revealed that patients with high TMB exhibited notably 

reduced overall OS compared to those with low TMB in 

cases of HCC. (Figure 5E). Moreover, when combining 

the DRLs risk score and TMB, we observed significant 

differences among four groups, with patients having 

high TMB and risk score exhibiting the shortest OS 

(Figure 5F). 

 

 
 

Figure 4. Functional enrichment analyses of differentially expressed risk genes. Results of GO (A), KEGG enrichment analysis (B), 

and GSEA (C). Abbreviations: GO: gene ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes; GSEA: the gene set enrichment 
analysis. 
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Correlations between DRLs signature and tumor 

immune microenvironment and immunotherapy 

outcomes 

 

Using the “estimate” R package, we computed the 

stromal, immune, and ESTIMATE scores for every 

individual in the TCGA cohort. The Wilcoxon test 

findings revealed markedly reduced stromal and 

ESTIMATE scores among patients in the high-risk 

group compared to those in the low-risk group,  

whereas no significant difference was observed in the 

immune score between the two groups (Figure 6A). 

Furthermore, we assessed the immune cell compo- 

sition within HCC patients in the TCGA cohort and 

contrasted the immune cell scores between the two  

risk groups. These results were presented as histograms 

and box plots. We observed significant differences in 

the content of B cell memory, macrophage M0,  

and macrophage M1 between the two risk groups  

(Figure 6B, 6C). Figure 6D demonstrated significant 

differences in immune pathways between the high- 

risk and low-risk groups, including aDCs, B_cells, 

Cytolytic_activity, iDCs, Macrophages, Mast_cells, 

MHC_class_I, Neutrophils, NK_cells, TIL, 

Type_I_IFN_Response, and Type_II_IFN_Response. 

Additionally, we examined the variations in expression 

of immune checkpoints between the two risk groups  

and discovered statistically significant differences in  

the majority of the results, encompassing the expression  

of PDCD1, LAG3, CTLA4, TIGIT, CD47, and various 

others. (Figure 6E). Finally, we evaluated the TIDE 

(Tumor Immune Dysfunction and Exclusion) in both 

the high-risk and low-risk groups, revealing that the 

high-risk group exhibited notably elevated TIDE scores 

compared to the low-risk group. This result implied that 

individuals within the high-risk group might possess an 

increased likelihood of immune evasion and experience 

comparatively reduced advantages from immunotherapy 

(Figure 6F). 

 

Correlation between DRLs signature and drugs for 

HCC 

 

Additionally, we compared drug sensitivity scores 

between the two risk groups. A lower score indicates 

higher drug sensitivity. We totally observed discrepant 

 

 
 

Figure 5. Tumor somatic mutation profiles and survival analysis. Waterfall plots showing the somatic mutation spectrum of 

HCC patients in the high-risk group (A) and low-risk group (B). (C) Comparison of TP53 mutation frequencies between the two groups. 
(D) Comparison of TMB between the two groups. (E) K-M analysis of TMB in HCC. (F) K-M analysis of TMB and DRLs risk scores. 
Abbreviation: TMB: tumor mutation burden. 
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sensitivities to 102 drugs between the two risk groups. 

We presented the top 10 most significantly differen-

tially sensitive drugs for the high-risk group (Figure 7A) 

and the low-risk group (Figure 7B), respectively. 

 

DISCUSSION 
 

In recent years, multidisciplinary treatments have 

improved the prognosis of patients with HCC, but the 

survival rate remains poor. A previous study revealed 

that HCC patients benefited from the administration of 

immune checkpoint inhibitors (ICIs), such as anti-PD-1, 

anti-PD-L1, and anti-CTLA-4, leading to FDA approval 

of immunotherapy as a first-line or second-line 

treatment [28]. However, the lack of an appropriate 

patient screening method has resulted in the inefficient 

therapeutic effect of immunotherapy for HCC. In this 

study, we identified five DRLs and constructed a 

prognostic signature to predict patient survival and the 

outcome of immunotherapy. This signature can be used 

to screen optimal HCC patients for ICI treatment. 

 
Disulfidptosis is a novel mode of metabolic-related  

cell death induced by the ectopic accumulation of 

intracellular disulfides [6]. The lack of cystine is crucial 

for inducing ferroptosis in cancer cells, and many

 

 
 

Figure 6. Differential analysis of immune cells, immune function, immune checkpoints and immunotherapy outcome 
between high- and low-risk groups. (A) The stromal, immune, and ESTIMATE scores between the two groups. (B, C) Differences in the 
infiltration of immune cells between the two groups. (D) Comparison of immune functions between two groups. (E) Differences in the 
expression of immune checkpoints between the two groups. (F) TIDE in the two groups. Abbreviation: TIDE: evaluation of tumor immune 
dysfunction and exclusion. *p < 0.05, **p < 0.01, ***p < 0.001. 
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cancers upregulate SLC7A11 to obtain a sufficient 

supply of cystine and avoid ferroptosis [29]. However, 

Liu et al. found that overexpression of SLC7A11 

resulted in the accumulation of cystine, leading to a 

striking loss of NADPH when combined with glucose 

starvation [6]. The depletion of intracellular NADPH, 

caused by the accumulation of cystine, triggered the 

massive formation of disulfide bonds in actin cyto-

skeleton protein molecules, resulting in the contraction 

of F-actin and ultimately leading to disulfidptosis [6]. 

The authors determined 14 actin cytoskeleton proteins 

which upregulated at least 1.5-fold of disulfide bonds 

after the treatment of glucose starvation of SLC7A11 

overexpressed cells, including ACTB, ACTN4, CAPZB, 

CD2AP, DSTN, FLNA, FLNB, INF2, IQGAP1, 

MYH10, MYH9, MYL6, PDLIM1, and TLN1 [6]. We 

identified five prognostic lncRNAs which correlated with 

these 14 genes and explored the potential mechanism 

and prognostic value of the DRLs-related model in 

HCC. 

 

Considering that lncRNAs play a vital role in  

the occurrence and progression of cancers and its 

prognostic value has been explored in many cancer 

types [22–27]. We utilized RNA sequencing data from 

the TCGA database to study the correlation between 

DRLs and HCC patient survival, tumor immune micro-

environment (TME), and immunotherapy efficacy. We 

identified five prognostic DRLs, including JMJD1C-

AS1, AC108752.1, MKLN1-AS, AL031985.3, and 

ACVR2B-AS1, and constructed a prognostic risk-

scoring signature.  

 

This DRLs risk signature effectively stratified HCC 

patients into high- and low-risk groups. The risk score 

emerged as an independent prognostic indicator for 

HCC, with patients in the high-risk group exhibiting 

significantly worse OS and PFS compared to those in 

the low-risk group. Furthermore, we provided a DRLs-

related clinicopathological nomogram to precisely and 

straightforwardly predict 1-, 3-, and 5-year survival of 

HCC patients. 

 

Enrichment analysis revealed a positive correlation 

between the DRLs risk signature and multiple 

pathways, including “cell cycle”, “ECM-receptor 

 

 
 

Figure 7. Screening the potential sensitive chemotherapy drugs for HCC. The top 10 most significantly sensitive drugs for the high-

risk group (A) and the low-risk group (B), respectively. 
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interaction”, “hepatocellular carcinoma”, “Wnt 

signaling pathway”, and “TGF-beta signaling pathway”. 

Dysregulation of the cell cycle and ECM-receptor 

interaction pathways promotes the proliferation and 

migration of cancer cells. Meanwhile, it has been 

reported that the Wnt and TGF-beta signaling pathways 

are associated with the development and progression of 

HCC [30, 31]. The overactivation of these pathways 

was a contributing factor to the unfavorable prognosis 

observed in the high-risk group of patients. 
 

TME is closely related to the occurrence and 

development of malignancies. We further investigated 

the correlations between the DRLs risk score and 

infiltrating immune cells, immune-related functions, 

immune checkpoints, immune escape, and the outcome 

of immunotherapy in HCC. Specifically, our findings 

revealed a significant correlation between the risk score 

and the content of B cell memory, macrophage M0, and 

macrophage M1. M0 macrophages are resting state 

macrophages that polarize into M1 macrophages upon 

stimulation by interferon and/or lipopolysaccharide. M1 

macrophages play a crucial role in antitumor immune 

responses by presenting antigens to adaptive immune 

cells, releasing proinflammatory cytokines, and phago-

cytosing tumor cells [32, 33]. Despite being in a resting 

state, M0 macrophages have been found to function in a 

tumorigenic role, and the content of M0 macrophages 

negatively correlates with the prognosis of glioma  

[34] and bladder cancer [35]. Consistent with previous 

findings, our results indicated that a high-risk score 

correlated with a high content of M0 macrophages  

and a low content of M1 macrophages, which might 

contribute to the poor survival of patients in the high-

risk group. Additionally, our findings unveiled that  

an elevated risk score was associated with diminished 

antitumor immune-related functions, increased expres-

sion of diverse immune checkpoints, and a high TIDE 

score. These findings suggested that DRLs played a role 

in regulating the TME and antitumor immune response, 

thereby influencing tumorigenesis and progression. 

Furthermore, we also screened some chemotherapy 

drugs by analyzing drug sensitivity in the two groups. 
 

There are some limitations in this study. Firstly, the 

DRLs risk model was constructed and validated using 

the TCGA database, and it lacked external validation to 

verify feasibility. Additionally, the results of this study 

needed to be verified by experimental tests in further 

studies. 
 

In conclusion, we have developed a prognostic 

signature for DRLs to predict patient survival and  
select optimal candidates for immunotherapy in HCC. 

Furthermore, this study provides novel insights into the 

potential mechanisms of DRLs in regulating the 

formation of the TME in HCC.  

MATERIALS AND METHODS 
 
Data acquisition and processing 

 
The RNA sequencing data and relevant clinical details 

of 370 patients diagnosed with HCC were obtained 

from the TCGA-LIHC database, accessible at 

https://portal.gdc.cancer.gov/. The clinical information 

included age, sex, histologic grade, tumor node, 

metastasis (TNM) stage, and survival data. As a 

control, RNA sequencing data from 50 normal  

samples from the same database were extracted  

for comparative analysis. The average value was  

used to integrate the sequencing data of different 

tumor samples from the same patient. We obtained a 

total of 19,938 mRNAs and 16,877 lncRNAs after 

classification of the transcriptomic data for further 

analysis. To establish and validate the prognostic 

signature, we employed the “caret” R package to 

randomly partition patients from the TCGA-LIHC 

database into two groups. This division resulted in 259 

patients designated for the training cohort and 111 

patients allocated to the testing cohort, maintaining  

a ratio of 7 to 3. Furthermore, we collected the  

simple nucleotide variation data from the TCGC-LIHC 

database to calculate the TMB and analyze gene 

mutation content in HCC patients. 

 
Construction and validation of the disulfidptosis-

related lncRNA prognostic signature in HCC 

 
As mentioned earlier, the DRGs included ACTB, 

ACTN4, CAPZB, CD2AP, DSTN, FLNA, FLNB, 

INF2, IQGAP1, MYH10, MYH9, MYL6, PDLIM1,  

and TLN1. We conducted correlation analysis to select 

738 lncRNAs meeting the criteria of a correlation 

coefficient exceeding 0.4 and a significance level of  

p < 0.001. The results were visualized using the 

“ggalluvial” and “ggplot2” R packages [36]. Among 

these lncRNAs, univariate Cox analysis was performed 

to identify 218 prognostic lncRNAs in the training 

cohort. Finally, Lasso Cox regression analysis was 

conducted using the “glmnet” R package [37], and five 

lncRNAs were determined as prognostic DRLs. The 

risk score attributed to each patient was computed via 

the subsequent formula, incorporating the coefficient 

and expression value of each of these five lncRNAs: 

DRLs risk score = expression of JMJD1C-AS1 × 

0.626387381 + expression of AC108752.1 × 

0.212465411 + expression of MKLN1-AS × 

0.562048314 + expression of AL031985.3 × 

0.376906213 + expression of ACVR2B-AS1 × 

0.536600562. 

 
Using the median risk score obtained from the training 

cohort, patients in the training, testing, and TCGA 

https://portal.gdc.cancer.gov/
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cohorts were categorized into high-risk and low-risk 

groups. To assess the performance of the model,  

we conducted receiver operating characteristic (ROC) 

curve analysis, time-dependent ROC curve analysis, 

Kaplan-Meier (K-M) analysis, and principal component 

analysis (PCA) using the “timeROC,” “survival,” and 

“survminer” R packages respectively. 

 

Construction and validation of a clinicopathological 

nomogram 

 

Univariate and multivariate Cox regression analyses 

were performed to assess the potential of the DRLs risk 

score as an independent prognostic indicator for the 

survival of HCC patients. Subsequently, the “rms” R 

package was utilized to generate a nomogram asso-

ciating the DRLs risk score [38], and a corresponding 

calibration curve was plotted to assess the accuracy of 

the nomogram in predicting the survival of HCC patients. 

 

Functional enrichment analysis 

 

First, we identified the differentially expressed genes 

(DEGs) distinguishing the high- and low-risk groups 

within the TCGA cohort using the “limma” R package. 

The “clusterProfiler” R package was utilized to perform 

the Gene Ontology (GO) and Kyoto Encyclopedia  

of Genes and Genomes (KEGG) analysis [39]. And to 

identify the differences of biological function between 

high- and low-risk groups, the gene set enrichment 

analysis (GSEA) was implemented based on the gene 

set of “c2.cp.kegg.v2023.1.Hs.symbols.gmt” via the 

“clusterProfiler” R package [39]. 

 
Tumor somatic mutation analysis 

 

We utilized waterfall plots generated by the “maftools” 

R package to visualize the differences in gene mutation 

frequencies between the high-risk and low-risk groups 

[40]. Furthermore, we employed the “limma” R package 

to assess the disparity in TMB between the two groups. 

Additionally, we performed Kaplan-Meier analysis to 

determine whether TMB or TMB combined with the 

risk score correlated with the survival of HCC patients 

using the “survival” and “survminer” R packages. 

 
Assessment of immune cell infiltration, immune 

microenvironment, and immunotherapy outcome 

 

Using the “estimate” R package, we assessed the 

infiltration of immune cells and obtained the TME score 

for each HCC sample. The Wilcoxon test was performed 

to compare the TME scores and the expression of 

immune checkpoints between the high-risk and low-risk 

groups. We utilized the “CIBERSORT” algorithm to 

evaluate the differences in immune cell infiltration 

between the two groups [41]. Furthermore, we employed 

the tumor immune dysfunction and exclusion (TIDE) 

algorithm to calculate the TIDE score [42], which 

indicated the outcome of immunotherapy, and compared 

the difference in TIDE score between the high-risk and 

low-risk groups. 

 

Prediction of drug sensitivity for HCC 

 

We used the “oncopredict” R package [43] to compute 

the scores of drug responses in the TCGA cohort for 

198 drugs. The differences in drug sensitivities between 

the high-risk and low-risk groups were compared using 

the Wilcoxon test. 

 

Statistical analysis 

 

We utilized R software (version 4.2.2, http://www.R-

project.org) for all data analyses. Survival analyses 

were performed using the Kaplan-Meier curve, log-rank 

test, and univariate and multivariate Cox regression 

analyses. Differences between two groups were analyzed 

using Student’s t-test or the Wilcoxon test. The Chi-

square test was employed to compare the baseline 

characteristics between the training and testing groups. 

Furthermore, correlation analyses were conducted using 

Pearson correlation analysis. A two-tailed p-value < 

0.05 was considered statistically significant. *p < 0.05, 
**p < 0.01, ***p < 0.001.  
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Differential analyses of 14 DRGs in HCC, including ACTB (A), ACTN4 (B), CAPZB (C), CD2AP (D), DSTN (E), FLNA 

(F), FLNB (G), INF2 (H), IQGAP1 (I), MYH9 (J), MYH10 (K), MYL6 (L), PDLIM1 (M), TLN1 (N). 

 

 

 
 

Supplementary Figure 2. Survival analyses of 14DRGs in HCC, including ACTB (A), ACTN4 (B), CAPZB (C), CD2AP (D), DSTN (E), FLNA (F), 

FLNB (G), INF2 (H), IQGAP1 (I), MYH9 (J), MYH10 (K), MYL6 (L), PDLIM1 (M), TLN1 (N). 
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Supplementary Figure 3. The immunohistochemistry pictures of 14 DRGs in HCC from the Human Protein Atlas (HPA) 
database. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1 and 2. 

 

Supplementary Table 1. Differential analysis of 738 disulfidptosis-related lncRNAs. 
 

Supplementary Table 2. The results of univariate regression analysis in the training cohort. 
 


