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INTRODUCTION 
 

Ischemic stroke (IS) is an emergency cerebrovascular 

disease that accounts for 80% of all stroke and has  

the high morbidity, disability and mortality rate [1]. 

Thrombolytic therapy is currently perceived as the most 
potent treatment for stroke, and intravenous tissue 

plasminogen activator (tPA) is the uniquely validated 

cure for IS. However, tPA has a narrow therapeutic 

window and safety issues such as neurotoxicity and 
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ABSTRACT 
 

Ischemic stroke (IS) is one of the principal causes of disability and death worldwide. Berberine (BBR), derived 
from the traditional Chinese herbal medicine Huang Lian, has been reported to inhibit the progression of 
stroke, but the specific mechanism whereby BBR modulates the progression of ischemic stroke remains 
unclear. N6-methyladenosine (m6A) modification is the most typical epigenetic modification of mRNA post-
transcriptional modifications, among which METTL3 is the most common methylation transferase. During the 
study, the middle cerebral artery occlusion/reperfusion (MCAO/R) was established in mice, and the mice 
primary astrocytes and neurons induced by oxygen-glucose deprivation/reoxygenation (OGD/R) was simulated 
in vitro. Level of LncNEAT1, miR-377-3p was detected via RT-qPCR. The levels of Nampt and METTL3 were 
measured by Western blot. CCK8 and LDH assay was performed to detect cell viability. Here, we found that 
berberine alleviates MCAO/R-induced ischemic injury and up-regulates the expression of Nampt in astrocytes, 
miR-377-3p inhibits the expression of Nampt in astrocytes after OGD/R, thus promoting neuronal injury. NEAT1 
binds to miR-377-3p in OGD/R astrocytes and plays a neuronal protective role as a ceRNA. METTL3 can enhance 
NEAT1 stability in OGD/R astrocytes by modulating m6A modification of NEAT1. Taken together, our results 
demonstrate that berberine exerts neuroprotective effects via the m6A methyltransferase METTL3, which 
regulates the NEAT1/miR-377-3p/Nampt axis in mouse astrocytes to ameliorate cerebral ischemia/ 
reperfusion (I/R) injury. 
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cerebral hemorrhage [2], thus few patients benefit. 

Accordingly, there is an urgent necessity to explore new 

therapeutic strategies, especially therapeutic agents 

linked to neuroprotection. 

 

Nicotinamide phosphoribosyl transferase (Nampt)  

is the velocity-limiting enzyme of the mammalian  

NAD (nicotinamide adenine dinucleotide) biosynthetic 

compensation pathway [3]. It has been found that 

Nampt reduces the infiltration of neutrophils into the 

peri-ischemic area of the brain [4], and Zhao et al. 

found that the neuroprotective effect of extracellular 

visfatin against ischemic stroke was associated with its 

Nampt-related enzymatic activity [5]. Taken together, 

these point that Nampt is a target for the prevention and 

treatment of ischemic stroke. Therefore, the purpose  

of this study was to clarity natural active substances 

related to the Nampt target for the prevention and 

treatment of ischemic stroke and to investigate the 

mechanisms involved. 

 

MicroRNAs are endogenous non-coding single-stranded 

RNAs of about 20 nt that adversely adjust the expres-

sion of target genes after transcription by pairing with 

complementary sequences in the 3’-UTR of the target 

gene. Recently, diverse miRNAs have been described  

to be present in neurological disease progression, 

including stroke. For example, inhibition of miR-182 

protects against experimental stroke and attenuates 

astrocyte injury [6]. miR-98 reduces endothelial dys-

function and ameliorates ischemic/reperfusion injury  

in mice by protecting the blood-brain barrier [7].  

MiR-34a-mediated SIRT1/mTOR signaling pathway 

attenuated d-galactose-induced brain senescence in mice 

[8]. It has been reported that miR-377-3p can exacerbate 

cerebral ischemia/reperfusion injury in MCAO/R rats 

[9]. Nevertheless, the specific mechanism of miR-377-

3p in regulating ischemic stroke remains unclear. 

 

Berberine (BBR) is a polycyclic compound found in the 

Coptis chinensis, and has been conventionally used  

in the treatment of gastrointestinal infections for its 

antibacterial properties. Currently, more researches have 

indicated that berberine also has anti-atherosclerotic, 

hypoglycaemic, lipid metabolic and anti-tumour effects 

[10], although the mechanisms have not been investi-

gated in depth. Currently, many studies have nominated 

the neuroprotective effects of berberine. For example, 

berberine was detected to improve oxidative stress-

induced damage in the brain of diabetic rats [11], and 

Huang et al. found that berberine has anti-inflammatory 

effects to protect brain damage in mice with traumatic 

brain injury [12]. It has also been demonstrated that 
berberine can exert pharmacological activity through 

several miRNAs. For example, berberine inhibited the 

migration and proliferation of endometrial cancer cells 

by miR-101 [13]. Berberine upregulates miR-340-5p to 

protect against HMGB1-mediated myocardial ischemia/ 

reperfusion injury [14]. Above studies suggest that  

the natural drug berberine is a promising treatment  

for acute ischemic stroke. However, no research has 

clarified whether berberine improves ischemic stroke by 

regulating miR-377-3p. 

 

LncRNAs are ncRNAs larger than 200 nt and play vital 

roles in a variety of processes including epigenetic 

regulation. Some LncRNAs bind miRNAs in the 

sponges-dependent manner, thus preventing miRNAs 

from binding to their target mRNAs [15]. Currently, 

various lncRNAs have been supposed to play important 

regulatory roles in brain I/R injury by mediating different 

signaling pathways. It has been determined that NEAT1 

regulates the interaction between autophagy-associated 

proteins after neuronal I/R injury and alleviates neuronal 

reperfusion injury [16, 17]. This suggests that lncRNA 

NEAT1 is engaged in ischemic stroke, however the 

exact mechanism by which lncRNA NEAT1 regulates 

ischemic stroke remains to be explored. 

 

N6-methyladenosine (m6A) modification, a dynamic 

reversible process of the adenosine N6 site, is the most 

typical epigenetic modification of mRNA post-

transcriptional modifications, including the processes of 

methylation, demethylation and recognition, involving 

various protein molecules [18]. METTL3, METTL14 

and WTAP are the main methylation transferase (writer), 

among which METTL3 is the most common methylation 

transferase whose action can be eliminated by the de-

methylases (erasers) FTO and ALKBH5. Then m6A 

recognition proteins (reader), including YTH structural 

domain family (YTHDF) proteins, further influence the 

nucleation and stability of mRNA. Recently, studies 

have indicated that m6A acts as a crucial factor in a 

range of diseases such as obesity, cancer, and viral 

infections [19]. A study demonstrated that overall m6A 

levels were altered throughout the brain transcriptome 

after stroke [20]. Studies revealed that m6A modification 

regulates the expression of genes involved in the stroke 

process [21]. Si et al. described that METTL3 promotes 

the maturation of miR-335 and reduces neuronal 

apoptosis [22], suggesting that METTL3-mediated m6A 

methylation alleviates IS. Notably, Wang et al. proved 

that induction of m6A in adipocyte exosomal LncRNAs 

mediated drug resistance in myeloma [23, 24]. This 

suggests that m6A modifications can regulate LncRNA 

function and stability to influence disease progression. 

However, whether m6A modification affects LncNEAT1 

in ischemic stroke and the specific mechanisms have 

not been investigated. 
 

In summary, we investigated whether berberine exerts 

neuroprotective effects on ischemic brain injury through 
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the m6A methyltransferase METTL3 in mouse 

astrocytes, for which we simulated in vitro and in  

vivo models of IS. The study also provided diagnostic 

indicators and drug targets for treatment of IS. 

 

MATERIALS AND METHODS 
 

Animals and drug administration 

 

Adult male C57BL/6J mice (weight 20–25 g; 8 weeks 

old) were gotten from Animal Model Center of Nanjing 

University. The above mice were placed under strictly 

controlled ambient temperature (22 ± 2° C) and relative 

humidity (50~60 %) and 12 h light/dark cycle (five per 

cage) allowed access to food and water. This study  

was approved by the Ethics Committee of Nanjing  

First Hospital (Approval Number of Ethics Committee: 

DWSY-23063367). All animal experiments were con-

ducted in accordance with the ethical standards of 

Nanjing First Hospital. 

 

Berberine (purity 98%) was gotten from Sigma (BP1108, 

USA). Given the present research, we randomly divided 

all mice into 3 groups, including sham, model (MCAO/ 

R+Vehicle), and model (MCAO/R) + BBR (50 mg/ 

kg). The dose and mode of BBR administration were 

determined according to our previous studies [25]. The 

BBR treatment group was pretreated with BBR (dis-

solved in 0.5% CMC-Na) by intragastric administered 

once a day for 14 consecutive days before the surgery. 

An equal dose of normal saline was administered to the 

other groups. 

 

Middle cerebral artery occlusion/reperfusion 

(MCAO/R) model mice 

 

Firstly, mice were anesthetized with 2% isoflurane in O2 

(RWD Life Science, Shenzhen, China). A neck incision 

was performed, exposing the right common carotid 

artery (CCA), external carotid artery (ECA), and internal 

carotid artery (ICA). After that, a silicon-coated mono-

filament (Cinontech, Beijing, China) was inserted into 

the CCA and advanced into the ICA, then, occluded the 

artery for 1h followed by reperfusion. The same surgical 

procedure was performed on sham group of mice, while 

without a monofilament put into the artery.  

 

Neurologic function scores 

 

At 24 h after MCAO/R, neurological deficits of mice 

were assessed following the method described by Longa 

et al. [26]. The scoring criteria are as follows: 0, no 

deficit, normal walking; 1, mild deficit, fail to stretch 

forepaw; 2, moderate deficit, circling to the contralateral 

side; 3, severe deficit, falling to the contralateral side; 4, 

no spontaneous moving.  

2,3,5-triphenyltetrazolium chloride (TTC) staining 

and infarct volume measurement 

 

Triphenyl tetrazolium chloride (TTC) staining was 

performed at 24 h after surgery. Firstly, the brains were 

cut into 6 sections. Then, sections were stained using  

2% TTC solution (Sigma-Aldrich, St. Louis, MO, USA) 

at 37° C for 0.5h, and fixed with 4% paraformaldehyde 

(Biosharp, Beijing, China). ImageJ software (National 

Institutes of Health, Bethesda, MD, USA) was used to 

calculate the percentages of normal tissue (red) and 

infarcted volume (white). The infarcted areas of each 

section were summed and presented as a percentage of the 

volume of un-infarcted areas: corrected percentage of 

infarct volume = [(contralateral hemisphere volume − 

ipsilateral non-infarct volume)/contralateral hemisphere 

volume] × 100%. 

 
Cell culture 

 

Choosing the cerebral cortex of mice (1-3 days old)  

to extract primary astrocytes, the cortex was digested  

by 0.125% trypsin-EDTA (Gibco, Grand Island, NY, 

USA), then centrifuged and incubated in DMEM/F12 

complete medium (Gibco, Thermo Fisher Scientific, 

Waltham, MA, USA). After 9-11 days, the cells were 

shaken at 260 rpm at 37° C for 16 h to purify. Finally, 

purified astrocytes were obtained. 

 

Choosing the cortex of fetal mice (16–18 days old) to 

isolate primary neurons, the culture flasks were pretreated 

with poly-d-lysine (PDL) (Sigma-Aldrich, St. Louis, MO, 

USA). The fragment was digested with 0.125% trypsin 

and grown with DMEM (Gibco, Grand Island, NY, USA) 

for 5 h, then replaced with neurobasal medium containing 

2% B27 (Gibco, Grand Island, NY, USA) and 0.5 mmol/ 

L glutamine (Sigma-Aldrich, St. Louis, MO, USA).  

 

Choosing Adult Brain Dissociation Kit and ACSA-2 

MicroBeads (Miltenyi Biotec, Bergisch Gladbach, 

Germany) for magnetic isolation of astrocytes from 

adult mice. The former was used to digest the cortex. 

Then, purified astrocytes were obtained. Astrocytes 

were incubated for 15 min at 4° C with ACSA-2 

MicroBeads and separated from single-cell suspension 

in a magnetic field using MS columns, MACS 

MultiStand and QuadroMACS (Miltenyi Biotec, 

Bergisch Gladbach, Germany). 

 
Primary astrocytes were co-cultured with primary 

neurons 

 

The transwell co-culture system was established as 

described [27, 28]. After transfection for 48h, the 

medium was discarded and the primary astrocytes were 

washed by PBS. The primary neurons were then placed 
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at the bottom of the transwell plate (Corning Company, 

Corning, NY, USA). After washing with PBS, primary 

astrocytes were put in the upper part of the transwell 

plate and separated from bottom by a semi-permeable 

membrane. The cells were incubated in two separate 

chambers. 

 

Oxygen-glucose deprivation/reoxygenation (OGD/R) 

treatment  

 

Cells were incubated with or without BBR (10 μM) for 

24 h, then exposed to OGD/R treatment. So as to mimic 

the environment of cerebral ischemia/reperfusion in 

vitro, cells exposed glucose and oxygen deprivation 

followed reoxygenation. First, cells were cultured  

with DMEM (Gibco, Grand Island, NY, USA) without 

glucose and FBS (Gibco, Grand Island, NY, USA)  

in a 95% N2 and 5% CO2 chamber for 4 h. Then  

the glucose-free DMEM medium was replaced with 

neurobasal medium complete medium or DMEM/F12 

complete medium, and cultured in a 95% air and 5% 

CO2 incubator for 24 h. The final concentration of 

BBR in the OGD/R experiment was 10 μM. 

 

Cell transfection and lentivirus infection 

 

Briefly, miR-377-3p mimic, miR-377-3p inhibitor, and 

respective negative control (NC mimic, NC inhibitor) 

were purchased from Shanghai GenePharma Company 

(Shanghai, China). According to the manufacturer’s 

protocol, transfected them to cells with Lipofectamine 

3000 (Invitrogen, Carlsbad, CA, USA). Lentiviruses 

loaded with shRNA were obtained from Shanghai 

GeneChem Company (Shanghai, China), including over-

expressed METTL3 (Lenti-METTL3), sh-METTL3, 

overexpressed NEAT1 (Lenti-NEAT1), sh-NEAT1 and 

their corresponding lentiviral scramble control shRNA 

or their corresponding overexpression negative control 

vector (Lenti-NC). Lentivirus infection was performed 

according to the manufacturer’s instructions. The 

sequences above are shown in Supplementary Table 1. 

After transfection or lentiviral infection, cells were 

treated with or without 10 μM of BBR and then 

subjected to subsequent OGD/R treatment to simulate 

the brain ischemia-reperfusion environment in vitro. 

 

Cell counting kit-8 (CCK-8) 

 

Cell Counting Kit-8 (Dojindo, Kumamoto, Japan) was 

used to detect cell viability. Firstly, cells were treated 

with 10 μL CCK-8. Finally, after culture for 2 h at 37° 

C, the absorbance value at 450 nm was measured using 

a microplate reader (Thermo Fisher Scientific, Waltham, 
MA, USA). The survival ratio of cells per group was 

normalized to the control group, in which the survival 

ratio was regarded as 100%. 

Lactate dehydrogenase (LDH) assay 

 

Cellular injury or death was detected by the release of 

lactate dehydrogenase (LDH) in the medium supernatant. 

First, collecting cells treated with OGD/R and transfected, 

put them suspended in 96-well plate, and then placed at 

37° C for 0.5 h. Choosing a LDH assay kit (Sigma‐ 

Aldrich, St. Louis, MO, USA) to carry out the experiment. 

The absorbance of the supernatant at 490 nm was then 

recorded using a microplate reader. The LDH activity was 

calculated as (absorbance of sample hole-absorbance of 

the control hole) / (absorbance of the standard hole - 

absorbance of the standard blank hole). 

 

HE staining 

 

24 h after MCAO/R, mice were anesthetized with  

2% isoflurane in O2 (RWD Life Science, Shenzhen, 

China). After that normal saline (200 mL) and 4% para-

formaldehyde (Biosharp, Beijing, China) (80 mL) were 

perfused into the heart. Brain tissue samples were fixed 

with 4% paraformaldehyde, dehydrated and embedded in 

paraffin. 4 μm slices were cut with a paraffin microtome 

and attached to the slide. Dewaxing by xylene and 

gradient dehydration by ethanol were adopted. At room 

temperature, hematoxylin staining solution was used  

for 5 min, followed by 1% ethanol hydrochloride for 

30s differentiation. The ammonia water was added for  

1 minute and then turn blue. They were rinsed with 

distilled water. Eosin staining solution was added,  

room temperature 2 min, distilled water washed, ethanol 

gradient decolorization. The xylene was allowed to 

permeate. Finally, the slide is sealed with a neutral 

adhesive. Changes were observed and photographed. 

 

Nissl staining 

 

Similarly, the mice were anesthetized by 2% isoflurane 

in O2 (RWD Life Science, Shenzhen, China), brain 

tissue were fixed with 4% paraformaldehyde, dehydrated 

and embedded in paraffin. 4 μm slices were cut with  

a paraffin microtome and attached to the slide. Then 

carried out the Nissl staining assay according to the 

protocol of the Nissl staining kit (Solarbio, Nanjing, 

China). The results were viewed and photographed. 

 

Immunofluorescence 

 

The isolated astrocytes or neurons were characterized 

by staining marker GFAP or Neun. Firstly, cells were 

put in 4% paraformaldehyde (Biosharp, Beijing, China) 

for 20 min. After that, put them in PBS containing 0.1% 

Triton X100 (Beyotime, Shanghai, China) for 20 min. 
Then incubated them with 5 % BSA (Biofroxx, Shanghai, 

China) for 1 h. After above, primary astrocytes were 

incubated with rabbit monoclonal antibody anti-GFAP 
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(1:200; #80788S; CST, USA) and primary neurons  

were incubated with a rabbit monoclonal antibody  

anti-NeuN (1:200; #24307; CST) overnight at 4° C and 

then incubated the next day with goat anti-rabbit IgG 

H&L (Alexa Fluor® 488) (1:200; ab150077; Abcam, 

Cambridge, MA, USA) or goat anti-rabbit IgG H&L 

(Alexa Fluor® 594) (1:200; ab150080; Abcam) and 

incubated with DAPI (1:300, Cat. # C1002, Beyotime) 

to stain nuclei. Finally, the images were observed  

and photographed. The number of GFAP-positive cells 

or Neun-positive cells was calculated from randomly 

selected microscopic fields. Astrocyte or neuronal purity 

was presented as percentage of the number of the 

percentage of GFAP-positive or Neun-positive cells to 

the total cells of view, both around 90% or more. 

 

mRNA stability assay 

 

The cells were planted in 6-well plates overnight. Cells 

were incubated with 5 μg/ml ActD (CST, Danvers, MA, 

USA) for 0, 1, 2, 4 h or longer. Then collected cells to 

extract total RNA, and target RNA was quantized by 

RT-qPCR for further analysis. 

 

Bioinformatic analysis 

 

The possible miRNAs-related targets of Nampt  

were analyzed by online bioinformatics database 

miRDB, TargetScan and miRWalk. And through 

bioinformatics software RNAhybrid (https://bibiserv. 

cebitec.unibielefeld.de/rnahybrid/) to assess the combine 

about miR-377-3p with LncNEAT1. The bioinformatics 

software m6Avar (http://www.cuilab.cn/sramp/) was 

used to analyze the potential m6A sites on LncNEAT1. 

 

Dual-luciferase reporter gene assay 

 

First, the luciferase reporter plasmids Nampt-WT  

and Nampt-Mut was constructed, then cells were  

co-transfected with above plasmids and NC mimic or 

miR-377-3p mimic respectively by using Lipofecta-

mine 2000 (Invitrogen, Carlsbad, CA, USA). After co-

incubation for 48h, cells were collected for lysis and 

luciferase activity was measured by the dual luciferase 

reporting and detection system (Promega, WI, USA). 

Similarly, the protocol also used to explore the combined 

effects of NEAT1 and miR-377-3p. 

 

Methylated RNA immunoprecipitation (MeRIP) assay 

 

Firstly, Trizol method was used to extract total  

RNA. The RNA cracking reagent (AM8740, Invitrogen) 

was used to cut RNA into fragments. Anti-m6a anti-
bodies (ab208577, Abcam) were incubated with RNA 

overnight at 4° C. Protein A/G Magnetic Beads (88803, 

Thermo Fisher Scientific, USA) was mixed with anti-

body treated RNA. A protease K buffer digested the 

m6A antibody. Finally, the methylated RNA was 

purified for RT-qPCR. 

 

Western blotting 

 

Firstly, RIPA solution (Beyotime, Shanghai, China) was 

used to extract total proteins from mouse brain tissue or 

cells. Total protein concentration was measured and 

quantified using a BCA kit (Thermo Fisher Scientific, 

Grand Island, NY, USA). Protein samples mixed with 

5×loading buffer were denatured in boiling water, 

separated by gel electrophoresis and transferred to 

PVDF membrane (Merck Group, Darmstadt, Germany). 

Closed with 5% skim milk for 1h and incubated with 

the following primary antibodies at 4° C overnight: 

rabbit monoclonal anti-Nampt (1:1000; 11776-1-AP; 

Proteintech, China), β-actin (1:1000; ab241153; Abcam), 

rabbit monoclonal anti-METTL3 (1:1000; 15073-1-AP; 

Proteintech). PVDF membrane is then paired with 

corresponding HRP labeled anti-Rabbit IgG (1:4000; 

#7074S; CST) was incubated at room temperature for 

2h. Strip visualization was done using the ECL kit 

(Thermo Fisher Scientific, USA). The results were 

quantified using software ImageJ. 

 

Quantitative real-time polymerase chain reaction 

(RT-qPCR) 

 

Trizol reagent (Thermo Fisher Scientific, USA) extracts 

total RNA from tissues or cells. RNA samples were 

reversely transcribed into cDNA using kits (ABM, 

Richmond, British Columbia, Canada). According to 

the standard SYBR-Green method, the ABI7500 type 

sequence detection system (7500, ABI, USA) was used 

for the detection. β-actin being an internal control of 

mRNA, and U6 was an internal reference of miRNA. 

The primers are shown in Supplementary Table 2. 

 

Statistical analysis 

 

These experiments were performed at least three times. 

All values are expressed as mean ± standard deviation. 

Prism 8.0 (GraphPad Software, Inc., San Diego, CA, 

USA) should be used in all statistical analysis. All  

data were normally distributed. The difference between 

the two groups was checked by the T-test, and the 

comparison between more than two groups was checked 

by the analysis of variance. P<0.05 was regarded as 

statistically significant. 

 

Data availability statement 

 
All data generated or analyzed during this study  

are available from the corresponding author upon 

reasonable request. 

http://www.cuilab.cn/sramp/
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RESULTS 
 

Berberine alleviates MCAO/R brain injury and up-

regulates the expression of Nampt in adult mouse 

astrocytes 

 

Firstly, the mice were put to MCAO/R to simulate 

cerebral I/R injury in vivo. Compared with the sham 

group, the nerve function defect and infarct volume  

of MCAO/R mice were strikingly increased, and the  

above results were reversed after administration of BBR 

(Figure 1A–1C). Meanwhile, HE staining and Nissl 

staining were used to observe the degree of brain 

histological damage in mice. The results indicated  

that ischemic stroke resulted in shrinkage of nucleus  

of neurons, widened pericellular spaces, as well as 

vacuolization in neuropil and decrease of Nissl bodies, 

while berberine administration relatively reduced brain 

damage in mice (Figure 1D–1G). Then we isolated 

astrocytes from 8-week-old adult mice. Western blot 

analysis demonstrated that compared with the sham 

group, the expression of Nampt in astrocytes of 

MCAO/R mice brain tissue was increase, while BBR 

administration was further increased the expression of 

Nampt (Figure 1H, 1I). To sum up, these results suggest 

that berberine may reduce the brain injury of mice  

after MCAO/R and act as a protective role against  

I/R injury by up-regulating the expression of Nampt in 

mouse astrocytes.  

 

miR-377-3p targets and inhibits the Nampt 

expression in OGD/R-treated primary astrocytes, 

thus promoting neuronal injury 

 

Above three online bioinformatics databases were  

used to perform the potential miRNAs that can bind to 

3’-UTR of Nampt were screened and miR-377-3p was 

initially determined (Figure 2A). Then, we extracted 

mouse primary astrocytes (Figure 2B). In order to 

further confirm the direct binding of Nampt and miR-

377-3p, we conducted dual-luciferase reporter gene 

assay. As expected, miR-377-3p dramatically reduced 

the activity of Nampt-WT luciferase, but did not reduce 

the activity of Nampt-mut (Figure 2C). In order to 

further evaluate the interaction between Nampt and 

miR-377-3p, we silenced or over-expressed the level of 

miR-377-3p in primary astrocytes of mice and then 

treated by OGD/R (Figure 2D). The results showed that 

after OGD/R, compared with the corresponding control 

group, overexpression of miR-377-3p prominently 

reduced the level of Nampt, while knocking down miR-

377-3p distinctly increased the level of Nampt (Figure 

2E, 2F). To determine the influence of miR-377-3p in 

neuroprotective effects associated with Nampt, we 

extracted the primary neurons of mice (Figure 2G). 

After primary astrocytes were transfected with miR-

377-3p mimic or miR-377-3p inhibitor, they were  

co-cultured with primary neurons, and then the  

system treated by OGD/R. CCK8 assay indicated that 

inhibition of miR-377-3p in primary astrocytes can 

promote the activity of its co-cultured neurons after 

OGD/R, while miR-377-3p mimic decreased the 

neuronal activity (Figure 2H). At the same time, the 

LDH experiment results also revealed that compared 

with the corresponding control group, the primary 

astrocyte transfected with miR-377-3p inhibitor 

attenuated the death of neurons co-cultured with it  

after OGD/R, while the transfection of miR-377-3p 

mimic increased the death of neurons (Figure 2I). 

Generally, our work confirm that the neuronal damage 

mediated by OGD/R-treated primary astrocytes is 

related to its Nampt/miR-377-3p signal transduction.  

 
Berberine regulates Nampt expression through 

downregulation of miR-377-3p in OGD/R-treated 

primary astrocytes, thereby affecting neuronal activity 

 

Subsequently, we wanted to further investigate whether 

berberine plays a neuroprotective role by regulating 

Nampt-related pathways in primary astrocytes. RT-qPCR 

results nominated that miR-377-3p was down-regulated 

in primary astrocytes after OGD/R compared to control. 

Compared with the corresponding control group, miR-

377-3p in OGD/R-induced primary astrocytes was further 

down-regulated after berberine treatment. Meanwhile, 

overexpression of miR-377-3p in OGD/R-treated primary 

astrocytes reversed the decrease of miR-377-3p induced 

by berberine (Figure 3A). Western blot analysis revealed 

that Nampt expression was up-regulated in post-OGD/R 

primary astrocytes. Compared with the corresponding 

control group, after berberine treatment, Nampt expres-

sion was further up-regulated in OGD/R-induced primary 

astrocytes, and overexpression of miR-377-3p in OGD/R-

treated astrocytes reversed the up-regulation of Nampt 

expression induced by berberine (Figure 3B, 2C). 

Significantly, compared with the corresponding control 

group, berberine treatment can attenuate the neuronal 

damage induced by primary astrocytes after OGD/R. 

Nevertheless, transfection of miR-377-3p mimic reversed 

the neuroprotective effect induced by BBR treatment  

in primary astrocytes after OGD/R, which can be 

demonstrated by the decreased neuronal activity and 

increased LDH release (Figure 3D, 3E). In conclusion, 

berberine plays a neuronal protective role by down-

regulating the expression of miR-377-3p through Nampt 

in primary astrocytes.  

 
NEAT1 binds to miR-377-3p as a ceRNA in primary 

astrocytes and plays a neuronal protective role  

 

It is reported that LncNEAT1 can alleviate cerebral 

ischemia/reperfusion injury [29]. Firstly, the results 
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Figure 1. Berberine alleviates MCAO/R brain injury and up-regulates the expression of Nampt in adult mouse astrocytes. (A) 
Neurologic function scores for assessing the degree of neurological impairment after 24 hours in sham, MCAO/R+Vehicle or BBR+ MCAO/R 
group of mice (n=24). (B) Representative images of TTC-stained brain sections from mice (n=6). (C) Quantification of infarct volume at 24 h 
after MCAO/R (n=6). (D) Representative images of HE staining of ischemic brain tissue from mice (n=6, Scale bar: 50 μm). (E) Representative 
images of Nissl staining of ischemic brain tissue from mice (n=6, Scale bar: 50 μm). (F) Quantification of damaged neurons. (G) Quantification 
of Nissl+ neurons. (H) Representative Western blot images depicting Nampt in adult mouse astrocytes (n=6). (I) A bar presenting the 
quantification of Nampt (n=6). The relative expression levels were quantified by normalizing to β-actin. Data are represented as mean ± SD, 
(*P < 0.05; **P < 0.01; ***P < 0.001). 
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Figure 2. miR-377-3p inhibits the expression of Nampt in astrocytes after OGD/R, thus promoting neuronal injury. (A) Possible 

miRNA binding site on Nampt mRNA (predicted candidate miR-377-3p target gene by bioinformatics databases). (B) GFAP 
immunofluorescence validation of astrocytes (immunofluorescence images of primary astrocytes. Scale bar: 20 μm). (C) Relative luciferase 
activity of Nampt wild-type and 3ʹ-UTR mutant structures transfected with miR-377-3p mimics and NC mimic. (D) RT-qPCR detection of miR-
377-3p levels in primary astrocytes after OGD/R following miR-377-3p mimic or miR-377-3p inhibitor treatment. (E) Western blot analysis of 
Nampt protein expression in primary astrocytes after OGD/R following miR-377-3p mimic or miR-377-3p inhibitor treatment. (F) A bar 
presenting the quantification of Nampt in primary astrocytes. (G) NeuN immunofluorescence validation of neurons (immunofluorescence 
images of primary neurons. (Scale bar: 20 μm.). (H) The co-cultured neuron viability was determined by CCK-8 assay after miR-377-3p mimic 
or miR-377-3p inhibitor transfection in astrocytes and OGD/R treatment. (I) LDH assay to detect the effect on co-cultured neurons after miR-
377-3p mimic or miR-377-3p inhibitor treatment in primary astrocytes and OGD/R treatment. The relative expression levels were quantified 
by normalizing to β-actin. Data are represented as mean ± SD, (n = 3; *P < 0.05; **P < 0.01; ***P < 0.001). 
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Figure 3. Berberine regulates Nampt expression through downregulation of miR-377-3p in OGD/R-treated primary 
astrocytes, thereby affecting neuronal activity. (A) Using RT-qPCR to analysis the miR-377-3p level in cells transfected with miR-377-3p 
mimic after berberine treatment. (B) Using Western blot to analyze Nampt expression in astrocytes after berberine treatment and 
transfection with miR-377-3p mimic. (C) A bar presenting the quantification of Nampt in primary astrocytes. (D) Using the CCK-8 assay to 
evaluate the effect of co-culture with berberine and primary astrocyte transfected with miR-377-3p mimic on neurons after OGD/R. (E) Using 
LDH assay to study the effect of co-culture with berberine and primary astrocyte transfected with miR-377-3p mimic on neurons after 
OGD/R. The relative expression levels were quantified by normalizing to β-actin. Data are represented as mean ± SD, (n = 3; *P < 0.05; **P < 
0.01; ***P < 0.001). 
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assessed by the bioinformatics software RNAhybrid 

(https://bibiserv.cebitec.unibielefeld.de/rnahybrid/) 

indicated that miR-377-3p has a strong ability to bind 

to NEAT1 (Figure 4A). Meanwhile, the dual-luciferase 

reporter gene assay results confirmed that miR-377-

3p-mimic markedly down-regulated the luciferase 

activity of NEAT1-WT, but did not down-regulate  

the luciferase activity of NEAT1-Mut (Figure 4B).  

In order to further evaluate the interaction between 

NEAT1 and miR-377-3p, we knocked-down or over-

expressed the level of NEAT1 in primary astrocytes  

of mice and then treated by OGD/R (Figure 4C). Next, 

our results revealed that overexpression of NEAT1 

significantly decreased the level of miR-377-3p in 

primary astrocytes, while knocking down NEAT1 

prominently increased the level of miR-377-3p (Figure 

4D). The primary astrocytes were knocked-down or 

overexpressed NEAT1 and co-cultured with the 

primary neurons, then the system treated by OGD/R. 

CCK8 assay demonstrated that compared with the 

corresponding control group, overexpression of NEAT1 

in primary astrocytes promoted the activity of its  

co-cultured neurons exposed to OGD/R treatment, 

while knocking down NEAT1 weakened the neuronal 

activity (Figure 4E). At the same time, the results  

of LDH assay also indicated that compared with  

the corresponding control group, after OGD/R, the 

NEAT1 overexpression in primary astrocytes reduced 

the death of co-cultured neurons, while knocking down 

NEAT1 increased the death of neurons (Figure 4F).  

In general, the above results showed that NEAT1 

binds to miR-377-3p as a ceRNA in primary astrocytes 

and plays a neuronal protective role. 

 

Berberine exerts neuroprotective effects through 

modulation of the NEAT1/ miR-377-3p /Nampt axis 

in primary astrocytes  

 

Next, we wanted to further explore whether  

berberine exerts neuroprotective effects by regulating 

NEAT1/miR-377-3p/Nampt-related pathway in primary 

astrocytes. RT-qPCR results confirmed that NEAT1 

was upregulated in primary astrocytes after OGD/R 

compared to control, and NEAT1 was further up-

regulated in primary astrocytes after OGD/R following 

berberine treatment compared to the corresponding 

control group, while sh-NEAT1 transfection of primary 

astrocytes reversed the increase of NEAT1 expression 

induced by berberine treatment (Figure 5A). Meanwhile, 

the results nominated that miR-377-3p was down-

regulated in primary astrocytes after OGD/R following 

berberine treatment compared to the corresponding 

control group, while sh-NEAT1 transfection in primary 
astrocytes reversed the decrease in miR-377-3p induced 

by berberine treatment (Figure 5B). Western blot analysis 

revealed that Nampt expression was upregulated in 

primary astrocytes after OGD/R following berberine 

treatment compared to the corresponding control group, 

and sh-NEAT1 transfection of primary astrocytes re-

versed the increase in Nampt induced by berberine 

treatment (Figure 5C, 5D). Notably, transfection of  

sh-NEAT1 in primary astrocytes reversed the neuro-

protective effect induced by berberine treatment 

compared to the corresponding controls, as evidenced 

by the decreased neuronal activity and increased  

LDH release (Figure 5E, 5F). Taken together, it can  

be known that LncRNA NEAT1 can be regarded as a 

competitive endogenous RNA (ceRNA) for miR-377-3p 

and block miR-377-3p-dependent target gene repression 

(i.e. Nampt). Concurrently berberine can upregulate 

NEAT1 and further regulate Nampt-related signaling  

in post-OGD/R primary astrocytes, thereby affecting 

neuronal activity.  

 

METTL3 enhances NEAT1 stability in primary 

astrocytes by modulating m6A modification of 

NEAT1  

 

To probe the possible mechanisms about the regulation 

of neuronal protective effects by NEAT1, we examined 

the N6-methyladenosine (m6A) methylation of NEAT1. 

We used the bioinformatics software m6Avar to analyze 

potential m6A sites on LncNEAT1 and found multiple 

positions on LncNEAT1 with high confidence (Figure 

6A). In addition, MeRIP-qPCR results confirmed that 

following OGD/R stimulation, LncNEAT1 m6A methy-

lation levels were significantly increased in primary 

astrocytes (Figure 6B). 

 

Published studies have revealed that methylation 

transferase METTL3 can increase NEAT1 expression 

by promoting m6A modification of NEAT1 [30]. We 

assessed the possibility that methyltransferase METTL3 

is involved in regulating NEAT1 m6A modification  

in ischemic stroke by MeRIP-qPCR. The result  

indicated that knockdown of methyltransferase METTL3 

apparently decreased m6A modification on NEAT1  

(Figure 6C). Next, to further investigate the effect of 

METTL3 on NEAT1 expression levels, we knocked 

down or overexpressed METTL3 in primary astrocytes 

of mice and then treated with OGD/R (Figure 6D, 6E). 

Furthermore, RT-qPCR results revealed that the level  

of NEAT1 was significantly up-regulated in primary 

astrocytes after OGD/R treatment with overexpressing 

METTL3 and down-regulated in METTL3 knockdown 

cells compared to the corresponding controls (Figure 

6F). To further certify the rationality of METTL3-

mediated NEAT1 regulation, we investigated the  

effect of METTL3 overexpression on NEAT1 stability. 
Overexpressed of METTL3 in primary astrocytes 

significantly increased the stability of NEAT1 early 

after OGD/R (4h) upon ActD treatment (Figure 6G). 

https://bibiserv.cebitec.unibielefeld.de/rnahybrid/
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Figure 4. NEAT1 binds to miR-377-3p in OGD/R astrocytes and plays a neuronal protective role as a ceRNA. (A) Prediction of 

NEAT1 binding sites on miR-377-3p using bioinformatics software (RNAhybrid). (Schematic diagram of the sequence complementation 
relationship of miR-377-3p in NEAT1.) (B) Dual luciferase reporter gene analysis to confirm the binding relationship between NEAT1 and miR-
377-3p. (C) RT-qPCR to analyze the NEAT1 level in primary astrocytes transfected with sh-NEAT1 or Lenti- NEAT1. (D) RT-qPCR to analyze the 
miR-377-3p level in primary astrocytes transfected with sh-NEAT1 or Lenti- NEAT1. (E) CCK-8 assay to assess the co-cultured neuron viability 
after NEAT1 knockdown or overexpression in primary astrocytes and OGD/R treatment. (F) LDH assay to study the effect of the co-cultured 
neuron viability after NEAT1 knockdown or overexpression in primary astrocytes and OGD/R treatment. Data are represented as mean ± SD, 
(n = 3; *P < 0.05; **P < 0.01; ***P < 0.001). 
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Figure 5. Berberine exerts neuroprotective effects through modulation of the NEAT1/ miR-377-3p /Nampt axis in astrocytes. 
(A) RT-qPCR to analyze the NEAT1 level in primary astrocytes transfected with sh-NEAT1 after berberine treatment. (B) RT-qPCR to analyze 
the miR-377-3p level in primary astrocytes transfected with sh-NEAT1 after berberine treatment. (C) Western blot analysis of Nampt 
expression in primary astrocytes transfected with sh-NEAT1 after berberine treatment. (D) A bar presenting the quantification of Nampt in 
primary astrocytes. (E) CCK-8 assay to assess the effect on co-cultured neurons by treating with NEAT1 knockdown and berberine-treated 
primary astrocytes and OGD/R treatment. (F) LDH assay to study the effect on co-cultured neurons by treating with NEAT1 knockdown and 
berberine-treated primary astrocytes and OGD/R treatment. The relative expression levels were quantified by normalizing to β-actin. Data 
are represented as mean ± SD, (n = 3; *P < 0.05; **P < 0.01; ***P < 0.001). 
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Figure 6. METTL3 enhances NEAT1 stability in OGD/R astrocytes by modulating m6A modification of NEAT1. (A) Prediction of 

potential m6A targets in Lnc NEAT1 based on SRAMP online website. (B) MeRIP-PCR to detect the m6A modifications in Lnc NEAT1. (C) 
Application of MeRIP-PCR to detect the correlation between NEAT1 and METTL3. (D) Western blot to detect expression of METTL3 after 
overexpression or silencing in primary astrocytes. (E) A bar presenting the quantification of METTL3 in primary astrocytes. (F) Expression of 
NEAT1 after METTL3 overexpression and silencing in primary astrocytes of mice after OGD/R. (G) Stability of NEAT1 in primary astrocytes 
with METTL3 overexpression after OGD/R treatment. Data are represented as mean ± SD, (n = 3; *P < 0.05; **P < 0.01; ***P < 0.001). 
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The above findings reveal that METTL3 enhances 

NEAT1 stability through m6A modification in OGD/R-

treated primary astrocytes.  

 
Berberine exerts neuroprotective effects via 

METTL3 regulating the NEAT1/miR-377-3p/Nampt 

axis in post-OGD/R primary astrocytes  

 

In view of the above studies on the neuroprotective role 

of berberine in regulating NEAT1-related pathways in 

post-OGD/R primary astrocytes, we further investigated 

the effect of berberine on m6A modification in an in 

vitro model of ischemic stroke. Western blot results 

showed that METTL3 expression was upregulated after 

OGD/R compared with control group, besides, METTL3 

expression was further upregulated in post-OGD/R 

primary astrocytes after berberine treatment compared 

with OGD/R group (Figure 7A, 7B). Meanwhile, 

knockdown of METTL3 in primary astrocytes after 

OGD/R reversed the increase of NEAT1 induced by 

berberine treatment (Figure 7C), but conversely made 

miR-377-3p expression up-regulated (Figure 7D). In 

contrast, compared with the corresponding control 

group, knockdown of METTL3 in primary astrocytes 

after OGD/R reversed the increase of Nampt induced by 

berberine treatment (Figure 7E, 7F). Notably, knock-

down of METTL3 also reversed the neuronal protective 

effects induced by berberine treatment on OGD/R 

primary astrocytes compared to the corresponding 

controls, as evidenced by the relative reduction in 

neuronal viability and increased LDH release (Figure 

7G, 7H). Taken together, we can know that berberine 

exerts neuroprotective effects via METTL3 regulation 

of the NEAT1/miR-377-3p/Nampt axis in post-OGD/R 

primary astrocytes. 

 
Berberine regulates METTL3-mediated m6A 

modification of NEAT1 to alleviate ischemic stroke 

in adult mouse astrocytes  

 

Finally, in view of the above experiments, we 

demonstrated the neuronal protective effect of berberine 

in an in vitro model of cerebral I/R and the specific 

correlated mechanism, so we wanted to further validate 

the neuronal protective effect mechanism of berberine 

in mice in vivo. Then we isolated astrocytes from 8-

week-old adult mice. Western blot analysis confirmed 

that the expression of METTL3 was upregulated  

in astrocytes of brain tissue from MCAO/R mice 

compared with the sham group, and compared with the 

model group, BBR administration further increased 

METTL3 expression (Figure 8A, 8B). Meanwhile,  

RT-qPCR results further showed that the level of 

NEAT1 was upregulated in astrocytes of brain tissue 

from MCAO/R mice compared with the sham group, 

and further increased by BBR treatment (Figure 8C).  

In contrast, miR-377-3p levels were downregulated  

in astrocytes of brain tissue from MCAO/R  

mice compared to the sham group, and miR-377-3p 

expression further decrease by BBR administration 

compared to the model group (Figure 8D). These 

findings are consistent with the above in vitro results, 

suggesting that berberine exerts neuroprotective effects 

by regulating NEAT1/ miR-377-3p/Nampt axis in 

mouse astrocytes through METTL3, thereby alleviates 

ischemic stroke. 

 

DISCUSSION 
 

Ischemic stroke is one of the principal reasons of 

disability and death globally. Both of Nampt levels  

in the body circulation and the brain are upregulated 

during acute cerebral I/R stress [31]. Nampt is a 

regulator of the intracellular NAD pool in mammalian 

cells. In recent years, several studies have identified that 

Nampt affects the ischemic stroke process through 

biological signaling or energy metabolism pathways, 

exerting roles including neuroprotection, vascular  

repair and neurogenesis. For example, Nampt prevents  

IS by rescuing neurons apoptosis through the sirt1- 

dependent AMPK pathway [32]. Secreted Nampt  

has a novel neuroprotective role in protecting white  

matter after ischemic injury [33]. Nampt-nicotinamide  

adenine dinucleotide cascade promotes regenerative 

neurogenesis after ischemic stroke [34]. Meanwhile,  

our previous study nominated that the astrocyte- 

derived exosome Nampt improves cerebral I/R injury 

by targeting autophagy associated signaling pathways 

AMPK/mTOR [35]. During the present research, Nampt 

expression was proved to be upregulated in astrocytes 

of a mouse brain ischemia/reperfusion model, and 

further upregulation of Nampt expression attenuated 

ischemia/reperfusion injury, while in an in vitro cellular 

model, Nampt also had a neuroprotective effect. These 

in vitro and in vivo results suggest that Nampt is a 

crucial target for the prevention and therapy of ischemic 

stroke. 

 

Various miRNAs have been proved to indirectly 

regulate the nervous system immune response, 

oxidative stress and so on by affecting the expression of 

target mRNA, which influence the pathophysiology 

during IS. For instance, it is suggested that miR- 

155 promotes neuroinflammatory responses, endothelial 

activation in IS by targeting SOCS-1 [36]. miR-124 

protects neurons and suppresses neuroinflammation in 

ischemic stroke by targeting Akt signaling pathways 

[37]. It is believed that miR-377-3p has been involved 

in inhibiting the survival and angiogenesis of cerebral 

microvascular endothelial cells (BMECs) induced by 

OGD treatment [38]. Meanwhile, Nampt promotes post-

ischemia angiogenesis by modulating Notch signaling 
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Figure 7. Berberine exerts neuroprotective effects via METTL3 regulating the NEAT1/miR -377-3p/Nampt axis in post-
OGD/R primary astrocytes. (A) Western blot to detect expression of METTL3 in primary astrocytes after OGD/R and berberine 
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treatment. (B) A bar presenting the quantification of METTL3 in primary astrocytes. (C) RT-qPCR to analysis the ex-pression of NEAT1 
in primary astrocytes after OGD/R following berberine treatment and transfection with sh -METTL3. (D) RT-qPCR to analyze the 
expression of miR-377-3p in astrocytes after OGD/R following berberine treatment and transfection with sh-METTL3. (E) Western 
blotting to analyze the expression of Nampt in astrocytes after OGD/R following berberine treatment and transfection with sh -
METTL3. (F) A bar presenting the quantification of Nampt in primary astrocytes. (G) Using CCK-8 assay to assess the effect on co-
cultured neurons by treating with sh-METTL3 and berberine-treated primary astrocytes and OGD/R treatment. (H) Using LDH assay to 
evaluate the effect on co-cultured neurons by treating with sh-METTL3 and berberine-treated primary astrocytes and OGD/R 
treatment. The relative expression levels were quantified by normalizing to β -actin. Data are represented as mean ± SD, (n = 3; *P < 
0.05; **P < 0.01; ***P < 0.001). 

 

 
 

Figure 8. Berberine regulates METTL3-mediated m6A modification of NEAT1 to alleviate ischemic stroke in adult mouse 
astrocytes. (A) Western blot to verify METTL3 expression in adult mouse astrocytes after berberine administration following MCAO/R. (B) A 
bar presenting the quantification of METTL3. (C) RT-qPCR for NEAT1 expression in adult mouse astrocytes after berberine administration 
following MCAO/R. (D) RT-qPCR to verify the expression of miR-377-3p in adult mouse astrocytes after berberine administration following 
MCAO/R. The relative expression levels were quantified by normalizing to β-actin. Data are represented as mean ± SD, (n = 6; **P < 0.01; 
***P < 0.001). 
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through the NAD+-SIRT1 cascade [39]. In this  

study, miR-377-3p was identified to be associated  

with Nampt, a therapeutic target in ischemic stroke,  

by bioinformatics software screening and luciferase 

reporter gene assay. Further experiments demonstrated 

that miR-377-3p inhibited Nampt expression in post-

OGD/R astrocytes thereby promoting neuronal injury. 

 

Berberine is widely used in clinical practice as an 

important active ingredient of the Chinese medicine 

Huang Lian. Several researches have verified that 

berberine can play a role in several diseases by 

regulating miRNAs. There is report that berberine  

had protective effects against vascular dementia in 

diabetic rats, and the effects depended on the down-

regulation of miR-133a [40]. Berberine attenuated 

neonatal sepsis in mice by inducing miR-132-3p to 

inhibit FOXA1 and NF-κB signaling [41]. Meanwhile, 

our previous findings found that berberine attenuated 

the inflammatory response to IS via the lncRNA 

Malat1/miR-181c-5p/HMGB1 axis [25]. According to 

present findings, we nominated that berberine exerts 

neuroprotective effects by downregulating miR-377-3p to 

regulate Nampt expression in post-OGD/R astrocytes. 

 

miRNAs often interact with and negatively regulate 

molecular sponges of long-stranded non-coding RNAs, 

and many LncRNAs have been proved that differentially 

expressed in IS. LncRNA Malat1 has been reported to 

be upregulated and to promote ischemic stroke injury 

[42]. Meanwhile, LncRNA RMST has been reported  

to bind to miR-377-3p and act as ceRNA, activating 

SEMA3A-related signaling pathway, thereby exacer-

bating neuronal apoptosis in OGD/R-induced IS [43]. 

Our research suggest that LncNEAT1 may also be an 

underlying target of miR-377-3p in primary astrocytes 

of mice, for which NEAT1 combines with miR-377- 

3p and acts as a ceRNA to exert neuronal protection  

in IS. 

 

m6A is the most common epigenetic modification  

of RNA, frequently found in the mammalian central 

nervous system, and ischemic stroke could alter  

the brain m6A transcriptome. METTL3 and YTHDC1

 

 
 

Figure 9. The schematic diagram of molecular mechanism in modulating METTL3-mediated m6A modification of NEAT1 in 
ischemic stroke by berberine via NEAT1/miR-377-3p/Nampt axis. 
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promote Akt phosphorylation to alleviate ischemic stroke 

by destabilizing PTEN mRNA [44]. m6A methylation 

has also been shown to inhibit the translation of  

the target gene p65 to avoid IS-induced inflammatory 

responses, all of which primarily via miR-421-3p 

targeting of m6A reader YTHDF1 [45]. LncRNAs 

function mainly by interacting with proteins or RNA 

through interaction sites contained in their sequences. 

The functional implementation of LncRNAs is related 

to m6A modification. On the one hand, the epigenetic 

mechanism of LncRNA associated with m6A modi-

fication further regulates the function and interaction  

of LncRNA by altering the structure of LncRNA,  

which plays an important role in the development 

diagnosis and treatment of many diseases. For example, 

Methyltransferase METTL3 directly mediates the m6A 

modification of LNCC00958 to enhance its stability, 

and then promotes the progression of hepatocellular 

carcinoma by up-regulating the expression of HDGF 

[46]. In an in vitro model of ischemia/reperfusion 

injury, METTL3 promotes miR-422a accumulation by 

inducing Lnc-D63785 m6A methylation [47]. METTL3 

has been reported to target and enhance NEAT1 

expression in macrophages [48]. Similarly, the m6A 

modification of LncRNA SNHG17 also enhances its 

stability and promotes lung adenocarcinoma resistance 

[49]. On the other hand, it has been reported that 

LncRNA miR4458HG binds to m6A reader IGF2BP  

to promote the stability of IGF2BP2-mediated target 

mRNA (HK2), thereby altering the physiology of human 

hepatocellular carcinoma [50]. KLF4 could increase 

m6A eraser FTO levels to decrease the m6A methylation 

of Drp1 by targeting lncRNA-ZFAS1, thus resulting in 

an inhibitory effect in IS-induced neuronal injury [51]. 

Here, we demonstrated that METTL3 acts as a “writer” 

for m6A modification and induces m6A modification 

on LncNEAT1, promoting its stability, thereby resulting 

in alleviation of ischemia/reperfusion injury. 

 
It should be noted that this study has the  

limitation. Theoretically, berberine has low solubility 

and high molecular weight, for which it could not be 

absorbed into the blood circulation in large quantities, 

and its blood-brain barrier transmission rate is not  

high [52]. Our previous series of studies demonstrated 

that berberine improves ischemic stroke by attenuating 

the neuroinflammation and promoting angiogenesis 

[25]. All these studies suggest that berberine, which 

partially crosses the blood-brain barrier, can exert direct 

neuroprotective effects in ischemic stroke. Berberine 

has been reported to remain in the gut after entering the 

body and interact with the gut microbiota. Ischemic 

stroke can change the composition of the gut microbiota 
[53]. Meanwhile, gut microbiota can modulate the 

outcome of stroke and play a role in its develop- 

ment [54]. Wang et al. found that berberine attenuated 

ischemia-reperfusion injury in mice by modulating gut 

microbiota [55]. Therefore, the neuroprotective effect of 

berberine gavage on ischemic stroke may be indirectly 

achieved by modulating the gut microbiota, and its 

specific mechanism needs to be further explored. 

 

CONCLUSIONS 
 

Our results confirm that the pharmacological activity of 

berberine in alleviating ischemic stroke is associated 

with Nampt, and reveal the associated mechanism of 

METTL3 and NEAT1 from the viewpoint of m6A 

modification. Mechanistically, after berberine adminis-

tration, METTL3 can enhance the stability of NEAT1 

via m6A modification, which in turn activates miR-377-

3p/Nampt to exert neuroprotective effect (Figure 9). 

Collectively, the present findings show that berberine 

exerts neuroprotective effects via the m6A methyl-

transferase METTL3, which regulates the NEAT1/miR-

377-3p/Nampt axis in mouse astrocytes to ameliorate 

cerebral ischemia/reperfusion injury. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Tables 

 

 

 

Supplementary Table 1. The shRNA, miR-mimic and miR-inhibitor sequences. 

Name Sequence  

sh-NC 5’-GATCCGCAGATGAAGGCACGGTCACGCTCGAGGCAGATGAAGGCACGGTCACGTTTTTG-3’ 

5’-AATTCAAAAAGCAGATGAAGGCACGGTCACGCTCGAGGCAGATGAAGGCACGGTCACGG-3’ 

sh-METTL3 5’-CACCGGACCAAGGAAGAGTGCATGACGAATCATGCACTCTTCCTTGGTCC-3’ 

5’-AAAAGGACCAAGGAAGAGTGCATGATTCGTCATGCACTCTTCCTTGGTCC-3’ 

sh-NEAT1 5’-CACCGGAGGAATCTTCCTTAGATGGCGAACCATCTAAGGAAGATTCCTCC-3’ 

5’-AAAAGGAGGAATCTTCCTTAGATGGTTCGCCATCTAAGGAAGATTCCTCC-3’ 

mmu-miR-

377-3p 

inhibitor 

ACAAAAGTTGCCTTTGTGTGAT 

NC inhibitor CAGUACUUUUGUGUAGUACAA 

NC mimic UUCUCCGAACGUGUCACGUTT 

mmu-miR-

377-3p mimic 

ATCACACAAAGGCAACTTTTGT 

 

Supplementary Table 2. Primer sequences for RT-qPCR. 

Name Sequence  

mmu-NEAT1 
F: 5’- AGGAGAAGCGGGGCTAAGTA-3′ 

R: 5’- TAGGACACTGCCCCCATGTA-3′ 

mmu-miR-377-3p 
F: 5’- AGAGGTTGCCCTTGGTGAA-3′ 

R:5’-ACAAAAGTTGCCTTTGTGTG-3′ 

mmu-β-actin 
F: 5’- CCACCATGTACCCAGGCATT-3′ 

R: 5’- CGGACTCATCGTACTCCTGC-3′ 

mmu-U6 
F: 5’-CAGCACATATACTAAAATTGGAACG-3′ 

R: 5’-ACGAATTTGCGTGTCATCC-3′ 

 

 

 

 


