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INTRODUCTION 
 

Sarcomas, originating from mesenchymal tissue, are 

highly heterogeneous malignant tumors consisting of 

over 170 subtypes [1]. Statistics show that a total of 

34,270 new sarcoma-related cases and 15,086 sarcoma-

related deaths were identified worldwide in 2020  

[2]. Sarcomas, which primarily arise from soft tissue 

(approximately 87%) and bone tissue (approximately 

13%), constitute around 1% of malignant tumors in 

adults and 15% of malignant tumors in children [1, 3]. 

The survival rate for sarcomas in adults varies between 

53% and 60% [4]. 

 

At present, the standard therapeutic schedule for 

sarcoma patients is surgery with adjuvant chemotherapy 

or radiotherapy. Despite continuous optimization of 

therapeutic schedule in recent years, 35%-45% of 

sarcoma patients developed tumor metastasis and had  

a poor prognosis [3]. Due to the tumor compensatory 
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ABSTRACT 
 

Background: Sarcomas are a type of highly heterogeneous malignant tumors originating from mesenchymal 
tissues. Necroptosis is intricately connected to the oncogenesis and progression of tumors. The main goal of 
this research is to assess the prognostic value of necroptosis-related lncRNAs (NRlncRNAs) in sarcomas and to 
develop a risk model based on NRlncRNAs to evaluate prognostic and immune status of the sarcomas.  
Methods: We screened NRlncRNAs using the gene co-expression network, developed a prognostic risk 
model of sarcomas, and then verified the model. Following that, various bioinformatics analysis algorithms 
were employed to analyze the distinct characteristics of patients of the risk model. Furthermore, the 
function and regulatory mechanism of NRlncRNA SNHG6 in sarcomas were investigated through 
osteosarcoma cell experiments, such as qRT-PCR, Western blot, CCK-8, clone formation, and transwell assay.  
Results: We successfully developed a NRlncRNAs-related prognostic risk model and screened 5 prognosis-
related NRlncRNAs, with SNGH6 being the most significant for prognosis of patients. According to results, the 
significant differences exist in prognosis, clinical characteristics, and tumor immune status among patients of 
the risk model. The experiments of osteosarcoma cells demonstrated that NRlncRNA SNHG6 knockdown 
significantly attenuated the cells’ proliferation, migration, and invasion. qRT-PCR and WB results showed that 
SNHG6 regulated AXL and AKT signaling.  
Conclusions: We have developed an innovative investigation on NRlncRNAs, which can serve as a reference 
for diagnosis, therapy, and prognosis of sarcomas. Additionally, we demonstrated that NRlncRNA SNHG6 
regulated AXL and AKT signaling in osteosarcoma cells and the proliferation, migration, and invasion of 
tumor cells. 
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mechanism, tumor heterogeneity and complex tumor 

microenvironment (TME), targeted therapy for sarcomas 

is limited to partial tumor subtypes [5]. As tumor 

research has progressed, TME has shown a notable 

impact on the progression of sarcomas, and immuno-

therapy has become a novel therapeutic choice for 

sarcomas [6, 7]. Therefore, it is particularly important to 

identify new biomarkers and understand their importance 

in TME for finding new potential therapeutic strategies 

of sarcomas and improving the prognosis of sarcoma 

patients [8]. 

 
Necroptosis, a kind of regulatory cell death, has well-

defined effector mechanisms and can be regulated  

by multiple signaling pathways [9, 10]. The regulation 

of necroptosis primarily relies on the phosphorylation 

of mixed-lineage kinase domain-like protein (MLKL) 

by receptor-interacting protein kinase-1 (RIPK1) and 

RIPK3 [11]. When phosphorylated RIPK1 and RIPK3 

form a high molecular weight complex, MLKL is 

recruited and phosphorylated to form a necrosome 

complex. Subsequently, the necrosome complex induces 

cell membrane lysis and cell necrosis, releasing pro-

inflammatory signals and activating the immune system 

[12, 13]. On the one hand, necroptosis can trigger 

adaptive immunity, which consequently hinders the 

progression of tumors. For example, necroptotic cells 

introduced ectopically into melanoma TME may 

enhance their anti-tumor immunity [14]. On the  

other hand, necroptosis can in turn produce immune 

suppressive TME, which promotes tumor growth. 

Necroptotic cells in pancreatic cancer can induce  

the release of chemokine attractant CXCL1 and the 

transduction of Mincle signaling, causing macrophage-

induced immune suppression, forming an immuno-

suppressive TME, and promoting migration and 

invasion of cancer cell [15]. Thus, necroptosis appears 

to have complex context-dependent tumor suppres- 

sive or promotive effects. Furthermore, despite the 

extensive investigation into the molecular mechanisms 

of necroptosis, there remains a lack of complete 

understanding regarding the precise control and role of 

necroptosis in the development and progression of 

sarcomas. Therefore, it is imperative to thoroughly 

investigate the influence of necroptosis on sarcomas. 

 
LncRNAs can be widely found in all types of  

tumors. Despite their inability to code proteins, 

lncRNAs contribute to the regulation of various tumor 

genes [16]. According to studies, lncRNAs have been 

found to be linked with necroptosis. For example, 

lncRNA PVT1 promotes hepatocellular necroptosis  

by increasing ZBP1 promoter methylation [17], and 

lncRNA 107053293 regulates necroptosis in chicken 

tracheal cells by antagonizing miR-148a-3p [18]. 

Furthermore, several evidences suggest that lncRNA 

may be important in the diagnosis and prognosis of 

tumors and may serve as a new target for future cancer 

treatment [19, 20]. Nonetheless, the predictive value 

and potential function of lncRNA on necroptosis of 

sarcoma cells are still incompletely well known. 

Therefore, it is imperative to thoroughly examine the 

association between NRlncRNAs and the sarcoma 

prognosis, along with their connection to the tumor 

immune microenvironment. 

 

Through an extensive bioinformatics analysis that 

combines genomics and clinical data, we have created  

a risk model of sarcomas using NRlncRNAs. Potential 

values of the model, in terms of clinical characteristics, 

differentially expressed genes, pathways and immune 

cell infiltration, were also explored. Then, we validated 

the NRlncRNA SNHG6 in osteosarcoma cells. Overall, 

the diagnosis and treatment of sarcomas may be 

enlightened by this study. 

 

MATERIALS AND METHODS 
 

Data collection 

 

The data of TCGA-SARC were downloaded from 

UCSC Xena [21]. A grand total of 256 samples were 

collected, comprising of 158 samples that were alive 

and 98 samples that were deceased. 601, 159, 8 and 45 

necroptosis-related mRNAs were obtained respectively 

by searching the keyword “necroptosis” in GeneCards, 

Kyoto Encyclopedia of Genes and Genomes (KEGG), 

Molecular Signatures Database (MSigDB) and Gene 

Ontology (GO) (Supplementary Table 1) [22–25]. Next, 

we downloaded the GEO datasets: GSE39057 [26], 

GSE39055 [26], GSE17674 [27] along with the clinical 

data. These datasets were merged to create a separate 

external dataset for the purpose of validating the risk 

model. This external dataset consisted of 48 alive 

samples and 38 dead samples. The data of BOCA-FR 

were downloaded from the ICGC [28], while the data of 

TARGET-OS were downloaded from the UCSC Xena. 

The aforementioned two datasets were merged to create 

another separate external dataset, comprising of 86 alive 

samples and 56 dead samples. 

 

Identification of NRlncRNAs 

 

The extracted 712 necrosis-related mRNAs were paired 

with all the lncRNA expression profile of TCGA-SARC 

by Pearson correlation test to obtain significantly related 

mRNA-lncRNA pairs. Cytoscape software [29] was 

adopted to develop a necroptosis-related co-expression 

network, in which the lncRNA was NRlncRNAs. 

Additionally, the R package “ggplot2” and “pheatmap” 

were utilized to draw the mRNA-lncRNA correlation 

heatmap and the NRlncRNA expression heatmap. 
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Construction of a prognostic predictive risk model 

 

TCGA-SARC clinical characteristics were analyzed  

by LASSO-COX to identify prognosis-related risk 

genes. The best lambda value was selected, and only 

the genes whose coefficients are not zero were retained 

as prognosis-related lncRNAs after regression. The 

risk model was constructed by selecting risk co-

efficients corresponding to prognosis-related lncRNAs. 

Then, the risk scores of patients were calculated, and 

the R package “survival” was utilized to assess the 

ideal grouping threshold of the risk scores of patients. 

The KM survival analysis was conducted on patients 

in high- and low-risk groups using the R package 

“survminer”, which enabled the calculation of prognosis 

time the difference between the two groups. The  

risk model’s efficiency was assessed by utilizing the  

R package “timeROC”. R package “ggplot2” and 

“pheatmap” were utilized to draw the triple plot of 

prognostic risk based on clinical information of 

patients. Subsequently, based on the grouping threshold 

of the training set, we grouped two external inde-

pendent datasets to verify the accuracy of the risk 

model. 

 

GSEA and functional annotation 

 

The R package “org.Hs.eg.db” and “clusterprofiler” 

were employed to perform GO functional annotation 

and KEGG pathway enrichment for the mRNA that 

showed significant association with the NRlncRNAs in 

the co-expression network. Then, GSEA was conducted 

in the risk model of NRlncRNAs.  

 

Analysis of differences in clinical characteristics 

 

The R package “survival” was utilized to perform 

univariate and multifactor Cox regression analyses  

on the risk score and clinical characteristics of patients 

in TCGA-SARC data. Additionally, the R package 

“forestplot” was employed to create a forest plot 

illustrating the outcomes. The R packages “rms” and 

“Hmisc” were utilized to construct the nomogram and 

calibration curve. R package “pheatmap” and “ggpubr” 

was utilized to draw the heatmap and box plot between 

risk genes and clinical characteristics. 

 

Analyses of immune status and drug susceptibility in 

the risk model 

 

To analyze immune status and drug susceptibility in  

the risk model, R package “ggpubr” was used to draw 

immune checkpoint box plot, and “ESTIMATE”, 
“ssGSEA”, “CIBERSORT” and “oncoPredict” were 

adopted to evaluate immune cell infiltration and drug 

susceptibility, respectively. 

Transfection and culture of cells  

 

In a humidified incubator with 5% CO2 at 37° C, 

osteosarcoma cells 143B and MG63 cells were grown in 

DMEM (Gibco, NY, USA) with 10% fetal bovine serum 

(Gibco, NY, USA) and 1% penicillin-streptomycin 

solution. RiboFECT™ CP Transfection Kit (RiboBio, 

Guangzhou, China) was used to transfect 143B and 

MG63 cells with siRNAs (RiboBio, Guangzhou, China). 

Then, transfected 143B and MG63 cells were incubated 

for 48 hours to isolate RNA and proteins. The target 

sequences of siRNA were documented in Supplementary 

Table 2. 

 

Analyses of qRT-PCR and Western blot (WB) 

 

RNA was isolated utilizing Trizol reagent (Invitrogen, 

CA, USA), and cDNA was synthesized using the 

PrimeScript RT reagent Kit (Takara, Nanjing, China). 

The SYBR Premix Ex Taq II (Takara, Nanjing, China) 

was utilized for qRT-PCR, and the 2-ΔΔCt method was 

employed for relative quantification. The sequences of 

primers were documented in Supplementary Table 2. 

Proteins were isolated from transfected 143B and MG63 

cells using RIPA lysis solution (P0013B, Beyotime, 

China) and a mixture of protease and phosphatase inhi-

bitors (P1045, Beyotime, China). Protein samples were 

separated using SDS-PAGE gels (P0012AC, Beyotime, 

China) and PVDF membrane (Merck Millipore, MA, 

USA) was utilized to transfer protein. The membrane 

was obstructed in a solution containing 5% BSA at 

room temperature for 1 hours. After overnight usage  

of the primary antibody incubation membrane at 4° C, 

HRP-conjugated anti-rabbit secondary antibody (1:5000; 

7074P2; CST, USA) was used to incubate the membrane 

at room temperature for 1 hour. The antibodies were 

used: AXL (1:1,000; 8661S; CST), phospho-AXL 

(1:1,000; 5724S; CST), AKT (1:1,000; 4691S; CST), 

phospho-AKT (1:2,000; 4060S; CST), and GAPDH 

(1:1,000; 2118S; CST). 

 

CCK-8, clone formation, migration and invasion 

assays 

 

Osteosarcoma cells transfected with siRNA were 

inoculated into 96 well plates at a density of 1000 cells 

per well. At the specified time intervals, 10ul of Cell 

Counting Kit-8 (KGA317, KeyGEN BioTECH, China) 

were introduced. Following the 2-hour incubation at 37° 

C in a cell incubator containing 5% CO2, the absorbance 

at 450nm was determined using the multifunctional 

enzyme marker. The osteosarcoma cells that were 

transfected were inoculated in a 6-well plate with 500 
cells per well and then incubated 2 weeks. Next, the cell 

colonies were treated with 0.4% paraformaldehyde for 

fixation and then stained using 0.2% crystalline violet. 
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Subsequently, the number of colonies with more than 

50 cells was counted. Serum-free DNEM was used to 

prepare suspensions of osteosarcoma cells that were 

transfected. The suspension containing 5×104 cells were 

inoculated into transwell chambers (Corning, NY, USA) 

precoated or uncoated with Matrigel solution. Then, 600 

ul complete culture medium containing 20% FBS were 

added into the lower chamber. The cells were cultured 

for 48 hours. After that, the chambers were treated with 

0.4% paraformaldehyde and subsequently stained using 

0.2% crystalline violet. Cells that had invaded or migra-

ted into the lower chamber were counted and imaged. 

 
Statistical analysis 

 

R (version 4.3.0) was utilized for data calculations and 

statistical analyses. The independent t-test was utilized 

to estimate the statistical significance of variables 

following a normal distribution, while the differences 

between variables with an abnormal distribution were 

analyzed utilizing the Wilcoxon rank sum test. Statistical 

significance was determined by considering P < 0.05. 

 

Data availability  

 

The public datasets analyzed in this study can be 

found at https://ocg.cancer.gov/ and https://www. 

ncbi.nlm.nih.gov/gds/. 

 

RESULTS 
 

Figure 1 shows the flow chart of this study. 
 

Identification of NRlncRNAs 

 

Co-expression network of genes serves as a  

valuable approach for functional gene annotation and 

identification of unknown functional genes by linking 

them with biological processes. Hence, constructing 

necroptosis-related mRNA-lncRNA co-expression 

network can facilitate the identification of NRlncRNAs. 

At first, we searched in the GeneCards, MSigDB, 

KEGG and GO databases to obtain 721 necroptosis-

related mRNAs (Figure 2A). Then, 64 mRNA- 

lncRNA co-expression pairs were obtained after 721 

 

 
 

Figure 1. Flow chart. 

https://ocg.cancer.gov/
https://www.ncbi.nlm.nih.gov/gds/
https://www.ncbi.nlm.nih.gov/gds/
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Figure 2. Identification of NRlncRNAs. (A) Necroptosis-related mRNA from Venn diagram. (B) Co-expression network of necroptosis-
related mRNA-lncRNA. The blue part represents 42 lncRNAs, and the red part represents 27 mRNAs. (C) Heatmap of necroptosis-related 
mRNA-lncRNA correlation (* P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001). (D) Heatmap of NRlncRNA expression. (E) The top 5 results for GO 
enrichment of necroptosis-related mRNAs. (F) The top 20 results for KEGG enrichment of necroptosis-related mRNAs. 
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necroptosis-related mRNAs were interacted with all  

the lncRNAs of TCGA-SARC data (Figure 2B, 2C). 

LncRNAs in the co-expression network were highly 

correlated with necroptosis-related mRNAs, namely,  

42 NRlncRNAs were screened by mRNA-lncRNA  

co-expression network. The heatmap of NRlncRNA 

expression also showed the differential trend in lncRNA 

expression (Figure 2D). We conducted GO and KEGG 

enrichment analysis by extracting 27 necroptosis-related 

mRNAs from the co-expression network, aiming to 

further expose the biological differences and describe 

the biological roles of NRlncRNAs in sarcomas (Figure 

2E, 2F and Supplementary Table 3). The 5 most 

important terms from the GO and KEGG enrichment 

analysis were all associated with immune processes, 

indicating that sarcomas NRlncRNAs may have bio-

logical functions related to immune regulation. 

 

Construction of NRlncRNAs-related prognostic risk 

model  

 

In order to further evaluate NRlncRNAs that are related 

to prognosis, we developed a predictive model for the 

prognosis of NRlncRNAs using 42 selected NRlncRNAs 

and survival data of patients. Initially, the ideal lambda 

value was calculated using LASSO-COX (Figure 3A, 

3B), followed by the retention of 5 lncRNAs associated 

with prognosis (Figure 3C). Then, we extracted risk 

coefficients associated with the 5 prognosis-related 

lncRNAs, which were used to calculate the risk score 

and develop a risk model. Risk score = -0.0365 * 

LINC00861 + -0.0214 * LINC00892 + 0.0191 * CTD-

2510F5.4 + 0.0142 * LEF1-AS1 + 0.1909 * SNHG6. 

By utilizing the surv_cutpoint function, we identified 

the most suitable threshold for patients’ risk scores, 

subsequently categorizing them into groups of high and 

low risk (cut-off value = 1.109737). The patients were 

compared using KM analysis to assess overall survival 

(OS), revealing a significant difference in the result  

(P < 0.0001) (Figure 3D). We graphed ROC curves  

to confirm the model’s predictive ability. The result 

showed that the risk model is reliable, as indicated by 

all the AUC values being above 0.5 (Figure 3E). In 

addition, the triple risk plot indicated that among the 5 

prognosis-related lncRNAs, the low-risk group exhibited 

a tendency towards high expression of LINC00861and 

LINC00892 whereas the high-risk group showed a 

tendency towards high expression of CTD-2510F5.4, 

LEF1-AS1 and SNHG6 (Figure 3F). Afterwards, we 

verified the risk model in two external cohorts to assess 

the accuracy of the model. The first cohort integrated 

three datasets of GSE39057, GSE39055 and GSE17674. 

In the first cohort, solely SNHG6 in the risk model was 
incorporated, and patients were divided into high- and 

low-risk groups based on risk scores. The two groups 

were validated for difference in OS using KM analysis, 

which revealed a significant difference (P = 0.005) 

(Figure 4A). The results from the ROC curves indicated 

that the model had good predictive ability, as evidenced 

by all the AUC values being above 0.5 (Figure 4B). The 

triple risk plot indicated that SNHG6 exhibited a 

tendency towards elevated expression in the high-risk 

group (Figure 4C). The second cohort integrated BOCA-

FR and TARGET-OS. The KM analysis revealed a 

noteworthy difference in OS between the two groups (P 

= 0.012). All the AUC values for the model were above 

0.5 (Figure 4E). Based on the triple risk plot, similarly, 

SNHG6 exhibited a tendency towards high expression 

in the high-risk group (Figure 4F). 

 

Prognostic analysis of sarcoma patients 

 

To assess the influence of clinical characteristics  

on the prognosis of sarcoma patients and establish 

whether the risk score acts as an independent risk  

factor, we conducted univariate and multivariate Cox 

regression analyses on various clinical characteristics 

and risk score (Supplementary Table 4). The forest  

plot demonstrated the risk score as independence risk 

factor for patients’ prognosis (Figure 5A, 5B). Next, we 

utilized a nomogram to visualize the influence of each 

clinical characteristics on the outcome variable. The 

outcome revealed that the risk model had the greatest 

predictive capacity for both 1- and 2-year survival 

(Figure 5C). The nomogram result was further sup-

ported by the calibration curve (Figure 5D). To sum up, 

our prognostic model’s score is an excellent predictor of 

sarcoma patients’ prognosis, and it is independent of 

multiple clinical characteristics. 

 

Correlation analysis between clinical characteristics 

and risk score 

 

In order to investigate clinical characteristics in risk 

model, we selected clinical information of patients, 

including gender, age, race, histologic subtype, metastatic 

status, OS status, disease type, recurrence, and treatment 

outcome, to draw baseline data chart (Supplementary 

Table 5). The result showed that the gender group 

revealed significant difference between males and 

females (Figure 6A). In the age group, it was evident 

that the risk score of patients below 40 years old was 

considerably greater compared to the other groups, yet 

the difference in risk score did not show statistical 

significance (Figure 6B). Figure 6C shows that there 

were no significant differences in the race group, 

suggesting that the clinical prognosis of sarcomas  

may not be influenced by race. In histologic subtype, 

significant differences were shown in risk score of  
well differentiated sarcomas and conventional and 

poorly differentiated sarcomas (Figure 6D). Moreover, 

significant differences existed between the groups with 
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metastasis and without metastasis, and the  

metastatic group exhibited a higher risk score, 

indicating that the risk model has the capability to 

forecast sarcoma metastasis (Figure 6E). Significant 

difference in risk score was also observed among  

the OS status group (Figure 6F). To further explore  

the specificity of risk genes among different clinical 

characteristics, we analyzed 4 clinical  

characteristics: disease type, treatment outcome,  

metastatic status and recurrence. The visualized  

heatmaps showed that SNHG6 had the highest  

expression level among 5 risk genes of sarcoma  

patients with any disease types and treatment outcomes,  

whereas LNC00892 exhibited the lowest expression 

 

 
 

Figure 3. Construction of the risk model. (A) Lasso regression curve. This plot illustrated the screening of the Lasso regression for the 42 

gene features. (B) Lambda value selection curve. The best lambda values of regression model were selected using this plot. (C) An analysis of 
prognostic risk genes by the forest plot. (D) The survival curve of patients. (E) ROC curves for the risk model. (F) The triple risk plot. The first 
diagram was the predicted risk values for each patient. The second diagram showed the relationship between the patients ranked by the 
predicted risk values and the survival status. The third diagram illustrated the relationship between lncRNA expressions (* P ≤ 0.05; ** P ≤ 
0.01; *** P ≤ 0.001; ns, no significance). 
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level (Figure 6G, 6H). In the metastatic group, SNHG6 

and CTD-2510F5.4 exhibited elevated expression levels 

compared to the non-metastatic group, whereas LEF1-

AS1, LINC00861, and LINC00892 showed the opposite 

trend (Figure 6I). LINC00892 of recurrent patients 

showed a trend of low expression compared to non-

recurrent patients (Figure 6J). All of these results reveal 

that the risk genes show different expression trends in 

sarcoma patients with different clinical characteristics and 

prognostic outcomes, which demonstrates the validity of 

screened risk genes. 

Analysis of immune status of the risk model 

 

We performed GSEA on the patients of the risk  

model to uncover the differences in molecular  

functions. According to GSEA results, the low-risk  

group primarily relates to immune-related biological  

functions (Figure 7A–7D and Supplementary Table  

6). Those findings suggested that immune status of  

tumors may serve as an important potential factor that  

affects prognosis of patients. Therefore, we further con- 

ducted subsequent tumor immune-related analysis. The

 

 
 

Figure 4. Verification of the risk model. (A) Survival curves of patients in the GEO cohort. (B) ROC curves in the GEO cohort. (C) The triple 
risk plot in the GEO cohort (* P ≤ 0.05; ** P ≤ 0.01; *** P ≤ 0.001; ns, no significance). (D) Survival curves of patients in the ICGC and TARGET 
cohorts. (E) ROC curves in the ICGC and TARGET cohorts. (F) The triple risk plot in the ICGC and TARGET cohorts (* P ≤ 0.05; ** P ≤ 0.01; *** P 
≤ 0.001; ns, no significance).  
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analysis of immune checkpoints (ICPs) indicated 

differences in ICPs between the two risk groups  

of patients (Figure 8A–8E). According to the 

ESTIMATE algorithm, patients classified as low-risk 

exhibited elevated immune, stromal, and ESTIMATE 

scores, while demonstrating lower tumor purity scores 

compared to high-risk patients (Figure 8F–8I). 

Following this, we calculated the correlation between 

risk score and immune cells using the ssGSEA  

and CIBERSORT algorithms. The result showed a 

negative correlation between risk score and most 

immune cells (Figure 9A, 9B). This means that 

patients in the low-risk group have more immune  

cell infiltration and better immunotherapy outcomes. 

Additionally, we also analyzed the association between 

the expression level of risk genes and the immune 

cells. The findings indicated that the risk genes were 

also linked to various immune cells (Figure 9C–9G). 

Furthermore, we examined the drug susceptibility of 

the risk model (Supplementary Figure 1A–1L).  

The results revealed significant differences in drug 

susceptibility across various drugs among the two  

risk groups of patients. Based on the above-mentioned 

findings, these results demonstrate significant dif-

ferences in the immune environment between the two 

risk groups of patients, and further provide evidence 

of the association between the risk model and tumor 

immunity. 

Verification of in vitro experiment about the function 

of key gene SNHG6 in osteosarcoma cells 

 

In order to investigate the regulation of NRlncRNAs on 

sarcomas, we explored the roles of NRlncRNA SNHG6 

in osteosarcoma cell model. Firstly, we constructed 

three siRNA sequences (si-SNHG6-1, si-SNHG6-2  

and si-SNHG6-3) targeting SNHG6 to attenuate the 

expression of SNHG6 and validated the transfection 

efficiency by qRT-PCR. Based on the findings, si-

SNHG6-1 and si-SNHG6-2, which exhibited the most 

effective reduction in osteosarcoma cells 143B and 

MG63, were selected for further experiments (Figure 

10A, 10B; *** P < 0.001). Next, we tested the viability 

of osteosarcoma cells with SNHG6 knockdown using 

CCK8 assay, finding that the viability was significantly 

decreased (Figure 10C, 10D; * P < 0.05). Furthermore, 

the colony formation assay demonstrated reduction in 

the colony-forming abilities of 143B and MG63 cells 

after SNHG6 knockdown (Figure 10E, 10F; *** P < 

0.001). In order to further investigate the impact of 

SNHG6 on the migration and invasion of osteosarcoma 

cells, we performed transwell assay. After SNHG6 

knockdown, the migration and invasion capacities of 

osteosarcoma cells were markedly reduced according  

to the results (Figure 10G, 10H; *** P < 0.001).  

These findings indicated that inhibition of SNHG6 

considerably slowed the proliferation, migration, and 

 

 
 

Figure 5. Construction of a nomogram incorporating clinical characteristics. (A, B) Forest plots displaying clinical characteristics and 

risk scores. (C) Nomogram of sarcoma patients. (D) Calibration curve for the nomogram. 
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Figure 6. Analysis of clinical characteristics in risk model. (A) Box plot displaying the gender group and risk score. (B) Box plot 
displaying the age group and risk score. (C) Box plot displaying the race group and risk score. (D) Box plot displaying the histologic subtype 
group and risk score. (E) Box plot displaying the metastatic status group and risk score. (F) Box plot displaying the OS status group and risk 
score. (G, H) Heatmaps of correlation between risk genes and disease type and treatment outcome. (I, J) Box plots of correlation between risk 
genes and metastatic status and recurrence. (* P ≤ 0.05; ** P ≤ 0.01; *** P ≤ 0.001; ns, no significance). 
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invasion of osteosarcoma cells. The gene AXL, 

belonging to the Tyro3-Axl-Mer (TAM) receptor 

tyrosine kinase subfamily, has the ability to enhance 

tumor advancement and serve as an indicator of 

unfavorable prognosis [30]. In order to investigate the 

molecular regulatory mechanism of SNHG6, the 

connection between SNHG6 and AXL was explored 

using qRT-PCR and WB. Surprisingly, attenuation of 

SNHG6 in osteosarcoma cells reduced the expression  

of AXL and p-AXL, and WB results showed that  

the phosphorylation of AKT was also affected (Figure 

10I–10N; ** P < 0.01). Taken together, NRlncRNA 

SNHG6 may be of great significance in osteosarcoma 

cell necroptosis through SNHG6/AXL/AKT signaling 

axis. 
 

DISCUSSION 
 

The clinical characteristics and therapies of sarcomas 

vary greatly depending on different tissue origins [31]. 

With continuous in-depth study, the understanding of 

clinical, genomic, and transcriptome characteristics in 

several subtypes of sarcomas continues to improve, 

which has given some support to the diagnosis and 

treatment of sarcomas [32, 33]. Nevertheless, the 

absence of distinct genetic characteristics hinders the 

identification of the majority of sarcoma subtypes, 

leading to numerous difficulties in the precise treatment 

of sarcomas [32]. Recent studies have shown that 

immunotherapy has been proven to treat various 

malignant tumors, indicating that sarcomas could also 

benefit from the therapy targeting the immune system 

and TME [34, 35]. A recent study shows that the 

combination therapy of durvalumab and tremlimumab 

increased the concentration of immune cells associa- 

ted with tumors in sarcomas, thus alleviating the 

progression of sarcomas [36]. Another clinical trial 

report confirmed the feasibility of combining axitinib 

and pembrolizumab for immunotherapy in advanced 

sarcoma patients [37]. Unfortunately, many patients 
 

 

Figure 7. GSEA results of risk model. (A, B) Top 10 results for KEGG enrichment of patients in the risk model. (C, D) Top 10 results for GO 

enrichment of patients in the risk model. 
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were resistant to immunotherapies, innately or 

acquiredly, with one of the reasons being the lack of 

immune cell infiltration leading to form so-called 

“cold” tumors [38, 39]. Therefore, the activation or 

recruitment of immune cells may be a new direction  

for tumor immunotherapy. According to research, cell 

death can impact cell types and immune mechanisms in 

TME [10]. Necroptosis can affect tumor progression by 

regulating immune responses, and targeting necroptosis 

in tumors can profoundly affect immune cells in TME 

and the tumors’ response to immunotherapy [38]. 

Additionally, most sarcomas have a “immune cold” 

TME with poor response to immune checkpoint inhi-

bitors [40]. In a word, exploration of the relationship 

between necroptosis markers and TME in sarcomas will 

help optimize subsequent immunotherapy. According to 

research, lncRNAs have the potential to forecast the 

prognosis of malignant tumors. For example, lncRNA 

MALAT1 was a valuable biomarker for the prognosis 

of osteosarcoma [41]. Ferroptosis-related lncRNA has 

the ability to forecast prognosis of pancreatic ductal 

adenocarcinoma [42]. To this end, we developed novel 

predictive risk model of NRlncRNAs in sarcomas and 

explored the value of NRlncRNAs as biomarkers in 

sarcomas and their role in TME.  

 

In this study, we successfully developed a NRlncRNAs-

related prognostic risk model and validated its precision 

through training and validation sets. Both univariate and 

multivariate Cox regression analyses further confirmed  

 

 
 

Figure 8. Investigation of ICPs and ESTIMATE score in risk model. (A) Analysis of immune checkpoint genes in the risk model (* P ≤ 
0.05; ** P ≤ 0.01; *** P ≤ 0.001; ns, no significance). (B–E) Survival analysis of immune checkpoint genes in the risk model. (F–I) Analysis of 
ESTIMATE score, immune score, stromal score and tumor purity score in the risk model (*** P ≤ 0.001). 
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Figure 9. Analysis of immune cell infiltration in the risk model. (A) The correlation between risk score and immune cells. (B) Box plot 
displaying the differences in immune cell infiltration levels of risk model (* P ≤ 0.05; ** P ≤ 0.01; *** P ≤ 0.001; ns, no significance). (C–G) Box 
plot displaying the differences in immune cell infiltration levels of risk genes (* P ≤ 0.05, ** P ≤ 0.01; *** P ≤ 0.001; ns, no significance). 
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Figure 10. Verification of in vitro experiment about the function of the key gene SNHG6 in osteosarcoma cells. (A, B) The levels 
of SNHG6 mRNA in 143B and MG63 cells that were transfected with si-SNHG6 were measured using qRT-PCR (*** P ≤ 0.001). (C, D) The 
viability of 143B and MG63 cells with SNHG6 knockdown was found to be reduced according to the CCK-8 assay (* P ≤ 0.05). (E, F) The ability 
of 143B and MG63 cells to form colonies was significantly reduced after SNHG6 knockdown (*** P ≤ 0.001). (G, H) The migration and invasion 
of 143B and MG63 cells were significantly inhibited after SNHG6 knockdown (*** P ≤ 0.001). (I) The impact of SNHG6 knockdown on the AXL 
mRNA level in 143B cells was assessed using qRT-PCR (*** P ≤ 0.001). (J) WB analyzed the molecular weight of AXL and p-AXL in 143B cell 
with SNHG6 knockdown. (K) WB analyzed the molecular weight of AKT and p-AKT in 143B cell with SNHG6 knockdown. (L) The impact of 
SNHG6 knockdown on the AXL mRNA level in MG63 cells was assessed using qRT-PCR (*** P ≤ 0.001). (M) WB analyzed the molecular weight 
of AXL and p-AXL in MG63 cell with SNHG6 knockdown. (N) WB analyzed the molecular weight of AKT and p-AKT in MG63 cell with SNHG6 
knockdown. 
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that the risk score was an independent prognostic factor. 

Furthermore, in order to show the predictive capability 

of the risk model regarding patients’ clinical charac-

teristics, we developed a nomogram, which provided 

important clues for evaluating patients’ prognosis. The 

analysis of differences in clinical characteristics showed 

a remarkable correlation between risk score and patient’s 

metastatic status and OS. NRlncRNA SNHG6 revealed 

the highest expression in metastasis and treatment 

outcome. These findings indicate that the risk model  

we have developed has relatively stable predictive 

performance and universal applicability. Moreover, the 

risk gene SNHG6 in the model may be a potential and 

reliable biomarker that affects sarcoma metastasis and 

prognosis. 

 
Necroptosis-related factors demonstrated significant 

value in predicting the prognosis, tumor immune inter-

action, and treatment response of sarcomas [43]. There 

are also studies indicating that necroptosis played an 

anti-tumor or pro-tumor role during the progression of 

sarcomas, which may be mainly related to the changes 

in TME caused by necroptosis [44, 45]. Thus, we 

analyzed the relationship between NRlncRNAs-related 

risk model and TME. The GSEA results indicated that 

many immune-related pathways were enriched in the 

low-risk group. This result implies the existence of 

potential immune response mechanisms in the risk 

model of NRlncRNAs. Next, ICPs differential analysis 

and survival analysis also suggested that our risk model 

provided a certain reference for sarcoma immunotherapy. 

Research has shown that in most sarcomas, the number 

of macrophages exceeded that of lymphocytes, and the 

number of M2 like macrophages exceeded that of M1 

like macrophages [46]. Our immune cell infiltration 

analysis of risk model also yielded similar results. 

Afterwards, we assessed the susceptibility of potential 

anti-cancer medications in two risk groups of patients. 

In the low-risk group, BI-2536, Daporinad, Sepan-

tronium bromide, UMI-77, Telomerase Inhibitor IX, 

and Pyridostatin exhibited superior responses according 

to the findings. On the other hand, the high-risk group 

exhibited improved responses with AZD6482, Entinostat, 

Mitoxantrone, Ribociclib, RVX-208, and Venetoclax. 

To sum up, this research showed that NRlncRNAs  

may impact the prognosis of sarcomas by affecting the 

immune microenvironment. 

 
We screened 5 prognosis-related NRlncRNAs in the 

risk model, CTD-2510F5.4, LEF1-AS1, LINC00861, 

LINC00892, and SNHG6, among which SNHG6 

exhibited the strongest correlation with patients’ OS. 

SNHG6 has been proven to be involved in regulating 

the progression of various types of tumors and to 

regulate multiple signaling pathways such as mTOR, 

PI3K/AKT, NF-κB, etc. [47]. For instance, SNHG6 was 

an oncogene involved in the progression of hepato-

cellular carcinoma, and loss of SNHG6 can inhibit liver 

cancer growth by inhibiting cholesterol biosynthesis 

[48]. SNHG6 regulates the proliferation and migration 

of non-small cell lung cancer [49]. SNHG6 regulated 

the progression of glioma through upregulation of 

Notch1, Sox2, and EMT [50]. Nevertheless, the function 

of SNHG6 as a necroptotic gene in sarcoma has not yet 

been elucidated. In consequence, we explored the 

biological behavior of SNHG6 by constructing the 

osteosarcoma cell model, and the results show that 

SNHG6 regulates the progression of osteosarcoma  

cells. To further explore the molecular mechanism of 

SNHG6, we validated the correlation between SNHG6 

and AXL in osteosarcoma cells. The previous research 

has shown that lncRNA can regulate the progression  

of osteosarcoma through AXL [51]. Findings of this 

research indicated that the expression of AXL is directly 

associated with SHNG6. Therefore, SNHG6 may 

regulate the proliferation, migration, and invasion of 

osteosarcoma cells through AXL. Research has shown 

that AXL has the ability to facilitate the progression of 

osteosarcoma through the regulation of the PI3K/AKT 

signaling [52]. Moreover, previous reports have shown 

that AXL was correlated with necroptosis and inhibition 

of PI3K/AKT signaling can induce cell necroptosis [53, 

54]. Therefore, we validated the correlation between 

SNHG6 and the key molecule AKT in the PI3K/ 

AKT signaling, and the finding showed that SNHG6 

regulated the expression of p-AKT. In summary, based 

on preliminary exploration of the molecular mechanism 

of NRlncRNA SNHG6, we hypothesize that SNHG6 

could potentially activate the PI3K/AKT signaling 

through regulating AXL and may hinder the necroptosis 

process in osteosarcoma cells, ultimately leading to the 

enhancement of proliferation, migration, and invasion in 

osteosarcoma.  

 

Furthermore, this study also has certain limitations. First, 

due to incomplete clinical information in the publicly 

available data of sarcomas, some clinical features cannot 

be analyzed. Second, although our results implied  

a correlation between the risk model and immune 

mechanisms, further experimental evidences are needed. 

Last, in this study, the molecular mechanism of the risk 

model requires more in-depth mechanism experiments 

to explore. 

 

CONCLUSIONS 
 

This study constructed a novel NRlncRNA signature that 

can accurately predict sarcoma outcomes. Furthermore, 

we verified the accuracy of the risk model in two large 

cohorts and evaluated the prognosis of sarcomas by this 

model, as well as confirmed the biological behaviors 

and downstream regulatory mechanism of NRlncRNA 
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SNHG6 in the osteosarcoma cells lines. In summary, this 

study provides new insights for predicting the prognosis 

and individualized treatment of sarcomas. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. (A–L) Analysis of drug susceptibility in risk model. (A) BI−2536, (B) Daporinad, (C) Sepantronium bromide,  
(D) UMI−77, (E) Telomerase Inhibitor IX, (F) Pyridostatin, (G) AZD6482, (H) Entinostat, (I) Mitoxantrone, (J) Ribociclib, (K) RVX−208, (L) 
Venetoclax.  
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Supplementary Tables 
 

 

Supplementary Table 1. Necroptosis-related genes. 

 Gene Total 

GeneCards 

RIPK1,MLKL,RIPK3,ZBP1,CASP8,TNF,CYLD,ITPK1,IPMK,MAP3K7,TRPM7,FADD,PELI1,PGL

YRP1,SPATA2,CASP6,TP53,TNFRSF1A,TNFAIP3,UCHL1,SIRT3,TNIP1,STING1,SERTAD1,TRA

F2,CFLAR,MAPK14,HMGB1,FAS,BIRC2,AIFM1,KLHDC10,GSK3B,XIAP,MYC,TNIP3,GJB1,DN

M1L,PTGES3,BRD4,RB1,SIRT2,DAPK1,FKBP1A,MIR425,EZH2,NFE2L2,CD274,CHMP4B,CXC

L5,MIR29B1,BCL2,AXL,MERTK,TYRO3,SIRT6,NAT2,SLC39A7,USP22,SFTPA1,PANX1,FLOT1,

FLOT2,PDCD6IP,DIABLO,FASN,CDK9,TIMM50,SLC25A37,PPP1R3G,MIR7-

1,NFKBIA,AURKC,NGFR,FMR1,GNLY,PARP1,HTRA2,HSPA5,PRKAA2,PRKAA1,PITPNA,TRA

F5,METTL3,FNDC4,FNDC5,FASLG,TXN,RALBP1,TP53I3,PRKN,GSDMD,HSP90AA1,STUB1,T

NFSF10,CDC37,NFKB1,RELA,TRPC6,SIRT5,MIR21,TNFRSF10B,AURKA,MYH9,CASP10,PLK1

,SQSTM1,TNFRSF10A,SOAT1,HGF,SRC,ANXA1,FPR1,CASP2,MIF,KL,TNFRSF21,BCL2L1,BMI

1,BBC3,AVEN,ZNF7,PTEN,ESR2,GSK3A,C5,SP1,EGR1,C7,C9,C6,ATG5,CD74,NOX4,TNFSF12,

MKRN1,RCN1,UHRF1,AIFM2,SGK1,PAK1,CDC7,CERK,CTSB,CD40LG,OGT,BID,IFNB1,ID1,M

IR155,TLR3,KIAA1191,TRADD,TP63,IL1A,PADI4,MIR22,MIR221,MIR214,MIR101-

1,MIR485,MIR101-

2,CTSD,CLEC7A,OTULIN,STAT3,HPRT1,FAP,TRIM24,CHL1,PGAM5,TGFBR1,CDKN2A,ACVR

1B,PYGM,CCL2,MEFV,DPEP1,AIM2,UBR2,CHMP1A,GPX4,LAMP2,MPRIP,MTOR,BRAF,AFP,A

CHE,NFAT5,VIL1,CXCL1,SHARPIN,MAPK1,CBL,GSN,TBK1,MAPK8,RARG,CTSH,CTSL,CTSS

,TNFRSF25,DSTYK,RNF31,IKBKB,CHUK,BUB1B,IRAK1,MAPK3,TAB2,EIF2AK3,NQO1,HSPA

8,IKBKG,BDNF,BIRC3,XBP1,BECN1,TICAM1,SOX17,HSPA4,TAB1,BNIP3,RBCK1,UBC,TAB3,

AGFG1,EIF2A,TNIP2,MIB2,H1-

5,DIRAS3,C20orf204,JAK1,EGFR,FLT3,IDH2,IDH1,HMOX1,MMP13,NPM1,G6PD,GJA1,TSC2,V

IM,CASP1,CAD,DRD2,ATP2A1,KRT18,RPS19,TNNT2,TPM1,EPAS1,APC,AHR,ACTB,LRP1,VCP

,YWHAE,YWHAG,LEF1,NOD2,PIKFYVE,EEF2,BAX,MAPKAPK2,PRDX1,KIF11,SLC16A1,KR

T8,KRT5,KRT1,KRT14,NLRP3,HIF1A,HSP90AB1,HSPD1,HSPA9,PINK1,RPL5,TNFRSF1B,TPM3

,TRAF3,SLC25A13,BAP1,DDX3X,RANBP2,RPL11,PRPS1,SLC25A1,MYO6,FLNC,HNRNPA2B1,

HNRNPA1,IKBKE,MYH14,IL4,NUP214,PFKL,RIPK2,UBE2D3,TPM2,UGDH,TUFM,TUBB4A,TR

AF6,TET2,COPB2,ARHGEF2,ATF4,EIF4EBP1,CLTC,CALM2,LTBP1,DDX5,PPP1CB,PRSS1,TUB

A4A,KRT19,KRT6A,LGALS3,FUS,EMD,HSPA1A,GBE1,MYO5A,PARK7,RPS10,RPL35,S100A10

,S100A4,CALM1,CCT5,AFG3L2,AHSG,MAP1B,PPM1B,PKM,PABPN1,PKP2,ULK1,XRCC6,XRC

C5,UBE2L3,NDUFA4,NRIP1,NSUN2,OPTN,RPS20,STK38,SFPQ,TUBB4B,SLC25A5,LITAF,RPL1

5,KRT10,LGALS1,KLF6,KRT16,KRT7,MYO1C,EEF1A1,HNRNPU,FLII,ACTC1,KHDRBS1,PNK

D,PSMA3,RPL7A,RPS14,RPS17,RPS24,RPS27,RPS3,RPS6,RPL13A,RPL13,TANK,TCOF1,TNFRS

F8,TRIM28,TUBA1C,S100A6,TCP1,SLC30A9,CALM3,ASIC1,CADM1,CALU,RBMX,RPL22,RPL

27,PCM1,PABPC1,COPA,PLEC,TUBA1B,XRN2,VDAC2,KRT2,KRT9,NCL,ELAVL1,IGF2BP3,AP

2S1,PAWR,RPL26,RPL9,RPL4,RPL7,PSMC4,RPS13,RPS23,RPS26,RPS29,RPL10A,RPS12,RPL12,

SVIL,SLC25A6,SNRPE,CAPZA1,EIF4B,CUL4A,CNBP,BANF1,AP2B1,MAP1LC3A,RNGTT,RPL3

,PCBP1,PRPF8,PYCARD,SLC25A10,TUBB6,IGF2BP1,HNRNPF,HSPA1B,IQSEC1,IL24,MPP1,M

YL6,IVNS1ABP,MVP,PDIA4,PDLIM7,RPLP2,RPS16,RPLP1,TPM4,SRSF9,SRSF1,CCNT1,DYNL

L1,DNAJA1,DDX17,CCT3,BCLAF1,AGO2,RPL23A,KRT86,NME8,HNRNPH1,HNRNPL,HOOK1,

HNRNPH3,FIP1L1,PDIA6,RPL6,RIOK1,RPL23,RPL28,RPL29,SSBP1,SF1,TRA2B,TRA2A,SYNC

RIP,SRSF7,CCT8,ADAMTSL4,CCT6A,DNAJA2,BAG2,ATAD3A,RCC2,RFWD3,WDR77,LARP1,

MYL12A,MYO1D,MYO1B,MYCBP,HNRNPM,MYL6B,GOSR1,MRPS12,RPS18,RPS8,RPS4X,RP

L34,SCYL2,THRAP3,TRIP6,TMOD3,SNRPF,SRSF6,SRSF4,SRSF3,CLINT1,CEP170,AMBRA1,CP

SF6,COPS2,CARD6,CAPN7,ATXN2L,ADRM1,LRRFIP2,PREB,PKP3,ZNF24,ZFP36,YBX1,ZNF21

7,ZC3HAV1,GCC2,FAF2,HELQ,GTF3C3,CDC42BPG,RPL17,RPS25,RPS27L,TNRC6B,TWF1,TA

NC2,ALYREF,CPSF2,CPSF3,DCD,MGA,RAI14,RPL38,OTUD4,PLEKHA5,TXNIP,WRNIP1,ZNF1

46,LIMCH1,LACTB,G3BP2,FAM83D,HEMGN,HSPBAP1,GOLGA3,HRNR,GLTP,NUDT21,SERB

P1,SEC16A,SRRM2,SRP14,SRSF10,ESYT2,ERH,MLF2,RBM14,PRPF40A,POF1B,VBP1,YTHDC

1,AKAP8L,AKNA,TRAFD1,CALML5,PNN,ELP1,KCTD5,RBM25,UBL4A,APOOL,CRTAM,CTA

G2,LRRC59,PPP1R12C,PALMD,TLE6,ZSCAN20,ZKSCAN4,H1-

2,RPL39,SP6,CHTOP,UBAP2,ZAN,GSDME,TMEM44,CEP44,ATP5F1C,LZTS3,RHOXF2,TMEM2

63,ZNF391,H1-10,UTP11,H2BC12,H2AC12,OBI1,MAIP1,RBM14-RBM4,MIR137,MIR148A 

601 

MSigDB FADD,FAS,FASLG,MLKL,RIPK1,RIPK3,TLR3,TNF 8 
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GO 

SLC25A4,BIRC2,BIRC3,BOK,CASP8,CAV1,CYLD,FZD9,YBX3,RIPK1,FADD,CFLAR,ARHGEF2

,SPATA2,RBCK1,RIPK3,PELI1,ZBP1,MIR101-1,MIR101-

2,MIR103A1,MIR103A2,MIR107,MIR214,MIR22,MIR221,MIR485,FAS,FASLG,CD14,ITPK1,PYG

L,TLR3,TLR4,TNF,TP53,DNM1L,PPIF,LY96,TRPM7,TICAM1,PGAM5,MLKL,IPMK,TICAM2 

45 

KEGG 

TNF,TNFRSF1A,TRADD,TRAF2,TRAF5,RIPK1,BIRC2,BIRC3,XIAP,RBCK1,RNF31,SHARPIN,S

PATA2L,SPATA2,CYLD,FADD,CASP8,CFLAR,RIPK3,CYBB,CAMK2A,CAMK2D,CAMK2B,CA

MK2G,SLC25A4,SLC25A5,SLC25A6,SLC25A31,PPID,VDAC1,VDAC2,VDAC3,GLUD2,GLUD1,

GLUL,PYGL,PYGM,PYGB,MAPK8,MAPK10,MAPK9,FTH1,FTL,PLA2G4E,PLA2G4A,JMJD7-

PLA2G4B,PLA2G4B,PLA2G4C,PLA2G4D,PLA2G4F,ALOX15,CAPN1,CAPN2,SMPD1,MLKL,PG

AM5,DNM1L,NLRP3,PYCARD,CASP1,IL1B,CHMP2A,CHMP2B,CHMP3,RNF103-

CHMP3,CHMP4B,CHMP4A,CHMP4C,CHMP6,VPS4B,VPS4A,CHMP1B,CHMP1A,CHMP5,CHM

P7,TRPM7,IL1A,IL33,HMGB1,TNFSF10,TNFRSF10A,TNFRSF10B,FASLG,FAS,FAF1,IFNA1,IFN

A2,IFNA4,IFNA5,IFNA6,IFNA7,IFNA8,IFNA10,IFNA13,IFNA14,IFNA16,IFNA17,IFNA21,IFNB1

,IFNG,IFNAR1,IFNAR2,IFNGR1,IFNGR2,JAK1,JAK2,JAK3,TYK2,STAT1,STAT2,STAT3,STAT4,S

TAT5A,STAT5B,STAT6,IRF9,EIF2AK2,TLR4,TICAM2,TICAM1,TLR3,ZBP1,USP21,SQSTM1,HS

P90AA1,HSP90AB1,TNFAIP3,PARP1,BID,BAX,AIFM1,H2AX,H2AC20,H2AC12,H2AC1,H2AW,

H2AB3,H2AC8,H2AC4,MACROH2A2,MACROH2A1,H2AC19,H2AJ,H2AB1,H2AC17,H2AC18,H

2AC11,H2AC21,H2AZ2,H2AC7,H2AZ1,H2AC15,H2AC6,H2AC13,H2AC14,H2AC16,H2AB2,PPI

A,BCL2 

159 

 

Supplementary Table 2. Sequences of primers and siRNA. 

 Names Sequences 

Sequences of primers (5'-3') 

SNHG6(Forward) ACGCGGCATGTATTGAGCATATAGG 

SNHG6(Reverse) TGCCACACTTGAGGTAACGAAGC 

AXL(Forward) TGTGCTGTCAGACGATGGGATG 

AXL(Reverse) CGGATGCTTGCGAGGTGAGG 

GAPDH(Forward) ACACCCACTCCTCCACCTTTG 

GAPDH(Reverse) TCCACCACCCTGTTGCTGTAG 

Target sequences of siRNA (5'-3') 

si-SNHG6-1 ACGCGGCATGTATTGAGGTTGCTGT 

si-SNHG6-2 TGAGGTGAAGGTGTATGAAAGTCAT 

si-SNHG6-3 TCACGCGGCATGTATTGAGCATATA 
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Supplementary Table 3. GO and KEGG enrichment of necroptosis-related 
mRNAs. 

 ID Description p-value 

Top 5 results for 

GO enrichment 

of necroptosis-

related mRNAs 

GO:0042110 T cell activation 0.000  

GO:0007159 leukocyte cell-cell adhesion 0.000  

GO:0032944 regulation of mononuclear cell proliferation 0.000  

GO:0050863 regulation of T cell activation 0.000  

GO:0070663 regulation of leukocyte proliferation 0.000  

GO:0009897 external side of plasma membrane 0.000  

GO:0000775 chromosome, centromeric region 0.000  

GO:0030667 secretory granule membrane 0.000  

GO:0042613 MHC class II protein complex 0.000  

GO:0000776 kinetochore 0.000  

GO:0140375 immune receptor activity 0.000  

GO:0023023 MHC protein complex binding 0.000  

GO:0004896 cytokine receptor activity 0.000  

GO:0019955 cytokine binding 0.000  

GO:0019864 IgG binding 0.000  

Top 20 results for 

KEGG 

enrichment of 

necroptosis-

related mRNAs 

hsa04060 Cytokine-cytokine receptor interaction 0.000  

hsa04640 Hematopoietic cell lineage 0.000  

hsa05152 Tuberculosis 0.000  

hsa04650 Natural killer cell mediated cytotoxicity 0.000  

hsa04514 Cell adhesion molecules 0.000  

hsa05150 Staphylococcus aureus infection 0.000  

hsa04145 Phagosome 0.000  

hsa04380 Osteoclast differentiation 0.000  

hsa05140 Leishmaniasis 0.000  

hsa04658 Th1 and Th2 cell differentiation 0.000  

hsa04659 Th17 cell differentiation 0.000  

hsa05323 Rheumatoid arthritis 0.000  

hsa04660 T cell receptor signaling pathway 0.000  

hsa05416 Viral myocarditis 0.000  

hsa05330 Allograft rejection 0.000  

hsa05320 Autoimmune thyroid disease 0.000  

hsa05321 Inflammatory bowel disease 0.000  

hsa05340 Primary immunodeficiency 0.000  

hsa05332 Graft-versus-host disease 0.000  

hsa04940 Type I diabetes mellitus 0.000  

 

Supplementary Table 4. Cox regression analyses on various clinical characteristics and risk scores. 

 Univariate analysis Multivariate analysis 

Characteristic p-value HR lower .95 upper .95 p-value HR lower .95 upper .95 

RiskScore 0 7.966 3.345 18.97 0 18.755 6.435 54.668 

Age 0.004 1.023 1.007 1.04 0.856 0.96 0.62 1.486 

Gender 0.438 0.853 0.571 1.275 0.001 1.029 1.012 1.047 

Lipomatous Neoplasms 0.125 1.718 0.861 3.427 0.022 2.298 1.129 4.677 

Myomatous Neoplasms 0.258 1.451 0.762 2.763 0.111 1.707 0.884 3.296 

Nerve Sheath Tumors 0.535 1.494 0.421 5.3 0.346 1.857 0.513 6.726 

Soft Tissue Tumors and Sarcomas (NOS) 0.063 2.131 0.96 4.729 0.228 1.635 0.735 3.633 

Synovial-like Neoplasms 0.565 1.395 0.449 4.33 0.877 0.906 0.261 3.15 
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Supplementary Table 5. Baseline data chart of clinical characteristics. 

 Alive (n=158) Dead (n=98) Total (n=256) 

Gender    

Female 82(51.9%) 57(58.2%) 139(54.3%) 

Male 76(48.1%) 41(41.8%) 117(45.7%) 

Age    

Mean 58.4 63.5 60.4 

Median 60 66 60.5 

Min 20 29 20 

Max 87 89 89 

<40 18(11.4%) 4(4.1%) 22(8.6%) 

40-60 59(37.3%) 35(35.7%) 94(36.7%) 

60-80 71(44.9%) 46(46.9%) 117(45.7%) 

≥80 10(6.3%) 13(13.3%) 23(9.0%) 

Histologic Subtype    

Conventional 42(26.6%) 22(22.4%) 64(25%) 

Poorly differentiated 16(10.1%) 18(18.4%) 34(13.3%) 

Well differentiated  3(1.9%) 1(1.0%) 4(1.6%) 

Not reported 97(61.4%) 57(58.2%) 154(60.2%) 

Race    

Asian 4(2.5%) 1(1.0%) 5(2.0%) 

Black or African American 11(7.0%) 7(7.1%) 18(7.0%) 

White 139(88.0%) 85(86.7%) 224(87.5%) 

Not reported 4(2.5%) 5(5.1%) 9(3.5%) 

Metastatic    

YES 19(17.3%) 37(57.8%) 56(32.2%) 

NO 91(82.7%) 27(42.2%) 118(67.8%) 

Recurrence    

YES 8(7.5%) 21(33.3%) 29(17.1%) 

NO 99(92.5%) 42(66.7%) 141(82.9%) 

Disease Type    

Fibromatous Neoplasms 28(17.7%) 12(12.2%) 40(15.6%) 

Lipomatous Neoplasms 34(21.5%) 25(25.5%) 59(23.0%) 

Myomatous Neoplasms 62(39.2%) 41(41.8%) 103(40.2%) 

Nerve Sheath Tumors 6(3.8%) 3(3.1%) 9(3.5%) 

Soft Tissue Tumors and Sarcomas, NOS 22(13.9%) 13(13.3%) 35(13.7%) 

Synovial-like Neoplasms 6(3.8%) 4(4.1%) 10(3.9%) 

Treatment Outcome    

Complete Response 119(78.8%) 6(13.6%) 125(64.1%) 

Partial Response 0(0.0%) 2(4.5%) 2(1.0%) 

Progressive Disease 25(16.6%) 33(75.0%) 58(29.7%) 

Stable Disease 7(4.6%) 3(6.8%) 10(5.1%) 
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Supplementary Table 6. GSEA results of risk model. 

  ID 

Enrich

ment 

Score 

p-value 

Top 10 GSEA 

results for 

KEGG 

High risk group 

KEGG_ALLOGRAFT_REJECTION -0.812 0 

KEGG_ANTIGEN_PROCESSING_AND_PRESENTATION -0.751 0 

KEGG_CHEMOKINE_SIGNALING_PATHWAY -0.562 0 

KEGG_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION -0.627 0 

KEGG_GRAFT_VERSUS_HOST_DISEASE -0.826 0 

KEGG_HEMATOPOIETIC_CELL_LINEAGE -0.662 0 

KEGG_INTESTINAL_IMMUNE_NETWORK_FOR_IGA_PRODUCTION -0.787 0 

KEGG_LEISHMANIA_INFECTION -0.732 0 

KEGG_NATURAL_KILLER_CELL_MEDIATED_CYTOTOXICITY -0.624 0 

KEGG_TOLL_LIKE_RECEPTOR_SIGNALING_PATHWAY -0.688 0 

Low risk group 

KEGG_ALLOGRAFT_REJECTION 0.812 0 

KEGG_ANTIGEN_PROCESSING_AND_PRESENTATION 0.751 0 

KEGG_CHEMOKINE_SIGNALING_PATHWAY 0.562 0 

KEGG_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION 0.627 0 

KEGG_GRAFT_VERSUS_HOST_DISEASE 0.826 0 

KEGG_HEMATOPOIETIC_CELL_LINEAGE 0.662 0 

KEGG_INTESTINAL_IMMUNE_NETWORK_FOR_IGA_PRODUCTION 0.787 0 

KEGG_LEISHMANIA_INFECTION 0.732 0 

KEGG_NATURAL_KILLER_CELL_MEDIATED_CYTOTOXICITY 0.624 0 

KEGG_TOLL_LIKE_RECEPTOR_SIGNALING_PATHWAY 0.688 0 

Top 10 GSEA 

results for GO 

High risk group 

GOBP_ACTIVATION_OF_IMMUNE_RESPONSE -0.781 0 

GOBP_IMMUNE_RESPONSE_REGULATING_CELL_SURFACE_RECEP

TOR_SIGNALING_PATHWAY 
-0.789 0 

GOBP_IMMUNOGLOBULIN_PRODUCTION -0.867 0 

GOBP_LYMPHOCYTE_MEDIATED_IMMUNITY -0.779 0 

GOBP_PRODUCTION_OF_MOLECULAR_MEDIATOR_OF_IMMUNE_R

ESPONSE 
-0.793 0 

GOCC_IMMUNOGLOBULIN_COMPLEX -0.949 0 

GOCC_IMMUNOGLOBULIN_COMPLEX_CIRCULATING -0.942 0 

GOCC_T_CELL_RECEPTOR_COMPLEX -0.931 0 

GOMF_ANTIGEN_BINDING -0.901 0 

GOMF_IMMUNOGLOBULIN_RECEPTOR_BINDING -0.941 0 

Low risk group 

GOBP_B_CELL_RECEPTOR_SIGNALING_PATHWAY 0.888 0 

GOBP_HUMORAL_IMMUNE_RESPONSE_MEDIATED_BY_CIRCULATI

NG_IMMUNOGLOBULIN 
0.863 0 

GOBP_IMMUNOGLOBULIN_PRODUCTION 0.867 0 

GOBP_LYMPHOCYTE_MEDIATED_IMMUNITY 0.779 0 

GOBP_PHAGOCYTOSIS_RECOGNITION 0.876 0 

GOCC_IMMUNOGLOBULIN_COMPLEX 0.949 0 

GOCC_IMMUNOGLOBULIN_COMPLEX_CIRCULATING 0.942 0 

GOCC_T_CELL_RECEPTOR_COMPLEX 0.931 0 

GOMF_ANTIGEN_BINDING 0.901 0 

GOMF_IMMUNOGLOBULIN_RECEPTOR_BINDING 0.941 0 

 


