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INTRODUCTION 
 

Myocardial ischemia-reperfusion injury (MIRI) is a 

complex pathophysiological process that occurs when 

blood flow to the heart muscle is temporarily blocked and 

then restored. MIRI includes acute myocardial infarction 

(AMI), coronary artery bypass grafting (CABG), and 

percutaneous coronary intervention (PCI) [1–3]. During 

the ischemic phase, the heart muscle experiences oxygen 

and nutrient deprivation, leading to cell death and tissue 

damage [4, 5]. When blood flow is restored, a sudden 

influx of oxygen and inflammatory cells further 

exacerbates the injury, resulting in additional damage to 

the myocardium [6, 7]. Current therapies targeting MIRI 

mainly include reperfusion strategies, pharmacological 

interventions, cell therapy, and remote ischemic pre-

conditioning (RIPC) [8, 9]. However, the prevention and 

treatment of MIRI are still a big challenge. 

Recent research has revealed novel mechanisms 

involved in MIRI, providing new targets for potential 

therapeutic interventions. Growth and differentiation 

factor 15 (GDF15) belongs to the GDFs family and is a 

member of TGF-β superfamily [10]. A study has shown 

that GDF15 has an inhibitory effect on myocardial 

hypertrophy and may be a protective factor for the 

heart [11]. In addition, GDF15 knockout mice had 

larger infarct size and more cardiomyocyte apoptosis in 

the infarct border zone [12]. This indicates that 

endogenous GDF15 has an anti-myocardial injury 

effect. However, the underlying mechanism remains 

unclear. 

 

Ferroptosis is a unique form of cell death that is distinct 

from apoptosis, necrosis, and autophagy. It is 

characterized by iron-dependent accumulation of lipid 

peroxides, leading to oxidative damage and cell death 
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[13]. Emerging evidence suggests that ferroptosis, a 

novel form of regulated cell death characterized by  

iron-dependent lipid peroxidation, plays a crucial role  

in MIRI [14]. Dexmedetomidine inhibits MIRI-induced 

ferroptosis via AMPK/GSK-3β/Nrf2 axis [15]. 

Dapagliflozin alleviates myocardial ischemia/reperfusion 

injury by reducing ferroptosis via MAPK signalling 

inhibition [16]. If GDF15 could regulate MIRI through 

regulating ferroptosis has not been reported. 

 

In the present study, the MIRI animal model  

was established, and oxygen-glucose deprivation/ 

reoxygenation (OGD/R) was applied to imitate MIRI  

in vitro. Key ferroptosis indicators, including mito-

chondrial damage, malondialdehyde (MDA), 

glutathione (GSH), oxidized glutathione (GSSG), were 

measured. This research might provide a novel insight 

into the prevention and treatment of MIRI. 

 

MATERIALS AND METHODS 
 

MIRI animal experiment 

 

A cohort of 24 male Sprague-Dawley rats (210–230 g) 

was obtained from Vital River Laboratory Animal 

Technology Co., Ltd., (Beijing, China) and randomly 

assigned to three groups (n = 8): Sham, MIRI, and 

MIRI+pcDNA-GDF15. The MIRI+pcDNA-GDF15 and 

MIRI groups received intravenous injections of 

pcDNA-GDF15 (4 × 1012 gc/kg) and the corresponding 

control vector, respectively. The vectors were injected  

4 hours before operation once, and 2 hours after 

operation once. The dose of pcDNA-GDF15 and 

vectors were defined based on our pre-experiments and 

relevant publication [17]. Meanwhile, the rats in the 

Sham group were intravenously injected with the 

control vectors with same amount and time intervention. 

All experimental procedures were approved by the 

Institutional Ethics Committee for Laboratory Animal 

Care of the 900 Hospital of the Joint Service Support 

Force of the People’s Liberation Army of China. 

 

To establish the MIRI animal model, rats were 

anesthetized using pentobarbital sodium (35 mg/kg, ip) 

and mechanically ventilated. Myocardial ischemia was 

induced by ligating the left anterior descending 

coronary artery with a 6-0 silk suture slipknot, as 

evidenced by ST-segment elevation on the electro-

cardiogram. After 40 minutes of ischemia, the slipknot 

was released to allow for myocardial reperfusion. In the 

sham group, rats underwent an identical procedure 

except for the ligation of the left anterior descending 

coronary artery. Echocardiographic measurements and 

blood sample collection were performed 24 hours after 

reperfusion. Subsequently, the rats were euthanized 

with an overdose of pentobarbital sodium (100 mg/kg, 

ip, #11715, Sigma, USA), and tissue samples were 

collected for further investigations. 

 

Cell culture and transfection 

 

H9C2 cells (ATCC) were cultured in complete medium 

containing 10% FBS (#10099141C, Gibco, USA) at 

37°C in an air-sealed chamber. Transfection of H9C2 

with pcDNA-GDF15 or the control vector was performed 

with lipofectamine 2000 (#12566014, Invitrogen, USA). 

pcDNA-GDF15 and control vectors were designed and 

purchased from Shanghai GeneChem Co., Ltd., 

(Shanghai, China). pcDNA-GDF15 and control vectors 

were diluted with culture medium without serum to the 

final incubation concentration (50 nM). 

 

Establishment of OGD/R cell model 

 

To establish the cell model of MIRI, OGD/R cell model 

cells were cultured in serum- and glucose-free complete 

medium and subjected to hypoxic conditions at 37°C for 

6 hours. Subsequently, cells were maintained in normoxic 

conditions for 12 hours with complete medium containing 

10% FBS (#10099141C, Gibco, USA) for reoxygenation. 

 

Hematoxylin-eosin (HE), massion, and sirius red 

staining 

 

Cardiac tissues were fixed in 4% paraformaldehyde 

(#p0099, Beyotime, China) for 24 hours. Paraffin was 

used for embedding, and the tissues were cut into  

6 µm-thick slices. HE staining was performed with 

hematoxylin and eosin staining. Masson staining and 

Sirius red staining were performed using a Masson’s 

Trichrome Stain kit and a Sirius Red Stain kit (#g1340, 

#g1472, Beijing Solarbio Science and Technology Co., 

Ltd., China), respectively, following the manufacturer’s 

instructions. The sections were then examined and 

photographed using an inverted optical microscope 

(Olympus Corporation, Japan). 

 

Echocardiographic measurement 

 

Rats were administered pentobarbital sodium (45 mg/kg) 

for anesthesia and subsequently positioned supine to 

ensure immobilization. Subsequent evaluation employed 

a transthoracic echocardiography system (VisualSonics 

Inc., Canada) to assess two crucial cardiac function 

parameters: left ventricular fractional shortening (LVFS) 

and left ventricular ejection fraction (LVEF). 

 

Immunofluorescence and immunohistochemistry 

(IHC) staining 

 

Tissues were prepared as described in the part 2.4. 

Tissue sections were subjected to fixation in 4% 
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paraformaldehyde for a duration of 30 minutes, 

succeeded by a tripartite rinse with phosphate-buffered 

saline (PBS, #p1010, Beijing Solarbio Science and 

Technology Co., Ltd.). Upon subsequent immersion in a 

blocking buffer designed for immunohistochemical 

staining (Beyotime, China) at room temperature, a 

preparatory period of 15 minutes ensued. The sections 

were subsequently subjected to an overnight incubation 

at 37°C with primary antibody (dilution 1:100; Abcam). 

A subsequent step involved an hour-long incubation 

with a second antibody (dilution 1:200; Beyotime, China) 

at room temperature. Visualization and documentation 

of the samples were performed using a confocal laser-

scanning microscope (Leica Microsystems GmbH, 

USA). The quantification of microvessel fluorescence 

density was conducted using ImageJ software. 

 

Western blot analysis 

 

Tissues and cells underwent lysis in RIPA buffer 

(#P0013B, Beyotime, China), supplemented with 1% 

protease inhibitor. The protein content was quantified 

using the BCA assay kit (#P0009, Beyotime, China). 

Thereafter, same amount of protein was subjected to 

separation by 10% SDS-PAGE and subsequently transfer-

red onto polyvinylidene fluoride (PVDF) membranes 

(#IPVH00010, Millipore USA). The membranes were 

incubated in a 5% skim milk solution at ambient 

temperature for 2 hours. Subsequent immuno-blotting was 

accomplished by overnight incubation at 4°C with primary 

antibodies. The membranes were exposed to horseradish 

peroxidase-conjugated goat anti-rabbit IgG (Abcam, UK) 

at ambient temperature for 2 hours. Visualization of 

protein bands was achieved through utilization of an 

enhanced chemiluminescence kit (#32132, Thermo Fisher 

Scientific, USA) on a chemiluminescence imaging system 

(Bio-Rad Laboratories, USA). Quantification of protein 

band intensity was conducted utilizing ImageJ software 

(Bio-Rad Laboratories, USA). The used antibodies are 

listed below: GPX4 (#ab125066, Abcam, UK); FACL4 

(ab155282, Abcam, UK); XCT4 (#26864-1-AP, Thermo 

Fisher Scientific, USA); GAPDH (#4366, Abcam, UK). 

 

Measurement of MDA, GSH, GSSG, IL-1β, TGFβ 

and IL-6 

 

For acquisition of serum samples, blood was collected 

from the carotid artery of rats subjected to pentobarbital 

sodium anesthesia (45 mg/kg). The samples were 

maintained at room temperature for a 2-hour interval 

prior to centrifugation at 1,000 × g for 15 minutes. Levels 

of SOD (#BC0170), MDA (#BC0025), GSH (#BC1175), 

IL-1β (#SEKR0002), TGFβ (#SEKR0012) and IL-6 
(#SEKR005) were determined utilizing appropriate assay 

kits (Beijing Solarbio Science and Technology Co., Ltd.), 

as per the manufacturer’s guidelines. 

CCK8 assay 

 

Cells were seeded into 96-well plates at a density of 2 × 

103 cells per well and subjected to OGD/R treatment. 

Post-treatment, cells were rinsed with PBS and then 

exposed to 0.5 mg/ml CCK8 reagent (#CA1210, Beijing 

Solarbio Science and Technology Co., Ltd.) at 37°C for 

4 hours. The absorbance was measured at a wavelength 

of 570 nm using a microplate reader. 

 

Wound healing assay 

 

The wound healing assay was conducted to assess the 

migratory capacity of cells. Initially, cells were seeded at 

a density of 4 × 105 cells per well in a six-well plate and 

maintained in serum-deprived medium until reaching 

approximately 90% confluence. Subsequently, the 

confluent cell monolayer was subjected to controlled 

mechanical injury by gently scraping with a sterile 1 mL 

pipette tip. Following injury, the cells were rinsed twice 

with sterile PBS. The remaining adherent cells were then 

subjected to OGD/R treatment and cultured under  

serum-deprived conditions for a duration of 48 hours. 

Photomicrographs capturing the wound area were 

acquired at both the initial time point (0 hours) and after 

the 24-hour incubation period, utilizing an inverted optical 

microscope manufactured by Olympus Corporation. 

 

Transwell assay 

 

To evaluate the invasive potential of cells, a transwell 

assay was employed cells at a quantity of 4 × 105 cells 

were introduced into the upper chambers of transwell 

inserts featuring an 8 μm pore size (Millipore, USA). The 

cells were then cultivated in serum-deprived medium, 

while the lower chambers were supplied with complete 

medium supplemented with 15% fetal bovine serum 

(FBS). Following exposure to the OGD/R for a duration 

of 48 hours, the cells that had migrated to the lower 

surface of the upper chamber were fixed using a solution 

of 4% paraformaldehyde for 30 minutes. Following 

fixation, these cells were stained with 0.1% crystal violet 

(#C0121, Beyotime, China) for 15 minutes. Post-

staining, the cells were washed twice with PBS, and the 

migrated cells were visualized and quantified through 

utilization of an inverted optical microscope manufac-

tured by Olympus Corporation. The quantification 

process involved tallying the number of migrated cells, 

which facilitated subsequent data analysis. 

 

Flow cytometry 

 

Cellular apoptotic events were analysed through the 
utilization of flow cytometry. The cell population 

obtained post-digestion was subjected to centrifugation 

at 2000 g for a duration of 15 minutes. The resulting 
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supernatant was removed, and the cells were treated 

with a cell apoptosis kit containing both propidium 

iodide and Annexin V-FITC (#C1062S, Beyotime, 

China). This incubation occurred under light-protected 

conditions for a period of 15 minutes. Subsequently, 

flow cytometry was performed to analyse and quantify 

the extent of cellular apoptosis. 

 

Statistical analysis 

 

Statistical analysis of the acquired data was executed in 

conformity with established methodologies. The 

presentation of data adhered to the convention of mean 

values supplemented with standard deviation. The 

statistical discrepancies were assessed via one-way 

analysis of variance (ANOVA), followed by the 

Bonferroni’s post hoc test for pairwise comparisons. The 

software employed for statistical analysis was SPSS 

(version 22.0, IBM Corp.). A significance threshold of 

P < 0.05 was applied to demarcate statistically meaning-

ful differences within the experimental results. 

Availability of data and materials 

 

The datasets used and/or analyzed are available from 

the corresponding authors on reasonable request. 
 

RESULTS 
 

Overexpression of GDF15 greatly inhibited MIRI 

and improved cardiac function 

 

The results of HE staining demonstrated that 

myocardial cells in sham rats were well-arranged and 

possessed intact muscle fibres, while myocardial cells 

became irregularly arranged and obvious necrosis was 

observed in group MIRI. However, treatment with 

pcDNA-GDF15 greatly ameliorated histopathological 

changes (Figure 1A). In addition, obvious collagen 

deposition in MIRI was evaluated with Masson staining 

and Sirius red staining, which was suppressed by 

pcDNA-GDF15 (Figure 1B–1D). The finds also 

revealed that LVFS and LVEF in MIRI rats were 

 

 
 

Figure 1. Overexpression of GDF15 greatly inhibited MIRI and improved cardiac function. (A) HE staining of cardiac tissues in 

different groups (bar: 200 μm, magnification: 100×); (B, C) Masson staining of cardiac tissues in different groups and infarction ration 
analysis (bar: 200 μm, magnification: 100×); (D) Sirius red staining of cardiac tissues in different groups (bar: 200 μm, magnification: 100×). 
(E–G) Echocardiographic measurement, and analysis of LVFS and LVEF. *P < 0.05, **P < 0.01, ***P < 0.001. 
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significantly restrained compared with sham rats, and 

these decreases were significantly reversed by pcDNA-

GDF15 (Figure 1E–1G). 

 

The ferroptosis induced by MIRI was remarkably 

alleviated by pc-DNA-GDF15 

 

Mitochondrial damage is one of the markers of 

ferroptosis process. We found that the MIRI group 

had reduced mitochondrial size and membrane 

damage, but pcDNA-GDF15 treatment significantly 

inhibited mitochondrial damage (Figure 2A). 

Glutathione peroxidase 4 (GPX4), FACL4, and 

XCT4 are key regulators of ferroptosis. We found 

that the level of GPX4 was greatly inhibited in the 

group MIRI, but the levels of FACL4 and XCT4 

remained unchanged. Meanwhile, the decreased 

GPX4 was increased after overexpression of GDF15 

(Figure 2B, 2C), which indicate that GDF15 might 

regulate the ferroptosis process through targeting 

GPX4. 

 

pc-DNA-GDF15 significantly inhibited the oxidative 

stress condition and inflammation response 

 

Oxidative stress biomarkers in the serum and 

myocardial tissues were subsequently measured. The 

levels of MDA and GSSG in the group MIRI were 

remarkably increased, but decreased after pcDNA-

GDF15 treatment (Figure 3A, 3B). Meanwhile, the 

decreased GSH and GSH/GSSG were greatly promoted 

in the group MIRI+pcDNA-GDF15 (Figure 3A, 3B). 

 

 
 

Figure 2. The ferroptosis induced by MIRI was remarkably alleviated by pc-DNA-GDF15. (A) Detection of mitochondrial damage 

with TEM (bar: 100 nm); (B) Relative protein expression levels of GPX4, FACL4, and XCT4 in heart tissues. (C) IHC staining of GPX4 in the 
heart tissues (bar: 200 μm, magnification: 100×). *P < 0.05, **P < 0.01, ***P < 0.001. 
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In addition, the expression of IL-1β, TGF-β, and IL-6 in 

MIRI rats were significantly increased compared with 

that in sham animals, and pcDNA-GDF15 significantly 

reversed these increases in MIRI rats (Figure 3C). 

These results indicate that pcDNA-GDF15 significantly 

reduced oxidative stress and inflammation response in 

MIRI rats. 

pc-DNA-GDF15 significantly inhibited the 

ferroptosis in OGD/R-treated H9C2 cells 

 

The influence of GDF15 on MIRI-induced ferroptosis 

was also validated in vitro using OGD/R cell model. pc-

DNA-GDF15 significantly decreased the intracellular 

Fe2+ production (Figure 4A, 4B) and increased GPX4 

 

 
 

Figure 3. pc-DNA-GDF15 significantly inhibited the oxidative stress condition and inflammation response. (A, B) Detection of 
oxidative stress biomarkers including MDA, GSSG, GSH in the serum and myocardial tissues. (C) Measurement of the serum levels of IL-1β, 
TGF-β, and IL-6. *P < 0.05, **P < 0.01, ***P < 0.001. 

 

 
 

Figure 4. pc-DNA-GDF15 significantly inhibited the ferroptosis in OGD/R-treated H9C2 cells. (A, B) The Fe2+ level in cells were 

validated (bar: 100 μm, magnification: 100×); (C, D) The relative expression intensity of GPX4 in the cells were evaluated (bar: 200 μm, 
magnification: 40×); (E, F) The levels of GSH and MDA in the cells were measured. *P < 0.05, **P < 0.01, ***P < 0.001. 
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expression (Figure 4C, 4D) in OGD/R-treated cells 

compared with group OGD/R. Meanwhile, the 

remarkable decreased GSH (Figure 4E) and increased 

MDA (Figure 4F) caused by OGD/R were greatly 

reversed after overexpression of GDF15. 

 

pc-DNA-GDF15 significantly inhibited the 

ferroptosis in OGD/R-treated H9C2 cells 

 

pc-DNA-GDF15 significantly enhanced the migration 

(Figure 5A, 5B), proliferation (Figure 5C) and invasion 

(Figure 5D, 5E) of OGD/R-treated H9C2 cells 

compared with signal treatment with OGD/R. 

Meanwhile, the great increased cell apoptosis in 

OGD/R-treated H9C2 cells was markedly decreased by 

treatment with pc-DNA-GDF15 (Figure 5F–5G). Based 

on this result, we confirmed that the transfection of 

pc-DNA-GDF15 in H9C2 cells could affect the 

OGD/R-induced ferroptosis. 

DISCUSSION 
 

AMI is a series of acute cardiovascular syndromes 

caused by blockage or severe stenosis of coronary artery 

blood flow due to various factors, resulting in 

myocardial hypoxia, ischemia, and hypoxia necrosis of 

myocardial cells [18]. Revascularization greatly reduces 

the size of myocardial infarction and improves patient 

prognosis [19]. However, myocardial ischemia-

reperfusion injury further aggravates the damage of 

myocardial cells, causes apoptosis of myocardial cells, 

and leads to a decrease in the number of viable 

myocardium [20]. 
 

The key regulators of ferroptosis include GPX4, the 

iron-dependent enzyme, and lipoxygenase (LOX) [21]. 

Dysregulation of these components can lead to the 

accumulation of lipid peroxides and ultimately trigger 

ferroptosis [1]. During ischemia, the disruption of 

 

 

 
 

Figure 5. pc-DNA-GDF15 significantly inhibited the ferroptosis in OGD/R-treated H9C2 cells. (A, B) Measurement of cell 

migration with wound healing assay (bar: 400 μm, magnification: 10×); (C) Detection of cell proliferation with CCK8; (D, E) Measurement of 
cell invasion with Transwell assay (bar: 100 μm, magnification: 100×); (F, G) Measurement of cell migration with flow cytometry. *P < 0.05, 
**P < 0.01, ***P < 0.001. 
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cellular homeostasis results in the accumulation of 

reactive oxygen species (ROS) and iron, which promote 

lipid peroxidation [3]. Upon reperfusion, the sudden 

influx of oxygen and iron exacerbates lipid pero-

xidation, leading to ferroptotic cell death [7]. 

Furthermore, the downregulation of GPX4, a key 

enzyme that protects against lipid peroxidation, has 

been observed in MIRI, indicating its role in the 

regulation of ferroptosis in this context [22, 23]. We 

found that the decreased GPX4 expression caused by 

MIRI and OGD/R was greatly increased by pcDNA-

GDF15, which might explain the function mechanism 

of GDF15 in regulating ferroptosis. 

 

FACL4, also known as ACSL4 (Acyl-CoA 

Synthetase Long-Chain Family Member 4), is a key 

enzyme involved in lipid metabolism and lipid 

peroxidation, which plays a crucial role in ferroptosis 

[24]. FACL4 is known to be upregulated in response 

to oxidative stress and is one of the key regulators of 

lipid metabolism in ferroptosis [25]. XCT4 plays a 

critical role in the regulation of intracellular cysteine 

levels and redox balance, and it is crucial for the 

synthesis of GSH [26]. We demonstrated that the 

levels of both FACL4 and XCT4 remained 

unchanged after MIRI and pcDNA-GDF15 treatment, 

indicating that they are not linked with MIRI-induced 

ferroptosis. Meanwhile, these findings suggest that 

GDF15 does not affect MIRI-induced ferroptosis 

through FACL4 and XCT4. 

 

MDA is a well-characterized and abundant end product 

of lipid peroxidation. During ferroptosis, the excessive 

accumulation of lipid hydroperoxides leads to the 

generation of MDA. Measuring MDA levels can 

therefore serve as a direct indicator of lipid peroxidation 

and provides a reliable read-out for ferroptosis. GSH is 

a tripeptide that plays a crucial role in maintaining 

cellular redox homeostasis. It acts as a key antioxidant 

by scavenging reactive oxygen species (ROS) and 

directly reducing lipid hydroperoxides. During 

ferroptosis, the depletion of GSH due to excessive 

oxidative stress is considered a hallmark [27]. 

Therefore, detection of MDA and GSH provide 

valuable information about the cellular antioxidant 

capacity and the occurrence of ferroptosis. 

 

Myocardial cell apoptosis after OGD/R is the key to the 

decline of myocardial reserve after MIRI. The 

occurrence of apoptosis is closely related to energy 

metabolism, death signal pathway, endoplasmic 

reticulum stress, and mitochondrial dysfunction. 

Therefore, understanding the transcriptional molecular 

regulation mechanism of myocardial cell apoptosis 

during the development of MIRI is expected to find key 

regulatory molecules. In this research, we found that 

overexpression of GDF15 greatly inhibited the cell 

apoptosis after OGD/R treatment. There are several 

limitations in this research. (1) The further targeting 

signaling pathway of GDF15 remains unclear. (2) How 

GDF regulate the ferroptosis during MIRI was not 

clarified. 

 

CONCLUSION 
 

We demonstrated that the MIRI could further cause 

ferroptosis through evaluating mitochondrial damage, 

MDA, GSH, and GSSG. The MIRI-induced ferroptosis 

was greatly suppressed after overexpression of GDF15 

through GPX4. Our research provides a novel thought 

for the prevention and treatment of MIRI, and a new 

understanding for the mechanism of MIRI-induced 

ferroptosis. 
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