
www.aging-us.com 964 AGING 

INTRODUCTION 
 

Immunoglobulin A (IgA) nephropathy (IgAN) is one 

common glomerulonephritis globally [1]. IgAN, also 

known as Berger’s disease, is characterized by the 

accumulation of the glycosylated IgA in the mesangium 

[2]. IgA plays a crucial role in immune responses, 

particularly in the mucous membranes, including 

gastrointestinal and respiratory tracts. IgAN patients 

might remain asymptomatic for years, while some 

patients display a wide range of symptoms [3, 4]. Many 

IgAN patients often present a nephritic syndrome, such 

as proteinuria, oliguria, and hematuria. Sometimes 

IgAN patients exhibit gastrointestinal or upper 

respiratory tract infections [3, 4]. It is known that four-

hit hypothesis in IgAN postulates a pathogenesis of this 

disease: increased production of galactose-deficient IgA 

(Gd-IgA1) cause the formation of immune complexes 

with anti-gd-IgA1 IgG or IgA1 antibodies, then deposit 

in the glomerular mesangium and subsequently result in 

kidney inflammation and injury [5, 6]. IgAN can be 

diagnosed by a combination of clinical evaluation, urine 

tests for proteinuria and hematuria, blood tests for 

kidney function measurement, a kidney biopsy for 

confirming the IgA deposits in the glomeruli [7–9]. The 

treatments of IgAN reduce its symptoms, prevent its 

complications and retard its progression. The therapeutic 

strategy of IgAN includes immunosuppressive therapy 

to suppress the immune system and reduce 

inflammation, supportive care, dietary modification, 

blood pressure control and prevention of complications 

[10–13]. 

 

Genetics, epigenetics and environmental factors have 

been considered to be involved in IgAN development, 

although the exact molecular mechanisms of IgAN 

have not been fully elucidated [14–16]. Integration of 

genomic data with other omics data, such as 
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metabolomics and transcriptomics, can explore the 

genetic changes of IgAN pathogenesis [17]. In 

addition, infections contribute to the immune response 

that contributes to IgA deposition in the kidneys. 

Epigenetic modifications regulate DNA or chromatin 

level, resulting in the regulation of gene transcription 

and protein synthesis [18, 19]. For example, 

noncoding RNAs regulate IgAN pathogenesis, 

including miRNAs and lncRNAs [20, 21]. In recent 

years, post-translational modification (PTM) has been 

considered to participate in tumorigenesis and IgAN 

development and progression [22–25]. PTMs change 

the structure of proteins or chemical properties via 

removing or adding molecules or functional groups, 

leading to influencing localization, stability, activity, 

and interactions with other proteins [26–28]. PTMs 

include ubiquitination, methylation, acetylation, 

phosphorylation, glycosylation, etc., [29]. Phosphory-

lation is known to add a phosphate group to amino 

acid residues, such as tyrosine, serine, threonine [30]. 

Ubiquitination means the attachment of ubiquitin to 

lysine residues on a specific target protein, leading to 

modulating protein degradation, trafficking and 

interactions with other molecules [31]. Acetylation 

means the addition of an acetyl group to the 

N-terminus or lysine residues of a molecule [32, 33]. 

Methylation is to add a methyl group to a lysine or 

arginine of a protein [34]. The attachment of 

oligosaccharides to serine, threonine or asparagine of 

a protein leads to glycosylation [35]. Adding small 

ubiquitin-like modifier (SUMO) proteins to lysine 

residues in molecules results in sumoylation [36]. 

Palmitoylation means the addition of a palmitic acid 

to cysteine residues in a protein [37]. In this review, 

we will describe the several PTMs in regulation of 

IgAN development and progression, including 

sialylation, o-glycosylation, galactosylation, phospho-

rylation, ubiquitination and deubiquitination. More-

over, we outline multiple compounds to target PTMs 

and alleviate IgAN progression. Furthermore, future 

perspectives are discussed to more fully elucidate the 

functions and mechanisms of PTMs in IgAN. 

Targeting PTMs could be a potential option for the 

therapeutic strategy for IgAN patients. 

 

PTMs regulate IgAN progression 
 

It has been documented that IgA has two isotypes: 

IgA1 and IgA2. The former IgA1 presents in systemic 

circulation and mucosal surfaces, while the latter IgA2 

is primarily in the mucosal surfaces [38]. In addition, 

IgA1 and IgA2 are different in the numbers of N-

linked carbohydrates in the heavy chain and hinge 

region (HR). IgA1 displays nine serine and threonine 

residues in the HR, which has three to six residues 

with O-linked glycans, whereas IgA2 has no this 

phenotype [39]. These O-glycan sites can be modified 

by the addition of N-acetylgalactosamine (GalNAc) to 

serine or threonine resides. Then, GalNAc residue is 

extended with a β1,3-linked galactose, forming a core 

structure [40]. Further, these core O-glycans can be 

modified by the addition of sialic acid residues, which 

is known as sialylation. The heterogeneity of IgA1 is 

governed by the number and structure of O-glycans 

[40]. 

 

Sialylation 
 

Sialylation is a crucial PTM of proteins via the addition 

of sialic acid to glycans [41]. ST6GALNAC2 (ST6 N-

Acetylgalactosaminide Alpha-2,6-Sialyltransferase 2) is 

a kind of sialyltransferase that add sialic acids (a type of 

sugar molecule) to the glycoconjugates. ST6GALNAC2 

has been identified as an important gene to regulate the 

sialylation of Gd-IgA1, contributing to the susceptibility 

to IgAN [42]. One study showed that ADG haplotype in 

the ST6GALNAC2 gene involves in the genetic 

susceptibility in IgAN with a desialylation of IgA1 

molecules [43]. Another study suggested that decreased 

expression of ST6GALNAC2 contributed to reduced 

sialylation of IgA1 in peripheral B lymphocytes in 

IgAN patients [44]. Lu et al. reported a correlation 

between ST6GALNAC2 polymorphism (SNP rs3840858) 

and IgAN susceptibility [45]. Xie and coworkers found 

that tonsillectomy increased the expression of 

ST6GALNAC2 in PBMCs and the plasma IgA1, but it 

reduced C1GALT1 (core1 β1,3-galactosyltransferase) at 

mRNA levels in IgAN patients [46]. 

 

C1GALT1 is one of glycosyltransferase genes to add 

galactose to O-glycans for O-glycosylation. An 

integrated analysis of the transcriptome demonstrated 

that plasma ST6GAL1 (ST6 β-galactoside a2,6-

sialytransferase 1) is increased and correlated with 

aberrant IgA1 glycosylation in IgAN [47]. ST6GAL1 

levels are associated with disease severity of IgAN. 

Using PBMCs from IgAN patients, recombinant 

ST6GAL1 attenuated the production of Gd-IgA1 and 

stimulated the expression of C1GALT1 [47]. Moreover, 

upregulation of ST6GAL1 promoted sialylation of IgG 

and reduced the production of cytokines in PBMCs, 

such as IL-6 and TNF-α. Increased ST6GAL1 was 

linked to a slower progression of IgAN [48]. 

Furthermore, IgG sialylation alleviates the formation of 

Gd-IgA1-containg complexes and reduced inflam-

mation activity and proliferation of mesangial cells in 

IgAN [49]. Interestingly, ST6GAL1 was observed in 

human circulating platelets, which could be due to 

platelets activation to release ST6GAL1 in IgAN [50]. 

ST6GAL1 polymorphisms affect progression and 

susceptibility of IgAN patients in a Han population. For 

example, rs7634389 is associated with hyperuricemia, 
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segmental glomerulosclerosis, renal survival and 

susceptibility of IgAN. Additionally, rs6784233 

ST6GAL1 is correlated to susceptibility of IgAN in a 

Han population [51]. 

 

O-glycosylation 
 

The functions of IgA can be affected by variations of 

O-glycosylation, such as innate immunity. It has been 

shown that increased IgA glycosylation is linked to low 

levels of IgA and poor outcomes in IgAN patients [52, 

53]. One study reported that β1,3-galactosyltransferase 

and N-acetylgalactosaminyl-transferase 2 were de-

creased in tonsillar B lymphocytes in IgAN [54]. Zhu et 

al. found that genetic interactions of ST6GALNAC2 

variants and C1GALT1 modified O-glycosylation of 

IgA1, conferring to IgAN development [55]. C1GALT1 

gene has different variants, which are correlated  

with the genetic susceptibility to IgAN [56–58]. In  

the following paragraphs, we will discuss how 

O-glycosylation is regulated in IgAN progression. 

 

GM130 regulates glycosylation  

 

Loss of the GM130 (Golgi matrix protein 130) 

contributed to aberrant IgA1 glycosylation in IgAN 

[59]. Because IgA1 glycosylation is performed in Golgi, 

reduced GM130 could result in glycosylation 

deficiency. Indeed, the expression of GM130 was 

downregulated in tonsil tissues and PBMC in patients 

with IgAN. It has a negative association between 

GM130 and Gd-IgA1 production. Downregulation of 

GM130 enhanced IgA1 O-Glycosylation deficiency due 

to inhibition of C1GALT1 expression [59]. 

 

miRNAs regulate glycosylation of IgA1 

 

Evidence has implied that microRNAs (miRNAs) 

participate in IgAN development [60, 61]. It is known 

that miRNAs belong to short, noncoding RNAs and 

modulate the gene expression [62]. Clearly, miRNAs 

have been reported to be involved in various diseases, 

including cancer [63–65]. One study showed that 37 

miRNAs were differentially expressed in IgAN patients 

compared with healthy controls [66]. Moreover, miR-

148b regulated the glycosylation of IgA1 in IgAN. 

Increased expression of miR-148b was observed in 

PBMCs of IgAN patients. Overexpression of miR-148b 

decreased endogenous C1GALT1 mRNA, while 

silencing of miR-148b elevated C1GALT1 mRNA and 

protein levels in PBMCs [66]. The expression of miR-

148b was negatively associated with C1GALT1 in 

IgAN patients. Furthermore, miR-148b was associated 

with Gd-IgA1 levels. Hence, miR-148b is involved in 

the aberrant glycosylation of IgA1 in IgAN [66]. The 

high-throughput sequencing data revealed that miR-98-

5p was upregulated in the PBMCs of IgAN patients. 

Mechanistically, miR-98-5p regulated the expression of 

CCL3 (chemokine ligand 3). Loss of CCL3 modulated 

the expression of IL-6 and C1GALT1. The treatment of 

PBMCs with miR-98-5p mimic suppressed the CCL3 

and C1GALT1 expression and elevated the expression 

of IL-6 [67]. 

 

Another high-throughput RNA sequencing data 

suggested that there are 44 differentially expressed 

miRNAs (34 upregulated, 10 downregulated) in PBMCs 

of IgAN patients compared with healthy participants 

[68]. Among 44 miRNAs, 41 of which were linked to 

IgAN progression. Moreover, the target genes of these 

miRNAs were enriched in MAPK and PI3K/Akt 

pathways. Notably, miR-200a-3p, miR-203a-3p and 

miR-3121-3p might regulate the expression of 

C1GALT1 [68]. Li et al. reported that inhibition of 

miR-214-3p alleviated mesangial hypercellularity in 

IgAN due to upregulation of PTEN and inhibition of 

JNK/c-Jun pathway, contributing to suppression of 

proliferation of mesangial cells and attenuation of renal 

lesions in IgAN [69]. Astragaloside IV inhibited the 

expression of miR-98-5p and reduced the Gd-IgA1 

levels in DAKIKI cells. In addition, overexpression of 

miR-98-5p could modulate the IgA1 glycosylation by 

regulation of C1GALT1 [70]. One group reported that 

let-7b downregulated the expression of GALNT2 in 

PMBCs of IgAN patients [71]. Another group reported 

that overexpression of miR-374b increased cell 

proliferation and enhanced the production of gly-

cosylated IgA1 via targeting PTEN and Cosmc 

expression in B cells of IgAN [72]. IgAN patients had a 

low expression of miR-155 level in PMBCs. IgAN 

patients had low percentages of peripheral blood Treg 

and Th1 cells, high percentages of Th17 and Th2. The 

association was identified between miR-155 levels, 

serum IgA concentration, Cosmc, FoxP3, and IgA1 dys-

glycosylation [73]. Li et al. discovered that miR-320 

elevated B cell proliferation and accelerated the 

production of glycosylated IgA1 via targeting PTEN 

and Cosmc in IgAN [74]. IgAN patients had an 

upregulation of miR-320 and a downregulation of 

Cosmc in urinary and renal tissues [74]. Liu and 

coworkers dissected that miR-630 targeted TLR4 (Toll-

like receptor 4) and affected the expression of IL-1β and 

IL-8 via NF-κB pathway, leading to governing 

production of underglycosylated IgA1 in the tonsils of 

IgAN patients [75]. Taken together, miRNAs regulate 

IgAN development and progression. 

 

lncRNAs regulate IgA1 glycosylation 

 
lncRNAs have been validated to play an essential role 

in a variety of diseases, such as cancer [76–79]. 

Recently, studies have revealed that lncRNAs take part 
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in IgAN development. For instance, Sun et al. found 

that lncRNA FGD5-AS1 targeted PTEN-involved 

JNK/c-Jun pathway via sponging miR-196b-5p, 

contributing to alleviation of childhood IgAN [80]. 

Shen et al. reported that lncRNA CRNDE enhanced 

activation of NLRP3 inflammasome in macrophages, 

including Il-1β, TNF-α and IL-12, and exacerbated the 

malignant progression of IgAN [81]. CRNDE can bind 

with NLRP3 and increase the expression of NLRP3. 

Silencing of CRNDE attenuated the NLRP3 expression 

at protein level and facilitated TRIM31-induced 

ubiquitination and degradation of NLRP3 [81]. ICAM-1 

related lncRNA (ICR) acts as antisense strand for 

inhibiting ICAM expression and has been reported to be 

involved in IgAN and renal fibrosis [82]. IgAN patients 

had an increased ICR level in renal tissues, which was 

associated with disease progression. Suppression of ICR 

by shRNA inhibited the expression of pAkt, mTOR, 

collagen I and α-SMA in HK-2 cells after TGF-β1-

treatment [82]. IgAN patients had a downregulation of 

lncRNA H19 expression in serum compared with 

healthy people. Moreover, lncRNA H19 had a 

protective role for prognosis in IgAN. Higher 

expression levels of H19 suggested better renal outcome 

in IgAN patients [83]. LncRNA PTTG3P was 

upregulated in IgAN samples and urinary of IgAN 

patients. Overexpression of PTTG3P promoted the 

expression of Ki-67 and Cyclin D1 and enhanced B cell 

proliferation as well as triggered production of IL-8 and 

IL-1β [84]. PTTG3P inhibited the expression of miR-

383 in B cells. Consistently, overexpression of miR-383 

blocked B cell proliferation and attenuated production 

of IL-8 and IL-1β. Hence, PTTG3P stimulated B cell 

proliferation and promoted glycosylated IgA1 

production in IgAN [84]. 

 

Galactosylation 
 

Growing evidence reveals that galactosylation involves 

in IgAN development and progression [85, 86]. 

Reduced terminal galactosylation of HR O-linked 

moieties in IgAN was reported, which could link to the 

pathogenesis of IgAN [85]. Mass spectrometry analysis 

provided a direct evidence for reduced sialylation and 

galactosylation of IgA1 Fc O-glycosylated hinger 

peptides in IgAN, such as GalNAc and Gal, indicating 

that reduced sialylation and galactosylation of IgA1 

might lead to its glomerular deposition [86]. One study 

showed higher serum Gal-deficient IgA1 levels in IgAN 

cases and their first-degree relatives, compared with 

their spouses and normal people, indicating that Gal-

deficient IgA1 could be inherited in IgAN patients [87]. 

A study showed that Chinese patients with IgAN has a 

lower Gd-IgA1 compared with white people with IgAN. 

C1GALT1 gene was correlated with Gd-IgA1 levels, 

and Gd-IgA1 was upregulated in IgAN cases and 

associated with disease progression. Furthermore, 

common variation of C1GALT1 regulated Ga-IgA1 

levels [88]. Another group found that IL-4 and IL-6 

accentuated galactose deficiency of IgA1 through 

inhibition of C1GALT1 and indirect upregulation of 

ST6GALNAC2, which blocks galactosylation by 

C1GALT1, contributing to reduced galactosylation of 

the O-glycan in IgAN [89]. Evidence confirmed that 

C1GALT1 expression was reduced and negatively 

associated with increased expression of Gd-IgA1 in 

IgAN cases [90]. IgAN patients had a lower expression 

and activity of β1,3-galactosyltransferase in peripheral 

B lymphocyte. Therefore, C1GALT1 expression is 

linked to IgA1 galactosylation in B cells in IgAN [90]. 

Altogether, IgA1 galactosylation is involved in IgAN 

progression via C1GALT1. 

 

Ubiquitination and deubiquitination 
 

The ubiquitin proteasome system (UPS) is responsible 

for the protein degradation and maintains protein 

homeostasis, contributing to governing various cellular 

processes, including cell cycle regulation, DNA repair, 

autophagy, apoptosis, differentiation, and proliferation 

[91, 92]. The UPS includes several main components, 

such as ubiquitin, ubiquitin-activating enzyme E1, 

ubiquitin-conjugating enzyme E2, ubiquitin ligase E3, 

and proteasome [93]. Ubiquitin, a small protein about 

8.5 KDa with 76 amino acids, can be covalently 

attached to the lysine residues of target proteins. This 

ubiquitination process is performed by E1, E2 and E3 

enzymes. Ubiquitin can be activated by E1 enzymes and 

then transferred to E2 enzymes. The latter conjuncts 

with E3 enzymes, leading to transfer of ubiquitin to the 

target proteins [94]. E3 ligases can recognize specific 

targets for their ubiquitination. Then, ubiquitinated 

proteins can be recognized and degraded by the 

proteasome to become smaller peptides and amino 

acids, which can be recycled [95]. E3 ligases have two 

main subgroups based on their structures: HECT 

domain-containing E3 ligases and the RING domain-

containing E3 ligases [96]. It is known that E3 ligases 

play a crucial regulatory role that ensures the proper 

protein turnover. Dysregulation of E3 ligases have 

contributed to the development of various diseases [97–

101]. Evidence has suggested a link between the 

ubiquitin proteasome pathway and IgA nephropathy. 

Herein, we discuss the role of ubiquitination in IgAN 

progression (Figure 1). 

 

UCH-L1  

 

UCH-L1 (ubiquitin carboxyl-terminal hydrolase L1), 

also known as PGP9.5 (protein gene product 9.5) and 

PARK5, belongs to the UPS and is responsible for 

degrading and recycling proteins in cells, which 
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maintains protein homeostasis and governs various 

cellular processes, such as cell cycle, proliferation, 

apoptosis, autophagy, etc., [102]. UCH-L1 regulates 

the degradation of the targeted proteins, leading to 

protein turnover and protein quality control [103]. 

UCH-L1 is predominantly observed in neurons, and its 

gene mutations have been found in certain 

neurodegenerative disorders, such as Parkinson’s 

disease and Alzheimer’s disease [104–106]. A growing 

number of works have demonstrated that UCH-L1 is 

closely related to IgA nephropathy. One study used pre-

embedding immuno-electron microscopy approach with 

gold and HRP to detect the expression level of UCH-L1 

in podocytes of glomerulonephritis. This study found 

the high density of gold particles or DAB in 

combination with UCH-L1 in cytoplasm and processes 

of podocytes from IgA nephropathy and lupus nephritis 

[107]. The level of anti-UCHL1 antibody was elevated 

in serum of patients with FSGS (focal segmental 

glomerulosclerosis) compared with IgAN, membrano-

proliferative glomerulonephritis and membranous 

nephropathy, indicating that anti-UCHL1 antibody 

might be a biomarker for diagnosis of FSGS [108]. 

Moreover, minimal change disease (MCD) patients and 

steroid-sensitive FSGS had a higher expression of anti-

UCHL1 antibody compared with other glome-

rulopathies, including IgAN. Anti-CD40 antibody was 

upregulated in steroid-resistant FSGS, implying that 

anti-CD40 antibody and anti-UCHL1 antibody might be 

the biomarkers for differential diagnosis and treatment 

[109].  

 

Arkadia and Smurfs 

 

Arkadia is a RING-type E3 ubiquitin ligase and has 

been identified to regulate the TGF-β signaling 

pathway. One group reported that Arkadia promoted the 

ubiquitination and degradation of Smad7, SnoN and c-

Ski, conferring to activation of TGF-β signaling 

pathway [110]. Another group found that Arkadia, 

Smurf2, and c-Ski could be key regulators in TGF-β 

signaling and serve as potential targets for cardiac 

fibrosis [111]. It is known that TGF-β1/Smad signaling 

has a significant role in renal tubular injury and 

glomerular sclerosis in IgAN children [112]. One study 

validated that Arkadia activated TGF-β signaling via 

governing the degradation of Smads, contributing to 

TGF-β-mediated IgA expression in IgAN [113]. 

Interestingly, Smurfs E3 ligases exhibited the opposing 

effects of Arkadia in TGF-β-involved IgA isotype 

expression [114]. Upregulation of Smurf1 and Smurf2 

attenuated GLα promoter activities induced by TGF-β1, 

and inhibited Smad7 promoter activity. Increased 

Smurf1 and Smurf2 reduced Smad3/4-induced and 

Runx3-induced GLα promoter activities. Smurfs 

blocked TGF-β pathway and inhibited the expression 

of GLα. Upregulation of Smurf1 reduced TGF-β-

involved IgA secretion. Upregulation of Arkadia 

abrogated the suppressive function of Smad7 on TGF-

β-mediated IgA secretion and GLα expression. All in a 

word, Arkadia degraded Smad7 and promoted TGF-β-

mediated IgA secretion, whereas Smurf1 abolished 

this effect [114]. 

 

USP2-69 

 

USP2-69, an isoform of USP2, has been reported to be 

involved in the development of various diseases. One 

group showed that USP2-69 was highly expressed in 

breast invasive ductal carcinoma. Overexpression of 

USP2-69 in MCF-7 cells increased proliferation and S 

phase fraction, promoted the expression of cyclin D1 

 

 
 

Figure 1. The role of ubiquitination and deubiquitination of proteins in regulating IgAN pathogenesis.  TRIM40, Smurfs and 

Arkadia regulate the occurrence and progression of IgAN. USP2-69 and UCH-L1 participate in IgAN progression. 
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and reduced the expression of p27 [115]. Another group 

reported that USP2-69 and USP2-45 can regulate the 

LDLR (low-density lipoprotein receptor) signaling 

pathway via interacting with the E3 ligase IDOL 

(inducible degrader of the LDLR) to promote its 

deubiquitylation [116]. Because IDOL mediated the 

ubiquitylation and lysosomal degradation of LDLR, 

blockade of this process could promote hepatic LDL-

cholesterol clearance. Hence, USP2-69 might be useful 

to regulate hepatic LDL-cholesterol clearance [116]. 

USP2-69 alleviated meta-inflammatory factors in 

macrophages and regulated the development of type-2 

diabetes [117]. USP2-69 upregulation inhibited the 

progression of anti-Thy1.1 nephritis in rat [118]. 

Upregulation of USP2-69 led to inhibition of cell 

proliferation and ECM deposition, which was 

accompanied with suppression of Collagen IV, 

Fibronectin and Ki-67 [118]. USP2-69 was highly 

expressed in kidney tissues. Compared with normal 

kidney, USP2-69 expression was elevated in IgAN, 

lupus nephritis and APGN (acute proliferative 

glomerulonephritides), which also displayed the higher 

expression of PCNA (proliferation cell nuclear antigen). 

IL-1β and anti-thymocyte serum increased the mRNA 

and protein levels of USP2-69 in the rat mesangial cells, 

and increased the expression of PCNA and reduced the 

expression of p27. Hence, USP2-69 could modulate the 

proliferation of mesangial cells and participate in IgAN 

and glomerulonephritis [119]. 

 

Other E3 ligases 

 

Tonsillectomy did not affect the activation of innate 

immunity, pro-oxidative milieu and ubiquitin-

proteasome pathways in IgAN patients. The extra-

tonsillar MALT (mucosal associated lymphoid tissue) 

could lead to hyperactivation of innate immunity in 

IgAN patients with tonsillectomy [120]. NLRP3 

expression was upregulated in IgAN patients, which 

was mainly located in the tubular epithelial 

compartment. In primary renal tubular cells (HPTC), 

TGF- β1 treatment induced the expression of NLRP3 

at mRNA and protein levels. When ubiquitin-mediated 

degradation and transcription led to loss of epithelial 

phenotype in HPTC, NLRP3 expression was 

diminished. NLRP3 was reduced in abundance due to 

ubiquitin-mediated degradation in progressive IgAN, 

suggesting that NLRP3 is associated with outcome in 

IgAN [121]. TRIM40 E3 ubiquitin ligase suppressed 

IgA1-mediated proliferation of GMCs (glomerular 

mesangial cells) via inactivation of NLRP3 inflamma-

some through induction of ubiquitination of NLRP3 

[122]. HECW1 E3 ubiquitin ligase has been reported 

to be associated with IgA1 glycosylation in IgAN 

patients. Patients with higher expression of Gd-IgA1 

and IgA1 often had a low expression of HECW1. Gd-

IgA1 expression levels were negatively associated 

with HECW1 mRNA expression [123]. 

 

Phosphorylation 
 

Evidence has suggested that the deoxynivalenol 

(DON) enhanced IgA hyper-elevation and promoted 

IgA deposition via upregulation of phosphorylation  

of MAPKs and JNK1/2 in mesangium [124]. 

Lipopolysaccharide (LPS) and IgA increased the 

mRNA and protein levels of TLR4 (Toll-like receptor 

4) and promoted the phosphorylation of MAPKs in 

MMC [125]. One study indicated that phosphorylation 

of ERK was involved in the pathogenesis of IgAN 

[126]. Another study reported that DON promoted 

phosphorylation of CREB (cAMP response element 

binding protein) at Ser-133 and mediated the 

phosphorylation of ATF1 at Ser-63 in mouse 

macrophage, which can be suppressed by DHA 

treatment [127]. DHA consumption attenuated the 

phosphorylation of Akt and subsequently suppressed 

the CREB/ATF1 phosphorylation and blocked 

transcription of IL-6 in mice [127]. Podocytes were 

cultured with mesangial medium isolated from IgAN 

patients and exhibited EMT phenotype due to 

promotion of phosphorylation of Akt [128]. One 

group showed that suppression of miR-21 blocked 

fibrogenic activation via upregulation of PTEN 

expression and downregulation of phosphorylation of 

Akt in tubular cells and podocytes in IgAN [129]. The 

phosphorylation of c-Jun was elevated in nuclei of 

glomerular and tubular cells in several renal diseases, 

including IgAN. TGF-β triggered the phosphorylation 

of c-Jun in HK-2 cells, which can be abolished by a 

JNK inhibitor SP600125 [130]. In IgAN patients, 

IgA1 immune complexes activated cultured mesangial 

cells in part via modulation of phosphorylation 

patterns of three proteins [131]. Inhibition of miR-

29b-3p elevated the expression of CDK6 and 

activated NF-κB pathway via phosphorylating p65, 

contributing to inflammation in IgAN pathogenesis 

[132]. 

 

BAFF (B cell activating factor) accelerated 

phosphorylation of p65, Akt and MAPK p38 in 

mesangial cells via interaction with BAFF-R (BAFF 

receptor), leading to promotion of cell proliferation 

[133]. Serum pIgA (polymetric IgA) increased 

activation of Src and Smad3 phosphorylation as well 

as nuclear p65 accumulation in human mesangial cells. 

CTRP3 (complement-C1q TNF-related protein 3) 

attenuated inflammatory response and mesangial cell 

activation, resulting in attenuation of IgAN 

progression [134]. IgAN patients had an increased  

p53 phosphorylation and STAT3 activation [135]. 

IgAN patients had an increased expression of 
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glomerular β-1,4-galactosyltransferase. Anti-β-1,4-

galactosyltransferase antibodies can inhibit the IgA-

mediated phosphorylation of spleen tyrosine kinase 

and reduce the synthesis of IL-6 in mesangial cells 

[136]. IL-6 facilitated phosphorylation of STAT3 in 

the cells from IgAN patients, leading to increased 

production of Gd-IgA1. This process can be abolished 

by inhibitors of JNK/STAT signaling [137]. LncRNA 

lnc-TSI (TGF-β/Smad3-interacting long noncoding 

RNA) was reported to repress TGF-β-mediated 

phosphorylation of Smad3 and suppress renal 

fibrogenesis [138]. Dendrin nuclear translocation 

caused phosphorylation of JNK in podocytes, 

promoted apoptosis and regulated focal adhesion. 

Blockade of dendrin nuclear translocation by 

suppression of importin-α reduced podocyte loss and 

prevented glomerulosclerosis in nephropathy [139]. 

 

GADD34 expression was elevated in IgAN patients, 

which was accompanied with increased apoptosis and 

IgA secretion. Moreover, GADD34 regulated phospho-

rylation of eIF1a in TMCs (tonsillar mononuclear cells) 

from IgAN patients [140]. Phosphorylation of STAT1 

and STAT3 was increased in IgAN patients. Moreover, 

STAT1 activation was linked to proteinuria in IgAN 

patients [141]. Leukemia inhibitory factor (LIF) 

enhanced Gd-IgA1 production and promoted STAT1 

phosphorylation due to activation of Src-family PTKs in 

the cells from IgAN patients. Consistently, down-

regulation of STAT1 by siRNA abolished LIF-induced 

overproduction of Gd-IgA1 [142]. Phosphorylation of 

glomerular AXL was increased in IgAN patients. 

Bemcentinib, an inhibitor of AXL, attenuated PDGF-

stimulated cell proliferation and inhibited AXL 

phosphorylation and PDGFR, leading to inactivation of 

Akt1 and ERK1/2 pathways in IgAN [143]. TMEM16A 

(transmembrane member 16A), a Ca2+-depended 

chloride channel, was elevated in IgAN patients. 

Depletion of TMEM16A attenuated TGF-β1-mediated 

EMT, decreased the expression of Snail1 and reduced 

the phosphorylation of Smad2/3 and ERK1/2 in HK2 

cells, while upregulation of TMEM16A led to the 

opposite functions. TGF-β1-mediated phosphorylation 

of Smad2/3 was abrogated by reduction of C1-

concentration in HK2 cells. Inhibition of TMEM16A 

could be a strategy for the treatment of renal fibrosis 

[144]. The soluble CD22 (sCD22) was decreased in 

plasma of IgAN patients and positively correlated with 

SA-IgG (sialic acid-positive IgG). SA-IgG promoted 

the CD22 phosphorylation in PBMCs and accelerated 

sCD22 release in cell supernatant, which suppressed the 

production of proinflammatory cytokines, such as TGF-

α, TGF-β and IL-6 [145]. Taken together, protein 

phosphorylation is critically involved in IgAN 

pathogenesis (Figure 2). 
 

Compounds targets PTMs in IgAN 
 

Accumulated evidence has demonstrated that numerous 

compounds can target protein phosphorylation to 

regulate the progression of IgAN (Table 1). IgAN rats 

displayed higher expression of p70S6K and 

phosphorylation of Akt and S6. Rapamycin, a mTOR 

inhibitor, reduced the expression of p70S6K and 

 

 
 

Figure 2. The role of protein phosphorylation in regulating IgAN pathogenesis. The phosphorylated proteins are involved in IgAN 
pathogenesis, including pAkt, p-P65, pJNK1/2, pCREB/ATF, pMAPKs, pSmad3, p-c-Jun, pAXL, pERK, pSTAT and p-eIF1a. 
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Table 1. Targeting PTMs by compounds in IgAN. 

Items Targets Functions References 

Rapamycin mTOR, S6 and S6K1 phosphorylation 
Reduction of proteinuria, IgA 
deposition, protection of renal function 

[146, 147] 

Tris DBA 
Phosphorylation of ERK, p38 MAPK, JNK, ROS 
generation 

Improving kidney functions and 
albuminuria 

[148] 

TwHF Phosphorylation of JUN Alleviating renal injury in IgAN mice [149] 

Artemisinin 
Akt phosphorylation and Nrf2 nuclear 
translocation 

Reduction of fibrosis and oxidative 
stress 

[150] 

KF506 
Calcineurin, TRPCs, α-SMA, ERK 
phosphorylation  

Improving proteinuria, hematuria, 
kidney functions 

[151] 

Zhen-wu-tang Phosphorylation of NF-κB and IκBα, PPARγ Protecting podocyte injury [152] 

Fish oil Phosphorylation of MAPKs and JNK1/2; IL-6 Reduction of DON-induced IgAN [124] 

DHA Phosphorylation of p38, ERK1/2, JNK1/2; IL-6 Attenuation of DON-mediated IgAN [153] 

Icariin IKKβ and IκBα phosphorylation; NLRP3; NF-κB Ameliorating IgAN progression [154] 

 

phosphorylation of S6, resulting in reduction of 

proteinuria, IgA deposition, which protected renal 

function in IgAN rats. Targeting Akt/mTOR/p70S6K by 

rapamycin might be a good option for IgAN therapy 

[146]. Rapamycin increased autophagy and suppressed 

the phosphorylation of mTOR and S6K1 and reduced 

the expression of cyclin D1 in IgAN rats [147]. Tris 

DBA, a palladium complex, was found to ameliorate 

IgAN via inactivation of NLRP3 inflammasome and 

promotion of autophagy induced by SIRT1 and SIRT3. 

Tris DBA treatment in IgAN mice inhibited 

phosphorylation of ERK, p38 MAPK and JNK, 

suppressed ROS generation, contributing to improving 

kidney functions and albuminuria [148]. TwHF 

(tripterygium wilfordii Hook F), a compound for 

treating IgAN patients in China, inhibited 

phosphorylation of JUN and alleviated renal injury in 

the renal of IgAN mice [149]. 

 

 
 

Figure 3. Multiple compounds target protein phosphorylation to attenuate IgAN progression. These compounds include fish 

oil, Tris DBA, DHA, TwHF, Icariin, KF506, artemisinin, and rapamycin. 



www.aging-us.com 972 AGING 

Artemisinin, a kind of antimalarial drug, was reported to 

attenuate IgAN by reduction of fibrosis and oxidative 

stress via modulation of Akt phosphorylation and Nrf2 

nuclear translocation [150]. KF506, a calcineurin 

inhibitor and immunosuppressive compound, was 

reported to reduce calcineurin, TRPCs and α-SMA and 

phosphorylation of ERK1/2 in IgAN rats, leading to 

improving proteinuria, hematuria and kidney functions 

[151]. Zhen-wu-tang (ZWT), a Chinese medicine, was 

revealed to suppress the phosphorylation of NF-κB and 

IκBα and promote the expression of PPARγ in IgAN 

rats and LPS-induced podocytes, protecting podocyte 

injury [152]. Fish oil reduced DON-mediated IgAN via 

suppression of phosphorylation of MAPKs and JNK1/2 

and inhibition of IL-6 expression in mice [124]. 

Similarly, docosahexaenoic acid (DHA) reduced DON-

mediated IgAN, IL-6 transcription and phosphorylation 

of MAPKs in mice, including p38, ERK1/2 and JNK1/2 

[153]. Icariin reduced IKKβ and IκBα phosphorylation 

and blocked the degradation of IκBα, resulting in 

prevention of nuclear translocation of NF-κB and 

NLRP3 activation in IgAN rats, suggesting that icariin 

could ameliorate IgAN progression via modulation of 

NF-κB and NLRP3 pathways [154]. Altogether, 

compounds can attenuate the IgAN progression via 

targeting PTMs (Figure 3). 

 

CONCLUSIONS 
 

In conclusion, PTMs could play an essential role in the 

occurrence and progression of IgAN, including O-

glycosylation, phosphorylation, ubiquitination and 

deubiquitination. Multiple compounds target PTMs to 

attenuate the IgAN progression. Governing PTMs is a 

promising strategy for the treatment of IgAN. However, 

several issues need to be mentioned to fully understand 

the roles of PTMs in the development and progression 

of IgAN. For instance, sialylation, O-glycosylation, 

galactosylation, phosphorylation, ubiquitination and 

deubiquitination have been confirmed to be involved in 

IgAN progression. SUMO1 accelerated proliferation of 

mesangial cells via suppression of autophagy in IgAN, 

indicating that SUMOylation could contribute to the 

IgAN pathogenesis [155]. It is unclear whether 

acetylation, palmitoylation and protein methylation are 

involved in IgAN development. Hence, it is necessary 

to elucidate the roles of acetylation, palmitoylation and 

methylation in the progression of IgAN. Besides IgAN, 

PTMs are critical for lupus nephritis development and 

progression. For example, UCHL1 involves in lupus 

nephritis and could be a potential target for lupus 

nephritis [156]. UCHL1 is regulated by NF-κB in 

podocytes in glomerulonephritis [157]. In addition, 

UCHL1 modulates podocyte injury via destroying 

proteasomes in glomerulonephritis [158]. It is worth 

noting that E2 enzymes also participate in IgAN 

development. One group used high-density protein 

microarrays to measure IgG autoAbs in the normal 

controls and the serum of IgAN patients. IgG autoAbs, 

including UBE2W (ubiquitin-conjugating enzyme 

E2W), matriline 2, protein kinase D1 and DEAD box 

protein, were upregulated and associated with IgAN in 

the kidney glomerulus and tubules [159]. Zhou et al. 

explored the association between SNPs (single-

nucleotide polymorphisms) and SLE (systemic lupus 

erythematosus) in IgAN patients. UBE2L3 was found to 

be a share gene between IgAN and SLE. Ubiquitin/ 

proteasome-dependent degradation pathway was linked 

to IgAN and lupus nephritis [160]. Taken together, 

elucidating the functions and molecular mechanisms of 

PTMs in IgAN occurrence and progression could 

provide the novel therapeutic strategies for IgAN 

patients. Numerous compounds have been reported to 

attenuate the IgAN progression via targeting PTMs. 

Hence, modulating PTMs could treat the patients with 

IgAN in the future.  
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