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INTRODUCTION 
 

Melanoma, a prevalent cutaneous malignancy, arises 

from melanocytes and exhibits a propensity for meta-

stasis to diverse organs via lymphatic pathways [1, 2]. 

Heightened aggressiveness has been identified as a 

primary contributor to mortality in skin cancer cases  

[3, 4]. Middle-aged individuals are predisposed to 

melanoma, with males exhibiting a higher incidence 

than females [5, 6]. Recent years have witnessed an 

overall rise in melanoma incidence, with varying 

growth rates observed across different age cohorts [6]. 

Previously, the primary risk factor for the development 

of tumors was believed to be excessive exposure to 

ultraviolet rays [7]. Subsequent research has revealed 

that the presence of melanocytic nevi, family history, 

and genetic susceptibility are also significant risk 

factors [8]. Tumorigenesis is a multifactorial process 

involving the intricate interplay of various factors, 

including genes, epigenetics, and the environment [9]. 

The primary treatment approach for melanoma entails 

wide local excision, which may be complemented by 

chemotherapy and targeted therapy. Only a few areas 

that could not be operated on are treated with radiation 

therapy due to the radio resistance of melanoma [10]. 

 

The immune system assumes a pivotal role in the 

initiation of tumor formation [11]. During the early 

stages, melanoma impedes the elimination of cancer 

cells through two mechanisms of tumor immune evasion. 
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ABSTRACT 
 

Objective: This study was conducted to screen out immune-related genes in connection with the prognosis of 
melanoma, construct a prognosis model and explore the relevant mechanisms. 
Methods and materials: 1973 genes associated with immune system were derived from the Immport database, 
and RNA-seq data of melanoma and information of patients were searched from the Xena database. Cox 
univariate analysis, Lasso analysis and Cox multivariate analysis were used to screen out six genes to construct 
the model. Then the risk scores were estimated for patients based on our constructed prognosis model. 
Estimate was used to affirm that the model was about immune infiltration, and CIBERSORT was used to screen 
out immune cells associated with prognosis. TIDE was applied to predict the efficacy of immunotherapy. Finally, 
GSE65904 and GSE19234 were used to confirm the effectiveness of the model. 
Results: ADCYAP1R1, GPI, NTS might cause poor prognosis while IFITM1, KIR2DL4, LIF were more likely 
conductive to prognosis of melanoma patients and a model of prognosis was constructed on the basis of these 
six genes. The effectiveness of the model has been proven by the ROC curve, and the miRNAs targeting the 
screened genes were found out, suggesting that the immune system might impact on the prognosis of 
melanoma by T cell CD8+, T cell CD4+ memory and NK cells. 
Conclusions: In this study, the screened six genes were associated with the prognosis of melanoma, which was 
conductive to clinical prognostic prediction and individualized treatment strategy. 
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Subsequently, in the advanced stages, cancer cells  

detach from the primary site via tumor invasion and 

metastasize to distant regions of the body [12, 13], 

thereby exacerbating the disease and influencing the 

prognosis. Tumor infiltrating lymphocytes serve as a 

crucial role in the immune system’s defense against 

tumor metastasis [14]. Melanoma exhibits a high 

frequency of genetic mutations [15, 16], resulting in  

the generation of neoantigens that trigger the host’s 

immune response against the tumor. These neoantigens 

can be utilized for diagnostic, therapeutic, and prognostic 

purposes [17]. Consequently, personalized care and 

treatment strategies can be tailored to enhance patients’ 

physical and psychological well-being and facilitate 

their recovery. 

 

This study conducted an analysis of immune genes 

linked to melanoma, resulting in the identification of six 

genes that were utilized to develop a prognostic model 

aimed at personalized treatment and prognosis enhance-

ment. The accuracy of this prognostic model was also 

verified. In addition, the analysis has also revealed  

that the immune system might regulate the prognosis  

of melanoma through ‘the regulation of lymphocyte 

activation’, ‘activation of T cell’, ‘cytotoxicity of NK 

cell’, and ‘differentiation of Th1 and Th2 cell’ pathways. 

 

MATERIALS AND METHODS 
 

Data and patients 

 

1793 genes associated with immunity were extracted 

from the Immunology Database and Analysis Portal 

(Immport, http://www.immport.org/home). The RNA-

sequencing (RNA-seq) data of melanoma Fragments 

Per Kilobase Million (FPKM) in the Cancer Genome 

Atlas (TCGA) was obtained from the Xena database 

[18] and the amount of 455 melanoma patients with 

complete survival data was screened based on the 

relative information of patients. 

 

Data analysis 

 

According to patients’ gene expression level and survival 

information, we identified genes that were relevant  

to prognosis of melanoma from 1793 immune-related 

genes via Cox univariate analysis, and then we establish 

a model which could presage the patients’ prognosis of 

melanoma by combining the Least Absolute Shrinkage 

and Selection Operator (LASSO) analysis [19, 20] and 

Cox multivariate analysis (Supplementary Material 1).  

 

Differential expression analysis 

 

Depending on the prognostic model, risk scores were 

performed for the patients, and we divided 455 people 

with melanoma into high risk score (RS) and low  

RS groups stood on the median of risk scores. The 

analysis of differential expression was executed on the 

two groups through the “LIMMA” package [21], and 

enrichment analysis of differentially expressed genes 

was executed by the “Clusterprofiler” package [22, 23] 

(|logFC≥1, P<0.05|). 

 

The miRNA data set of TCGA’s melanoma  

was downloaded from Xena database, and people  

with melanoma were split into two groups following  

the above groups. Differential expression analysis was 

performed to construct the ceRNA network according  

to the principle of the ceRNA hypothesis [24] and the 

miRWalk [25, 26] database (|logFC≥0.7, P<0.05|). 

 

The gene mutation data set of TCGA’s melanoma was 

downloaded from Xena database, and samples were 

split into two groups by risk scores. The different of 

mutation between high RS group and low RS group was 

analyzed by the “maftools” package [27]. 

 

Immune infiltration and treatment 

 

Estimation of Stromal and Immune cells in malignant 

tumor tissues using Expression data (ESTIMATE) is a 

biological information software. In the cancer micro-

environment, immune cells and stromal cells are the 

main normal cells in tumor tissues, and ESTIMATE  

can use gene expression characteristics to speculate the 

contents of tumor cells and different infiltrations of 

normal cells [28]. 

 

The tumor microenvironment is closely related to  

the immunotherapy efficacy of tumor patients [29]. 

Researchers have classified the tumor microenvironment 

(TME) into four categories using 29 different functional 

gene sets: immune-enriched, non-fibrotic (IE); immune-

enriched, fibrotic (IE/F); fibrotic (F); and immune-

depleted (D) [30]. 

 

CIBERSORT (https://cibersort.stanford.edu/) is a method 

on the ground of linear support vector regression, which 

can describe the abundance of different cell subsets in 

complicated tissues from gene expression profiles [31].  

 
Tumor Immune Dysfunction and Exclusion (TIDE) is 

the tool to estimate the potential of tumor immunologic 

escape from the gene expression profiles of cancer 

samples. The score of TIDE computed for each sample 

can predict response to immune checkpoint blockade as 

a biomarker. 

 
Patients in the high RS group and the low RS  

group were evaluated by the ESTIMATE score, and 

their stromal cell immune cells and tumor purity were 

http://www.immport.org/home
https://cibersort.stanford.edu/
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obtained in the light of their gene expression. And  

we explored the relationship between risk score and 

TME. Then the CIBERSORT analysis was fulfilled  

on the two groups to compare 22 kinds of immune 

cells’ infiltration. The analysis of TIDE was used  

to predict the efficacy of immunotherapy in the two 

groups. Statistical significance was examined using 

Students t -tests. 

 
Validation 

 
The GEO database GSE65904 and GSE19234 were 

chosen as validation data sets [13, 32]. Then people 

with melanoma were divided into two groups depended 

on the model of prognosis, and survival analysis  

and ROC test on the high RS group and the low RS 

group were performed to verify the effectiveness of the 

model. 

 

RESULTS 

 
Establishment of prognostic model 

 
Cox univariate regression analysis was availed to select 

genes corresponding to the prognosis of melanoma from 

1793 immune-related genes, while Lasso regression 

analysis to further curtail the number of genes. And 

then, Cox multivariate regression analysis was used for 

analyzing the outcome of melanoma. Six genes closely 

associated with the prognosis of melanoma patients, 

including ADCYAP1R1, GPI, IFITM1, KIR2DL4,  

LIF and NTS, were elected to fabricate a prognosis 

model. The calculation equation of the risk score is  

as shown below: risk score= (-0.30899*KIR2DL4) +  

(-0.13892*IFITM1) + (0.28977*GPI) + (-0.16050*LIF) 

+ (0.48867* ADCYAP1R1) + (0.11124*NTS). The 

consistency index (CI) of this model was 0.67 (Figure 

1A). The survival curves of these six biomarkers were 

consistent with the positive and negative coefficients in 

the formula (Figure 1B–1G). 

 
Risk score and ROC curve analysis 

 
Each patient received their risk score based on  

the above model, while their survival situation was 

marked, and the expression of each gene in the model 

from patients was shown by a heat map (Figure 2A–

2C). Obviously, ADCYAP1R1, GPI and NTS might 

lead to poor prognosis for melanoma patients, while 

IFITM1, KIR2DL4 and LIF are more likely to improve 

outcomes. At the same time, we also analyzed the 

effectiveness of the model by the ROC time-dependent 
curve, within the Area Under the Curve (AUC) of  

12, 24 and 60 months scored of 0.69, 0.72 and 0.69, 

respectively (Figure 2D). 

Enrichment analysis 

 

The risk score which each patient with melanoma 

received respectively was sorted from smallest to 

largest, and in consonance with the median, the 

patients were separated into two groups, a high RS 

group and a low RS group. 14 genes highly expressed 

in the high RS group and 249 genes in the low RS 

group were chalked up through analysis of gene 

differential expression (| log FC |≥1, P<0.05). 

Enrichment analysis of these genes have shown that 

the pathways are mainly enriched in ‘the regulation  

of lymphocyte activation’, ‘activation of T cell’, 

‘cytotoxicity of NK cell’, and ‘differentiation of Th1 

and Th2 cell’ pathways (Figure 3). 

 

CeRNA network and somatic mutations 

 

Hinged on the above risk score grouping, the samples 

from the miRNA dataset were diverged into the high RS 

and low RS group for differential expression analysis. 

20 miRNAs strongly expressed in the high RS group 

and 18 miRNAs in the low RS group were screened by 

analysis of gene differential expression (| log FC |≥0.7, 

P<0.05) (Figure 4A, 4B). According to the theory of 

ceRNA hypothesis and miRWalk, targeted relationships 

between miRNAs with differential expression and these 

6 biomarkers were found (Figure 4C). 

 

In order to identify the difference of somatic mutations 

between the two sets, mutation data were envisaged by 

the “maftools” package in R software [27]. The Variant 

Allele Frequencies of top mutated genes from the high 

RS group were stronger than those in the low RS group, 

suggesting the low-risk patients have better prognosis 

(Figure 5A, 5B). And the forest plot showed specific 

mutant genes in two groups (Figure 5C). 

 

Immune infiltration analysis 

 

In the above two groups which were separated by 

ESTIMATE analysis, it was found that the low RS 

group might have a better Immune score, Stromal score 

and ESTIMATE score than the high RS group, while 

the tumor purity was the opposite (P <0.0001) (Figure 

6A–6D), which demonstrated the reliability of our model 

and the strong correlation between the model and the 

patients’ immune infiltrate.  

 

The TME can be divided into four subtypes:  

immune-enriched, non-fibrotic (IE); immune-enriched, 

fibrotic (IE/F); fibrotic (F); and immune-depleted (D).  

We calculated risk scores for melanoma patients in 
GSE22153 and TCGA using the prognostic model.  

It was found that IE and IE/F groups have lower risk 

scores compared to the F and D groups (Figure 6E, 6F).



www.aging-us.com 914 AGING 

 
 

Figure 1. Forest plot and survival analysis of biomarkers. (A) The Cox proportional hazards model based on ADCYAP1R1, GPI, IFITM1, 
KIR2DL4, LIF and NTS. (B) Survival analysis of KIR2DL4 in melanoma (P<0.0001). (C) Survival analysis of IFITM1 in melanoma (P<0.0001).  
(D) Survival analysis of GPI in melanoma (P=0.0026). (E) Survival analysis of LIF in melanoma (P=0.0006). (F) Survival analysis of ADCYAP1R1 in 
melanoma (P=0.00049). (G) Survival analysis of NTS in melanoma (P=0.0065). 
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Figure 2. Risk score and ROC curve of melanoma. (A) Risk score of melanoma patients distributed in ascending order. (B) Survival time 
and status of melanoma patients in order of increasing risk score. The red dots represent the surviving patients and the blue dots represent 
dead. (C) The heatmap shows the expression of these six biomarkers in melanoma in order of increasing risk scores. (D) The ROC curve for 1, 
2, 5-year survival prediction with AUC value. 
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Figure 3. Enrichment analysis of DEGs. (A) Biological process of DEGs. (B) Molecular function of DEGs. (C) Cellular component of DEGs. 

(D) KEGG pathways of DEGs. 
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CIBERSORT analysis was performed for immune 

infiltration of patients from the high- and low RS  

group. We found that patients in the low RS group had 

high expression in plasma cells, T cell CD8+, T cell 

CD4+ memory activated, and NK cells activated, while 

Macrophages M0 and Macrophages M2 were strongly 

expressed in the high RS group (Figure 7A). Moreover, 

we also analyzed the correlation between the 6 bio-

markers and immune cells, and found that KIR2DL4 

was related to T cell CD8+, T cell CD4+ memory 

activated, and NK cells activated (Figure 7B).  

 

According to the results of ESTIMATE,  

TME and CIBERSORT, the difference of prognosis 

between the above two groups might be closely 

associated with T cells. Thus, we used the TIDE to 

evaluate the therapeutic efficaciousness of immune 

checkpoint suppression in the two groups. The TIDE 

score of patients in the high RS group had a better 

score than those in low one (Figure 8A). The scores of 

the M2 subtype of tumor-associated macrophages 

(TAMs), myeloid-derived suppressor cells (MDSCs) 

and cancer-associated fibroblasts (CAFs) in the high 

RS group were higher than the low one (Figure 8B–

8D). All results showed that the patients in low RS 

group had greater prognosis under immune checkpoint 

inhibition therapy. 

 

Experimental validation 

 

In this study, samples of GSE65904 and GSE19234 

were graded according to the prognostic model, and the 

 

 
 

Figure 4. Identification of DEmiRNAs and ceRNA network. (A) Volcano plot of miRNAs between high RS and low RS groups.  

(B) Heatmap plot of miRNAs between high RS and low RS groups. (C) Differential expression of miRNAs-mRNAs network in melanoma. 
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scoring results were sorted from lowest to highest, and 

based on the median, the people participated in our 

research were split into two groups, the high RS group 

and the low RS group. The survival analysis of the two 

groups based on survival information suggested that 

people in the low RS group have significantly better 

outcomes than people in another group (P < 0.01) 

(Figure 8E, 8G). The ROC time-dependent curve was 

applied to verify the prognostic model and all AUCs 

were greater than or equal to 0.65 (Figure 8F, 8H). 

These results all validated the effectiveness of our 

model. 
 

DISCUSSION 
 

Melanoma, as a highly malignant tumor derived from 

melanocytes, accounts for about 3% of all tumors, 

mainly occurring in the skin, and a few in the mucosa 

and viscera [33]. Among the most common malignant 

tumors, the incidence of cutaneous malignant  

melanoma is the third (6.8%~20%) [34], and during 

these years, the morbidity and mortality have been still  

increasing. Compared with other solid tumors, malignant 

melanoma makes the clinical prognosis worse, with  

a median survival time of about 6 months and a 1- 

year overall survival rate (OS) of 25% [35]. Immune 

checkpoint inhibitor (ICI) has been presented to signi-

ficantly boost overall survival rate in persons with 

advanced-stage melanoma. Ipilimumab (the anti-CTLA-

4 antibodies) and nivolumab (the anti-PD-1 antibodies) 

serve as the routine treatment for advanced melanoma 

nowadays [36]. In this study, six genes (ADCYAP1R1, 

GPI, IFITM1, KIR2DL4, LIF, and NTS) that exhibited 

strong correlation with the prognosis of melanoma 

patients were identified. These genes were utilized  

to develop a prognostic model that demonstrates 

reliable predictive value and accuracy. Additionally, the  

model has the capability to predict the prognosis of ICI 

 

 
 

Figure 5. Somatic mutation analysis. (A) Boxplot of VAF in high RS group. (B) Boxplot of VAF in low RS group. (C) Forestplot of mutant 

genes in different groups. 



www.aging-us.com 919 AGING 

 
 

Figure 6. ESTIMATE analysis. (A) Immune score of high RS samples and low RS samples by ESTIMATE. (B) Stromal score of high RS samples 
and low RS samples by ESTIMATE. (C) ESTIMATE score of high RS samples and low RS samples by ESTIMATE. (D) Tumor purity of high RS 
samples and low RS samples by ESTIMATE. (E) Risk scores for four TME subtypes in samples of GSE22153. (F) Risk scores for four TME 
subtypes in melanoma samples of TCGA. 
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Figure 7. CIBERSORT analysis. (A) The heatmap of immune cell infiltration in high RS samples and low RS samples. Red represents low RS 

samples, and blue represents high-risk samples. (B) Correlation analysis between different immune cells and biomarkers. 
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therapy. Moreover, notable differences were observed 

in the infiltration of immune cells and activation of 

multiple signaling pathways between the two groups. 

 

In this study, six genes (ADCYAP1R1, GPI,  

IFITM1, KIR2DL4, LIF, and NTS) were identified  

as being closely associated with prognosis among a 

pool of 1793 melanoma-related genes. This selection 

was achieved through the implementation of Cox 

univariate regression analysis, Lasso analysis, and Cox 

multivariate regression analysis, ultimately leading to 

the establishment of a prognostic model. Subsequently, 

individuals diagnosed with melanoma were categorized 

into either a high-risk score (RS) group or a low  

RS group based on this model, and its efficacy was 

subsequently validated. Our findings indicate that 

ADCYAP1R1, GPI, and NTS may contribute to a  

poor prognosis in melanoma patients, while IFITM1, 

KIR2DL4, and LIF are more likely to be associated 

with a better prognosis in individuals with melanoma. 

These genes have been manifested to be involved in 

the tumorigenesis in precedent studies. ADCYAP1R1 

(ADCYAP Receptor Type I), a Protein Coding gene, 

involves in related pathways including synthesis and 

secretion of Aldosterone as well as Signaling mediated 

by G-protein coupled receptor (GPCR). GO annotations 

associated with this gene include activities of G 

protein-coupled receptor and trans membrane signaling 

receptor [37]. The key role of LGR4, a member of  

the GPCR family, has been demonstrated in tumor 

immunoregulation, and tumor immunotherapy strategies 

targeting LGR4 have been proposed and validated. 

Inhibition of Rspo-Lgr4 switches the polarization of 

macrophage in order to facilitate checkpoint blockade 

therapy [38]. GPI can encode the protein that is a 

member of the glucose phosphate isomerase protein 

family which has been determined as a moonlighting 

protein, because it is capable to execute distinct 

functions mechanistically [39]. The encoded protein, 

plays a role as a neurotrophic factor extracellularly, 

which can promote survival of skeletal motor and 

sensory neurons, and also as a lymphokine to induce 

secretion of immunoglobulin [40]. According to the 

auxiliary function of tumor-secreted cytokine and 

angiogenic factor, it is also as an autocrine motility 

factor [41]. Neuromedin N and neurotensin have a 

common precursor, which is encoded by NTS [42]. 

Neurotensin is a secreted tripeptide extensively distri-

buted in the central nervous system and it may be 

involved in maintenance of intestinal structure and 

function, and regulation of fat metabolism [43]. Diseases 

associated with IFITM1 include Influenza and Dengue 

Virus [44]. Its related pathways are Interferon gamma 

signaling [45] and Innate Immune System [46]. GO 

annotations connected with this gene include obsolete 

signal transducer activity, downstream of receptor 

[47]. Killer cell immunoglobulin-like receptors (KIRs) 

are expressed by NK cells and subsets of T cells as 

transmembrane glycoproteins [48]. KIR proteins are 

deemed to play a part in regulation of the immune

 

 
 

Figure 8. TIDE analysis and validation. (A) TIDE score of high RS samples and low RS samples. (B) CAF score of high RS samples and low 

RS samples. (C) MDSC score of high RS samples and low RS samples. (D) TAM M2 score of high RS samples and low RS samples. (E) Survival 
analysis of risk score in GSE65904. (F) The ROC curve for 4, 6, 8, 10-year survival prediction with AUC value. (G) Survival analysis of risk score 
in GSE19234. (H) The ROC curve for 10, 20, 30-month survival prediction with AUC value. 
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response because the ligands belonging to subsets  

of HLA class molecules [49]. Leukemia and Myeloid 

Leukemia are associated with LIF (Interleukin 6 Family 

Cytokine), which can code related protein [50]. Among 

its related pathways is Interleukin-6 family signaling 

[51]. Therefore, the above studies suggested the ratio-

nality and feasibility of the screened 6 genes in the 

prediction of melanoma incidence and prognosis. 

 
The analysis of differential expression on the genes of 

patients in the two groups was completed, resulting in 

the identification of 14 genes highly expressed in the 

high RS group and 249 genes in the other group. The 

results of pathway enrichment analysis demonstrated 

that these genes were mainly associated with several 

pathways including lymphocyte activation regulation, 

activation of T cell, cytotoxicity of NK cell, and dif-

ferentiation of Th1 and Th2 cell. In contrast to T cells, 

which exhibit specificity towards a singular aberrant 

molecule on cancerous cells and initiate a targeted 

assault, natural killer (NK) cells have demonstrated 

their versatility in the initial defense against cancer. 

NK cells not only serve as crucial effector cells in the 

innate immune response, but also function as regulators 

of diverse immune cell populations. Joy Hsu et al. [52] 

found that the level of PD-L1-positive NK cells was 

specifically connected with the outcome of patients 

with cancer after analyzing the NK cells in human  

and mice (tumor cells were PD-L1-negative). Under 

the action of immune checkpoint inhibitors, PD-L1-

positive NK cells can not only eliminate tumor cells 

immediately, but also secrete cytokines to control tumor 

growth. Combined with NK cell activating factor on 

the basis of PD-L1 antibody can also significantly 

improve the therapeutic effect. Therefore, NK cells 

still have more potential to be explored in tumor 

therapy. Previous studies have shown that in tumor 

microenvironment (TME), immune infiltration is vital 

in tumor genesis and progression, and affects the 

clinical prognosis of tumor patients [53, 54]. In this 

study, we found that the melanoma prognostic model 

constructed using these 6 genes was highly correlated 

with the patient’s immune infiltration. To explore  

the correlation with circumstance on immune cell 

infiltration deeply, we continued to use CIBERSORT 

analysis to compare patients in the two groups,  

and found that different groups expressed different 

immune cell subtypes. People in the low RS group 

showed high expression in plasma cells, T cell CD8+, 

T cell CD4+ memory activated, and NK cells activated, 

while Macrophages M0 and Macrophages M2 were 

highly expressed in another group. Ali et al. [55, 56] 

have shown that the imbalance of the proportion of 

immune cell components has strongly correlation with 

poor outcome and low survival rate of patients with 

cancer. The past studies have covered that T cell CD8+ 

and NK cells perform a vital role in tumor immunity 

[57]. Furthermore, an examination was conducted to 

investigate the association between the aforementioned 

6 biomarkers and immune cells. The results revealed  

a significant correlation between KIR2DL4 and T cell 

CD8+, T cell CD4+ memory activated, as well as NK 

cells activated. It is suggested that the abundant 

expression of T cell CD8+ and NK cells might reduce 

the risk elements related to melanoma and ameliorate 

the prognosis of sick people. 

 

The ICI therapy is the main treatment in the  

current therapeutic method of melanoma which can 

significantly upgrade the overall survival rate of people 

with advanced melanoma [36]. CAFs, MDSCs and 

TAMs can restrict infiltration of T lymphocyte in 

tumors [58]. In the study, we found that the scores  

of CAFs, MDSCs and TAMs in the high RS group 

were better than those in another group, which means 

the people with high risk have higher T cell exclusion 

and lower infiltration of cytotoxic T lymphocytes. 

Although the ICI enhance the survival rate of skin 

melanoma patients, only some patients could be bene-

fited from the ICI treatment [59]. Meanwhile, patients 

are also faced with heavy economic and psychological 

burden in the treatment process. The TIDE score could 

presage the response to ICI therapy [60]. A positive 

correlation is observed between lower TIDE scores 

and improved prognosis. Our study reveals that the 

low-risk group exhibits lower TIDE scores, indicating 

potential benefits from ICI therapy. Consequently, the 

model may serve as a valuable tool for determining the 

suitability of ICI treatment. 

 

Our research inevitably presents opportunities for 

further improvement. Firstly, the study entails a bio-

informatics analysis utilizing publicly available data-

bases, thereby limiting the authenticity of the molecular 

mechanism analysis results due to the absence of  

in vivo or in vitro experiments. Secondly, the sample 

data obtained from the public database is subject  

to restrictions, potentially introducing random errors. 

Moreover, our study only provides some new potential 

research targets for the prognosis and treatment of 

melanoma. But the deeper molecular mechanism still 

needs to be further explored. 

 

CONCLUSIONS 
 

In our study, an effective prognostic model for 

melanoma was established. All bioinformatics results 

demonstrated the potential of the six key genes as 

prognostic markers of melanoma patients and the 

strong correlation of the model with immune infil-

tration. This study has provided more information for 

the pathogenesis and clinical treatment of melanoma. 
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