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INTRODUCTION 
 

Acute myeloid leukaemia (AML) refers to a group  

of blood-forming malignancies that are derived from 

malignant clones of haematopoietic stem/progenitor 

cells and characterized by proliferation of bone marrow 

blasts, inhibition of normal haematopoiesis, and blockade 

of differentiation [1]. The annual incidence of AML  

is 0.4 to 2.8 per 100,000, and AML accounts for 

approximately 40% of leukaemia-related deaths [2–4].  

 

AML is a highly heterogeneous disease with complicated 

gene regulatory networks. TNF-alpha induced protein  

2 (TNFAIP2) is relevant to the initiation of AML  

[5]. TNFAIP2 participates in multiple biological  

functions, including cell differentiation [5–8]. TNFAIP2 

is highly expressed in bone marrow haematopoietic 

stem/progenitor cells and peripheral blood monocytes 

[7, 9]. Some studies showed that TNFAIP2 could be 

involved in RA signalling; thus, it could be considered a 

potential target gene for the therapeutic induction of cell 

differentiation in acute promyelocytic leukaemia [7, 10, 

11]. Some studies reported that TNFAIP2 expression is 

upregulated during U937 cell differentiation, indicating 

that it has a close association with promoting leukaemic 

cell differentiation [10]. Although these studies have 

www.aging-us.com AGING 2024, Vol. 16, No. 2 

Research Paper 

The miR-146b-3p/TNFAIP2 axis regulates cell differentiation in 
acute myeloid leukaemia 
 

Gaochen Lan1,*, Xiaolong Wu2,*, Aiyue Zhao1,*, Jinjian Lan3, Qiusheng Guo4, Bolin Wang5, 
Fenglin Shen3, Xiaoling Yu5, Yanna Zhao5, Ruilan Gao5, Tianwen Xu1 
 
1Department of Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China 
2College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China 
3The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, China 
4Department of Oncology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China 
5Institute of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China 
*Equal contribution 
 
Correspondence to: Ruilan Gao, Tianwen Xu; email: 19843009@zcmu.edu.cn, 9199612046@fjmu.edu.cn 
Keywords: differentiation, TNFAIP2, miR-146b-3p, AML, mechanism 
Received: June 29, 2023 Accepted: December 1, 2023  Published: January 24, 2024 
 
Copyright: © 2024 Lan et al. This is an open access article distributed under the terms of the Creative Commons Attribution 
License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original 
author and source are credited. 

 

ABSTRACT 
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differentiation. miR-146b-3p directly targeted TNFAIP2, resulting in a decrease in TNFAIP2 expression. Forced 
expression of TNFAIP2 or knockdown of miR-146b-3p significantly induced the differentiation of MOLM-13 
cells. In this study, we demonstrated that TNFAIP2 is a critical driver in inducing differentiation and that the 
miR-146b-3p/TNFAIP2 axis involves in regulating cell differentiation in AML. 
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provided us with insight into the connection among 

differential expression of TNFAIP2, cell differentiation 

and the treatment of leukaemia, whether TNFAIP2 can 

directly induce leukaemic cell differentiation is not fully 

clarified, and the mechanism is still unclear.  

 

Currently, the competing endogenous RNA (ceRNA) 

postulate yielded emerging perspectives for leukaemia 

investigation [12]. This hypothesis holds that miRNAs 

inhibit mRNA transcription or protein translation [13, 

14]. miRNAs constitute a class of non-coding RNAs 

that are approximately 20-25 nucleotides in length [15]. 

The main functions of miRNAs include regulating 

growth and development, haematopoietic differentiation, 

organ formation, cell proliferation, apoptosis and 

metabolism, etc. [16]. A miRNA combines with the  

3’ untranslated region (3’UTR) of a targeted mRNA, 

leading to decreased translation of the protein encoded 

by the target gene through inhibition of target gene 

expression or posttranslational modification [17]. 

 

Using the TargetScan (https://www.targetscan.org/ 

vert_80/) bioinformatics prediction database, we found 

that many miRNAs can directly target TNFAIP2.  

In addition, some miRNAs were downregulated  

upon monocytic leukaemia cell differentiation. We 

determined the overlap between these two gene sets 

and identified miR-146b-3p. Therefore, we hypo-

thesised that miR-146b-3p directly targets TNFAIP2, 

thus regulating AML cell differentiation. miR-146b- 

3p targets NF2, MAP3K10, HPGD, FAM107A, etc. 

mRNAs, resulting in tumorigenesis and progression in 

multiple malignant diseases [18–21]. Accumulating 

evidence has shown that miR-146b-3p participates  

in cell differentiation. miR-146b-3p inhibits MDFIC 

mRNA, thus blocking myoblast differentiation [22]. 

miR-146b-3p regulates differentiation and iodine 

uptake through the miR-146b-3p/PAX8/NIS axis  

[23]. In view of these observations, we hypothesized 

that the miR-146b-3p/TNFAIP2 axis is a possible 

mechanism by which differentiation is induced in 

AML cells. 

 

RESULTS 
 

TNFAIP2 expression was downregulated in AML 

patients 

 

Using the GSE9476 dataset and Oncomine data- 

base, we analysed differentially expressed TNFAIP2 

transcript among AML patients and healthy individual 

samples. The value of TNFAIP2 expression in AML 

samples was 7.36±1.44, markedly lower than the value 

of 10.81±0.37 in normal samples (P < 0.05, Figure 

1B). A similar result was achieved in the analysis of 

the Oncomine database (P < 0.05, Figure 1A). 

Identification of the 100 genes most associated with 

TNFAIP2 

 

We used the LinkedOmics database and Pearson 

correlation analysis to analyse the correlations bet- 

ween TNFAIP2 and other genes. The top 100 genes 

correlated with TNFAIP2 were obtained; these genes 

included LFNG, C10orf54, FGR, TNFRSF1B, and 

ITGB2, which were positively correlated with 

TNFAIP2, and CDK6, BCKDHB, KDM5B, SCCPDH, 

and C5orf33, which were negatively correlated with 

TNFAIP2 (P < 0.05, Figure 1C–1E). 

 

Enrichment analysis of TNFAIP2-correlated genes 

 

GO enrichment analyses demonstrated that TNFAIP2-

correlated genes where enriched in multiple items, such 

as neutrophil-mediated immunity, neutrophil activation, 

neutrophil degranulation, ficolin-1-rich granule, and 

phosphatidylinositol phosphate binding (Figure 2A–

2C). Additionally, the TNFAIP2-correlated genes were 

markedly enriched in pathways such as Tuberculosis, 

Osteoclast differentiation, Lysosome, Phagosome, and 

B-cell receptor signaling (Figure 2D). Subsequently, the 

results of GSEA revealed that several differentiation-

associated events were enriched in the group with high 

expression of TNFAIP2-correlated genes, including 

Neutrophil, Megakaryocyte, Haematopoietic Stem Cell, 

Neural Stem Cell, White Adipocyte and so on. These 

results demonstrated a high expression of genes relevant 

to TNFAIP2 was involved in the increased haemato-

poietic differentiation in AML (Figure 3A–3G). 

 
Relationships between TNFAIP2 expression and 

immune infiltration 

 

High expression of TNFAIP2 was markedly positively 

associated with the infiltration degree of macrophages  

(r = 0.551, P < 0.001), neutrophils (r = 0.581, P < 0.001), 

and dendritic cells (r = 0.290, P < 0.001). Moreover, the 

infiltration degree of natural killer cells and T cells in 

the TNFAIP2 high expression group were significantly 

lower than those in the TNFAIP2 low expression group 

(all P < 0.05) (Figures 4A–4G). TNFAIP2 may involve 

in the tumour immunomodulation, thus playing a role  

in inducing cell differentiation and other biological 

functions. 

 
Establishment of the risk score system 

 

In total, 12 genes, including TNFAIP2, were identified 

to be correlated with the prognosis of 150 AML cases 

(the patients’ features are listed in Supplementary Table 

2). On the basis of 12 prognostic genes, risk scores  

were calculated and categorised into different risk arms 

depending on the median scoring. The risk score was

https://www.targetscan.org/%20vert_80/
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distributed among the 150 patients as shown in Figure 

5A. Moreover, survival time distributions suggested the 

possibility that there was a positive correlation between 

higher risk scores and worse outcome. Subsequently, 

the least absolute shrinkage and selection operator 

(LASSO) regression algorithm was used to refine the 

gene sets by calculating regression coefficients (Figure 

5B, 5C). 

 

The expression of TNFAIP2 is upregulated upon 

acute myeloid leukaemia cell differentiation 

 

For exploring the association as TNFAIP2 expression 

and AML cell differentiation, THP-1 cells processed with 

50 ng/mL PMA over 24-72 hours, and the proportions 

of cells positive for the differentiation-related cell 

surface antigens and TNFAIP2 were determined. After 

PMA treatment, the CD11b+ and CD14+ THP-1 cell 

frequencies were significantly elevated versus those in 

the controlled arm (P < 0.05, Figure 6A–6D). Similarly, 

the immunofluorescence intensity was increased for 

CD11b and CD14. (Figure 6E, 6F). Moreover, TNFAIP2 

protein and mRNA expression were significantly 

elevated in PMA-treated THP-1 cells compared to 

controls (P < 0.05, Figure 7B, 7C). In addition, the 

expression level of TNFAIP2 protein was also increased 

in MOLM-13 cells treated with PMA (Figure 7A). 

These findings indicated that TNFAIP2 expression was 

upregulated upon cell differentiation. 

 

TNFAIP2 induces the differentiation of AML cells 

 

To prove whether TNFAIP2 can induce the 

differentiation of monocytic leukaemia cells, we 

 

 
 

Figure 1. Differentially expressed genes and TNFAIP2-correlated genes in AML patients. (A) The transcript level of TNFAIP2 was 

significantly decreased in AML samples compared with normal samples in the Oncomine database. (B) The expression of TNFAIP2 mRNA was 
markedly decreased in AML samples compared with normal samples in the GSE9476 dataset. (C) Volcano plot of TNFAIP2-correlated genes. 
(D) Heatmap of the top 50 genes positively correlated with TNFAIP2, based on correlation coefficients. (E) Heatmap of the top 50 genes 
negatively correlated with TNFAIP2, based on correlation coefficients. BM: normal bone marrow samples. Normal distribution, t test,  
** P < 0.01. 
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transduced MOLM-13 cells with the TNFAIP2 

overexpression (TNFAIP2-OE) construct and 

observed the expression of CD11b and CD14. qRT-

PCR assay demonstrated that expressed TNFAIP2 

mRNA was markedly upregulated in a TNFAIP2- 

OE arm versus a negative control arm (P <  

0.05, Supplementary Figure 1), which indicated  

that TNFAIP2-OE successfully transfected MOLM- 

13 cells. Flow cytometry results revealed that  

the CD11b+ and CD14+ cell frequencies were 

significantly increased in MOLM-13 cells transduced 

with the TNFAIP2-OE construct versus a negative 

control arm (P < 0.05, Figure 8A–8D). In addition,  

the immunofluorescence intensities of CD11b and 

CD14 in a TNFAIP2-OE arm were higher than  

those in a negative control arm (Figure 8E). These 

results indicated that TNFAIP2 can induce AML cell 

differentiation. 

miR-146b-3p directly targets TNFAIP2 mRNA 

 

Using the TargetScan bioinformatics prediction database, 

we found that many miRNAs can directly target 

TNFAIP2. In addition, some miRNAs were down-

regulated upon THP-1 cell differentiation (data not 

shown). We determined the overlap between these two 

gene sets and identified miR-146b-3p. Using the 

TargetScan database, we predicted that bases 2~7 at the 

5’ end of miR-146b-3p are complementary to the 3’UTR 

of TNFAIP2 mRNA (Figure 9A). To verify the direct 

binding of miR-146b-3p to the 3’UTR of TNFAIP2, we 

generated luciferase constructs containing the potential 

miR-146b-3p binding site in the 3’UTR of TNFAIP2  

and a mutant version of the binding site (Figure 9A).  

The result indicated that the luciferase activity was dis- 

tinctly suppressed in the miR-146b-3p mimic+TNFAIP2 

3'UTR-Wt group compared with the miR-146b-3p 

 

 
 

Figure 2. GO/KEGG enrichment analysis of genes correlated with TNFAIP2 in AML patients. (A) The GO biological process 

functional enrichment analysis of TNFAIP2-correlated genes. (B) GO cellular component functional enrichment analysis of TNFAIP2-correlated 
genes. (C) GO molecular function functional enrichment analysis of TNFAIP2-correlated genes. (D) KEGG pathway enrichment analysis of 
genes correlated with TNFAIP2. 



www.aging-us.com 1500 AGING 

 

 
 

Figure 3. GSEA of genes correlated with TNFAIP2 in AML patients. (A) The ridge plot of the GSEA results of TNFAIP2-correlated genes 
revealed associations with multiple cell differentiation pathways. (B–G) Neutrophil, Megakaryocyte, Haematopoietic Stem Cell, Neural Stem 
Cell, White Fat Cell and White Adipocyte. 
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Figure 4. The expression of TNFAIP2 was associated with immune infiltration in the AML microenvironment. (A) Correlations 

between TNFAIP2 expression and the relative abundances of 24 types of immune cells. The size of the dot corresponds to the absolute 
Spearman correlation coefficient. (B–G) The relationships between the expression of TNFAIP2 and the relative enrichment scores of immune 
cells (including macrophages, neutrophils, dendritic cells, natural killer cells, B cells and T cells). 
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Figure 5. Risk score analysis and LASSO regression based on TNFAIP2-correlated genes by Cox regression analysis in patients 
with AML. (A) Risk score and survival time distributions and heatmaps of the expression levels of TNFAIP2-correlated genes in the TCGA 

database. (B) Cross-validation for tuning parameter screening for LASSO regression. (C) LASSO coefficient profiles. 

 

 
 

Figure 6. PMA induced THP-1 cell differentiation. (A) Flow cytometric determination of the CD11b+ THP-1 cell proportion. (B) The 
CD11b statistical histogram. (C) Flow cytometric determination of the CD14+ THP-1 cell proportion. (D) The CD14 statistical histogram.  
(E) CD11b and (F) CD14 immunofluorescence intensity in THP-1 cells. Normal distribution, ANOVA test, * P < 0.05, **** P < 0.0001. 
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mimic+TNFAIP2 3’UTR-Mut group (Figure 9B). These 

results confirmed that miR-146b-3p directly binds to 

the TNFAIP2 3’UTR. In addition, the expression of 

TNFAIP2 was upregulated in MOLM-13 cells trans-

duced with sh miR-146b-3p vs. control group (P < 

0.05, Figure 9C, 9D). These results demonstrated that 

inhibiting miR-146b-3p can attenuate its inhibitory 

effect on TNFAIP2 expression. 

Inhibition of miR-146b-3p induces AML cell 

differentiation 

 

To elucidate the association as miR-146b-3p expression 

and cell differentiation, we transduced MOLM-13  

cells with short hairpin miR-146b-3p (sh miR-146b- 

3p) and observed the CD11b+ and CD14+ cell  

frequencies. qRT-PCR assay demonstrated that expressed

 

 
 

Figure 7. The expression levels of TNFAIP2 mRNA and protein were increased upon monocytic leukaemia cell differentiation 
induced by PMA. (A) Immunocytochemistry was used to evaluate TNFAIP2 protein expression in MOLM-13 cells. (B) The 

immunofluorescence intensity of TNFAIP2 protein in THP-1 cells. (C) qRT‒PCR analysis of TNFAIP2 mRNA expression in THP-1 cells. Normal 
distribution, ANOVA test, ** P < 0.01, *** P < 0.001. 
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Figure 8. Forced expression of TNFAIP2 significantly induced the differentiation of MOLM-13 cells. (A) Flow cytometric 
determination of the CD11b+ cell proportion in transduced MOLM-13 cells. (B) The CD11b statistical histogram. (C) Flow cytometric 
determination of the CD14+ cell proportion in transduced MOLM-13 cells. (D) The CD14 statistical histogram. (E) The immunofluorescence 
intensity of CD11b and CD14 in transduced MOLM-13 cells. Normal distribution, t test, ** P < 0.01. 
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miR-146b-3p was markedly downregulated in a  

sh miR-146b-3p arm versus a negative control arm  

(P < 0.05, Supplementary Figure 2), suggesting that  

sh miR-146b-3p was successfully transduced into 

MOLM-13 cells. Flow cytometry results revealed  

that the CD11b+ and CD14+ cell frequencies were 

markedly increased in MOLM-13 cells transduced 

with sh miR-146b-3p versus a negative control arm  

(P < 0.05, Figure 10A–10D). Moreover, the immuno-

fluorescence intensities of CD11b and CD14 in a sh 

miR-146b-3p group were higher than those in a 

negative control arm (Figure 10E). Therefore, these 

findings showed that suppression of miR-146b-3p 

expression can induce MOLM-13 cell differentiation. 

The above findings showed that overexpression of 

TNFAIP2 can induce the differentiation of MOLM-13 

cells and that miR-146b-3p directly targets TNFAIP2. 

Considering the above results collectively, we proved 

that suppression of miR-146b-3p expression can 

attenuate the suppression of TNFAIP2 expression, 

thereby inducing the differentiation of MOLM- 

13 cells. This finding might be explained by the 

conclusion that cell differentiation is indeed related  

to the miR-146b-3p/TNFAIP2 axis. 

DISCUSSION 
 

TNFAIP2 is abundantly expressed in bone marrow 

HSCs/HPCs and peripheral blood monocytes, and it 

participates in multiple biological functions, including 

cell differentiation [7, 8]. TNFAIP2 is highly expressed 

in various malignant tumours, such as nasopharyngeal 

carcinoma, triple-negative breast cancer, and glioma 

[24–26]. TNFAIP2 is positively correlated with poor 

prognosis in oesophageal carcinoma [27]. However, it 

has been reported that elevated levels of TNFAIP2 are 

strongly correlated with prolonged survival in multiple 

malignancies, including bladder urothelial carcinoma, 

sarcoma and skin cutaneous melanoma [7]. In this 

study, we found that the expression of TNFAIP2 in 

AML samples was obviously lower than that in normal 

bone marrow samples in the GSE9476 dataset, and this 

result was confirmed in another independent cohort in 

the Oncomine database. Thus, TNFAIP2 could act as a 

tumour suppressor gene in AML. 
 

Accumulating evidence has revealed that TNFAIP2 

participates in cell differentiation. The differentiation of 

pluripotent stem cells depends on TNFAIP2 expression 

 

 
 

Figure 9. miR-146b-3p directly targets TNFAIP2. (A) TargetScan prediction of possible binding sites between miR-146b-3p and TNFAIP2. 

(B) A dual-luciferase reporter assay was used to measure luciferase activity (normal distribution, t test). (C) Western blot analysis of TNFAIP2 
protein expression in transfected MOLM-13 cells. (D) qRT‒PCR detection of TNFAIP2 mRNA expression in transfected MOLM-13 cells (non-
normal distribution, nonparametric test Mann-Whitney). ** P < 0.01. 
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Figure 10. Knockdown of miR-146b-3p significantly induced the differentiation of MOLM-13 cells. (A) Flow cytometric 
determination of the CD11b+ cell proportion in transduced MOLM-13 cells. (B) The CD11b statistical histogram. (C) Flow cytometric 
determination of the CD14+ cell proportion in transduced MOLM-13 cells. (D) The CD14 statistical histogram. (E) The immunofluorescence 
intensity of CD11b and CD14 in transduced MOLM-13 cells. Normal distribution, t test, ** P < 0.01. 
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[28]. The TNF-α signalling pathway activates VIM, 

which directs cell differentiation in the haematopoietic 

system. Recent studies proved that the VIM protein 

expression is upregulated upon induction of haemato-

poietic stem cell differentiation, but when TNFAIP2  

is silenced, the expression of VIM decreased, and  

the differentiation process is arrested. TNFAIP2 may  

be involved in APL cell differentiation as a potential 

target gene [10, 11]. The expression of TNFAIP2 is 

upregulated upon U937 cell differentiation, indicating 

that TNFAIP2 might be relevant to the promotion of 

cell differentiation in haematological malignancies [10]. 

Although these studies have provided us with insight 

into the relationship between TNFAIP2 and cell 

differentiation, whether TNFAIP2 can directly induce 

AML cell differentiation has not been fully elucidated, 

nor has the underlying mechanism. Therefore, it is 

necessary to further investigate what role and probable 

mechanisms TNFAIP2 plays in inducing AML cell 

differentiation. 

 

In this study, via the LinkedOmics database and 

GO/KEGG and gene set enrichment analyses, we found 

that TNFAIP2 and its correlated genes could be closely 

associated with several differentiation-related biological 

processes, such as Osteoclast, Neutrophil, Megakar-

yocyte, Haematopoietic Stem Cell, Neural Stem Cell, 

and White Adipocyte. In addition, elevated TNFAIP2 

expression was remarkably related to a lower risk  

score in AML patients, and LASSO regression showed 

that TNFAIP2 was effective as a prognostic marker of 

AML. The etiopathogenesis of AML is firmly connected 

with differentiation arrest in haematopoietic stem cells 

in bone marrow; therefore, we speculated that TNFAIP2 

is associated with cell differentiation in AML. 

 
After PMA treatment, the CD11b+ and CD14+ THP-1 

cell frequencies were significantly increased, and the 

expression levels of TNFAIP2 mRNA and protein were 

increased upon AML cell differentiation, demonstrating 

that TNFAIP2 might be related to cell differentiation  

in AML. Moreover, forced expression of TNFAIP2 

increased the frequencies of CD11b+ and CD14+ 

MOLM-13 cells. Our results indicated that TNFAIP2 

might directly induce AML cell differentiation, 

constituting one of the mechanisms by which PMA 

induces the differentiation of AML cells. 

 
To investigate the upstream mechanism of TNFAIP2 

induced AML cell differentiation, Targetscan was  

used to predict the upstream miRNAs interacting with 

TNFAIP2. In addition, some miRNAs were down-

regulated upon monocytic leukaemia cell differentiation. 

We determined the overlap between these two gene  

sets and identified miR-146b-3p. A miRNA binds to  

the 3’ untranslated region (3’UTR) of a target mRNA, 

resulting in decreased translation of the protein encoded 

by the target gene through inhibition of target gene 

expression or posttranslational modification. miR-146b-

3p targets NF2, MAP3K10, HPGD, FAM107A, etc. 

mRNAs, resulting in tumorigenesis and progression  

in multiple malignant diseases [18–21]. To verify  

the direct binding of miR-146b-3p to the 3’UTR of 

TNFAIP2, we generated luciferase constructs containing 

the potential miR-146b-3p binding site in the 3’UTR  

of TNFAIP2 and a mutant version of the binding site. 

The result confirmed that miR-146b-3p directly binds  

to the TNFAIP2 3’UTR. In addition, the expression  

of TNFAIP2 was upregulated in MOLM-13 cells 

transduced with sh miR-146b-3p vs. control group. 

These results demonstrated that inhibiting miR-146b- 

3p can attenuate its inhibitory effect on TNFAIP2 

expression. To our knowledge, there are very few 

reports on miR-146b-3p targeting TNFAIP2. These 

findings provide the basis for the following study  

that miR-146b-3 inhibits AML cell differentiation by 

targeting TNFAIP2. 

 

Accumulating evidence suggests that miR-146b-3p 

participates in cell differentiation through the PI3K/ 

AKT and PAX8/NIS pathways 22, 23. In this study,  

it is predicted that miR-146b-3p directly targeted 

TNFAIP2, and the dual-luciferase reporter assay results 

further verified that miR-146b-3p bound to the 3’UTR 

of TNFAIP2, thereby inhibiting the expression of 

TNFAIP2. In addition, interference with miR-146b-3p 

expression significantly upregulated the expression of 

TNFAIP2 and elevated the CD11b+ and CD14+ cell 

frequencies in MOLM-13 cells. Our findings indicated 

that TNFAIP2 might directly induce cell differentiation. 

It was shown that interference with miR-146b- 

3p expression could alleviate the inhibitory effect of 

TNFAIP2, thereby inducing differentiation in MOLM-

13 cells. In summary, we demonstrated that TNFAIP2  

is a critical driver in inducing differentiation and that 

the miR-146b-3p/TNFAIP2 axis involves in regulating 

cell differentiation in AML. 

 

CONCLUSIONS 
 

Taken together, this study demonstrates that TNFAIP2 

is an important modulator of AML cell differentiation. 

The expression of TNFAIP2 in AML samples was 

obviously lower than that in normal bone marrow 

samples. TNFAIP2 and its correlated genes were 

enriched in several differentiation-related pathways. 

Elevated TNFAIP2 expression was remarkably 

relevant to a lower risk score in AML patients, and 

LASSO analysis showed that TNFAIP2 was effective 

as a prognostic marker of AML. Furthermore, miR-

146b-3p directly targets and inhibits TNFAIP2. Forced 

expression of TNFAIP2 or knockdown of miR-146b- 
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3p can significantly induce AML cell differentiation; 

thus, we believe that the miR-146b-3p/TNFAIP2 axis  

is likely to be one of the potential mechanisms driving 

cell differentiation in AML. 

 

MATERIALS AND METHODS 
 

Differential expression analysis of TNFAIP2 

 

The GSE9476 dataset was downloaded from the GEO 

database and included gene sequencing information 

from 26 AML patients and 10 healthy individuals. 

Differences in TNFAIP2 mRNA expression between 

AML and normal tissues were analysed using GraphPad 

Prism 8.0.2.  

 

In addition, Oncomine was used to analyse 

differentially expressed TNFAIP2 in tumour and 

normal tissues with thresholds of |log2 fold change 

(FC)| > 2 and Padj < 0.05 [29]. 

 

LinkedOmics identification of TNFAIP2-correlated 

genes 

 

LinkedOmics (http://www.linkedomics.org/) [30] 

provides comprehensive multiomics data for 32 cancer 

types in TCGA. In our study, the Pearson correlation 

coefficients were calculated to analyse the correla-

tions between the expression of TNFAIP2 and that of  

other genes. A P < 0.05 was regarded as statistically 

significant. 

 

GO/KEGG enrichment analyses 

 

Genes correlated with TNFAIP2 based on the 

thresholds of |log2FC| > 2 and Padj < 0.05 were 

included in the analysis. GO including BP, CC, and 

MF categories, as well as KEGG pathing analyses, 

were performed by the R package clusterProfiler (see 

Supplementary File 1 for the specific code) [31]. 

 

Gene set enrichment analysis (GSEA) 

 

The R package clusterProfiler (3.14.3) was used for 

GSEA [26]. The gene set was analysed with one 

thousand permutations per analysis. A Padj < 0.05 and 

FDR q < 0.25 were considered to indicate statistical 

significance (see Supplementary File 2 for the specific 

code). 

 

Single-sample gene set enrichment analysis 

(ssGSEA) 

 

Immune infiltration analysis based on TNFAIP2 

expression was conducted by ssGSEA using the 

GSVA package in R (3.6.3) (see Supplementary File 3 

for the specific code). A total of 24 types of infiltrating 

immune cells were obtained as previously described 

[32]. Spearman correlation analysis was used to 

analyse the correlations between TNFAIP2 expression 

and the enrichment scores of the 24 types of immune 

cells. The Wilcoxon rank-sum test was used to analyse 

the enrichment scores of the high and low TNFAIP2 

expression groups. 

 
Risk score analysis and LASSO regression analysis 

 

The 150 patients from TCGA were included  

in the analysis. Genes correlated with TNFAIP2  

were used in univariate Cox regression analysis  

to determine significant prognostic genes, and the 

LASSO regression technique was then performed to 

identify independent prognostic genes. Univariate Cox 

regression analysis was implemented for TNFAIP2 

and its associated genes using the “ezcox” package 

[33]. A P < 0.05 indicated statistical significance. 

LASSO regression was conducted by the “glmnet” 

package [34]. LASSO regression can improve the 

accuracy and interpretability of a model and eliminate 

the problem of collinearity between independent 

variables. Subsequently, prognostic genes with P < 

0.05 in univariate Cox regression analysis were 

included in multivariate Cox regression analysis, and 

prognostic genes with P < 0.05 in this analysis were 

indicated statistical significance. The identified genes 

were included in a risk signature, and a risk score 

system was constructed based on the gene expression 

levels and their coefficients (see Supplementary File 4 

for the specific code). 

 
Cell differentiation induction, miRNA sequencing, 

and cell transfection 

 

MOLM-13 and THP-1 cells were induced to 

differentiate with 50 ng/mL PMA (Sigma‒Aldrich, 

USA). miRNA sequencing was performed after THP-1 

cell processed with PMA for 72 hours. Gene 

sequencing was completed by Lianchuan Biotechnology 

Co., Ltd (Hangzhou, China). TNFAIP2-OE lentivirus 

and sh miR-146b-3p lentivirus were packaged by 

Shanghai Genechem Co., Ltd (Shanghai, China). 

MOLM-13 cells (1×10^5 cells/mL) were plated in  

6-well plates (2 mL per well). Four microlitres of  

sh miR-146b-3p or 15 μL of TNFAIP2-OE lentivirus 

with 80 μL of enhanced solution A was added to  

each well, and the solution in each well was then 

thoroughly mixed. Lentivirally transduced cells were 

incubated for 16 hours. When the transduction 

efficiency exceeded 70%, we performed fresh culture 

medium containing 1 mg/L puromycin for screening of 

stable clones for 7 days. Once the cell transfection was 

successful, we conducted subsequent experiments. 

http://www.linkedomics.org/
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TargetScan prediction of upstream miRNAs of 

TNFAIP2 

 

TargetScan (http://www.targetscan.org/vert_71/) is a 

popular online database for predicting miRNA target 

genes. It predicts target genes by considering the 

complementation of 2~8 bases at the 5’ end of a 

miRNA with the 3’UTR of an mRNA. In our study, 

“Homo sapiens” was selected as the species type, and 

“TNFAIP2” was selected as the gene name module. 

 

Dual-luciferase reporter assay 

 

The miR-146b-3p mimic, mimic-NC, Luciferase-

TNFAIP2 3′UTR-Wt, and Luciferase-TNFAIP2 3′UTR-

Mut plasmids were established by GeneChem Co., Ltd. 

Then, 293T cells were cotransfected with TNFAIP2 

3’UTR-Wt or TNFAIP2 3’UTR-Mut along with the 

miR-146b-3p mimic or mimic-NC for 48 hours using 

Roche X-tremeGENE HP (Roche, Switzerland). The 

Dual-Luciferase® Reporter Assay System was used to 

detect the luciferase activity (Promega, USA). 

 

Flow cytometry 

 

Cell differentiation was assessed using 

immunofluorescence staining with a PE-conjugated 

mouse anti-human CD11b antibody and an FITC-

conjugated mouse anti-human CD14 antibody (BD 

Bioscience, USA). The proportion of cells positive for 

the cell surface differentiation antigen CD11b or CD14 

was evaluated using flow cytometry. Each sample was 

randomly analysed, and 1×10^4 events were recorded. 

The cell differentiation rate was determined by DIVA 

software. 

 

Immunofluorescence 

 

A suspension of cells from each group was centrifuged, 

and the supernatant was discarded. The cell density was 

adjusted to 5×10^5 cells/mL. Five microlitres of an anti-

CD11b, anti-CD14, or anti-TNFAIP2 antibodies (Santa 

Cruz, USA, 1:200) were incorporated into the cells. 

Cells treated with the anti-CD11b or anti-CD14 

antibody were incubated with 4° C in darkness by 30 

minutes. Cells treated with the anti-TNFAIP2 antibody 

were incubated one hour under room temperature. Then, 

we aliquoted 100 μL of the cell suspension to prepare 

cell smears and sealed the samples with DAPI (Abcam, 

USA). The fluorescence intensity of CD11b, CD14 and 

TNFAIP2 was determined by fluorescence microscopy. 

 

Immunocytochemistry 

 

A 100 µL cell suspension was aliquoted to prepare 

cell smears, and the cells were fixed. Subsequently, 

the cell smears were flushed thrice with PBS and 

blocked with 1% BSA. Then cell smears were 

incubated with the mouse anti-TNFAIP2 antibody 

(Santa Cruz, USA, 1:200) at 4° C overnight. Then the 

cell smears were sequentially incubated with the 

secondary antibody and the DAB chromogen (Gene 

Tech, USA). Finally, the cell smears were stained 

with haematoxylin (Baso, Zhuhai, China), sealed with 

neutral resin. 

 

Western blot analysis 

 

Protein extraction was conducted by radio-

immunoprecipitation (RIP) assay lysis buffer 

(Beyotime, China). The protein specimens were 

electrophoretically separated on a 10% SDS‒PAGE 

gel. The proteins were then transported onto 

nitrocellulose filter membranes and detected by the 

corresponding antibodies. The antibodies and the 

corresponding dilutions used for western blotting 

were as follows: mouse anti-TNFAIP2 antibody 

(Santa Cruz, USA; 1:500) and β-actin rabbit mAb 

(CST, USA; 1:1000). 

 

Real-time fluorescence-based quantitative 

polymerase chain reaction (qRT-PCR) 

 

Total RNA extraction was conducted by TRIzol 

(Takara, Shiga, Japan). Reverse transcription of RNA 

into cDNA was performed using a RevertAid First 

Strand cDNA Synthesis Kit (Thermo Fisher Scientific, 

USA). Primer Premier 5.0 was used to design the 

primers, which were synthesized by Sangon Biotech 

Co., Ltd (Shanghai, China). The sequences are 

presented in Supplementary Table 1. qRT‒PCR was 

conducted by a QuantStudio 7 Flex real-time PCR 

system (Life Technologies, USA) with PowerUpTM 

SYBR Green Master Mix (Thermo Fisher Scientific, 

USA). Relative mRNA and miRNA expression levels 

were calculated by the 2ˆ-ΔΔ CT method (ΔCT = 

CTtarget gene – CTcontrol gene, ΔΔCT = ΔCTtreat 

group − ΔCTcontrol group). 

 

Statistical analysis 

 

GraphPad Prism 8.0.2 was for undertaking  

statistics analyses and plotting histograms. Differences  

in TNFAIP2 mRNA expression between AML and 

normal tissues were analysed using t test. A t test was 

implemented to assess the CD11b+ or CD14+ cell 

frequencies between control and transfection groups. 

The Mann-Whitney was implemented to analyse 

TNFAIP2 expression between control and transfection 
groups. Multiple groups of data were statistically 

analysed using ANOVA. A P < 0.05 was regarded as 

statistically significant. 

http://www.targetscan.org/vert_71/
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. MOLM-13 cells were transfected with TNFAIP2 overexpression lentivirus (TNFAIP2-OE). The 

expression of TNFAIP2 mRNA was significantly increased in TNFAIP2-OE group vs. NC control group. * P < 0.05. 
 

 
 

Supplementary Figure 2. MOLM-13 cells were transfected with miR-146b-3p interference lentivirus (sh miR-146b-3p). The 

expression of miR-146b-3p was significantly decreased in sh miR-146b-3p group vs. NC control group. ** P < 0.01. 
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Supplementary Tables 
 

 

Supplementary Table 1. Representative gene primers used to perform qRT-PCR. 

Gene Primer sequences 

TNFAIP2 
Forward: CATATAGGGAGGAGGAAGAG 

Reverse: AAGACGCAGAACACATTG 

β-actin 
Forward: CATGTACGTTGCTATCCAGGC 

Reverse: CTCCTTAATGTCACGCACGAT 

hsa-miR-146b-3p 

Forward: CGGCCCTGTGGACTCAGT 

Reverse: AGTGCAGGGTCCGAGGTATT 

Stem-loop Primer: GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACACCAGA 

hsa-U6 

Forward: AGAGAAGATTAGCATGGCCCCTG 

Reverse: CAGTGCAGGGTCCGAGGT 

Stem-loop Primer: GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACAAAATA 

 

Supplementary Table 2. Patients’ clinical 
characteristics. 

Characteristics n % 

Gender   

Female 69 46.0% 

Male 81 54.0% 

Age   

<= 60 87 58.0% 

> 60 63 42.0% 

Cytogenetics   

Normal 76 50.6% 

Monosomal 51 34.0% 

Complex 23 15.4% 

Cytogenetic risk   

Favorable 28 18.7% 

Intermediate 89 59.3% 

Poor 33 22.0% 

FLT3 mutation   

Negative 102 68.0% 

Positive 48 32.0% 

NPM1 mutation   

Negative 112 74.7% 

Positive 38 25.3% 

OS event   

Alive 52 34.7% 

Dead 98 65.3% 
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Supplementary Files 
 

Please browse Full Text version to see the data of Supplementary Files 1–4. 

 

 

Supplementary File 1. The R language codes for KEGG pathway enrichment analysis. 

Supplementary File 2. The R language codes for GSEA pathway enrichment analysis. 

Supplementary File 3. The R language codes for immune infiltration analysis. 

Supplementary File 4. The R language codes for Cox regression analysis. 

 

 


