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INTRODUCTION 
 

Sarcomas are a type of malignant tumors originating  

of mesenchymal or connective tissue that occur mainly 

in the trunk, extremities and retroperitoneum. Sarcomas 

have more than 100 different histological subtypes, 

accounting for about 1% of all adult malignancies [1]. 

The overall prognosis of sarcoma is poor [2]. Factors 

affecting the prognosis of sarcoma patients include 

tumor location, size, grade, stage, metastasis, and 

response to chemotherapy. Among them, the grade of 

the primary tumor has a significant impact on the 

prognosis [3]. In terms of tumor site, the prognosis of 

axial osteosarcoma is poor compared to that of limb 
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ABSTRACT 
 

Background: Sarcoma is a rare malignant tumor originating of the interstitial or connective tissue with a poor 
prognosis. Next-generation sequencing technology offers new opportunities for accurate diagnosis and 
treatment of sarcomas. There is an urgent need for new gene signature to predict prognosis and evaluate 
treatment outcomes. 
Methods: We used transcriptome data from the Cancer Genome Atlas (TCGA) database and single sample gene 
set enrichment analysis (ssGSEA) to explore the cancer hallmarks most associated with prognosis in sarcoma 
patients. Then, weighted gene coexpression network analysis, univariate COX regression analysis and random 
forest algorithm were used to construct prognostic gene characteristics. Finally, the prognostic value of gene 
markers was validated in the TCGA and Integrated Gene Expression (GEO) (GSE17118) datasets, respectively. 
Results: MYC targets V1 and V2 are the main cancer hallmarks affecting the overall survival (OS) of sarcoma 
patients. A six-gene signature including VEGFA, HMGB3, FASN, RCC1, NETO2 and BIRC5 were constructed. 
Kaplan-Meier analysis suggested that higher risk scores based on the six-gene signature associated with poorer 
OS (P < 0.001). The receiver Operating characteristic curve showed that the risk score based on the six-gene 
signature was a good predictor of sarcoma, with an area under the curve (AUC) greater than 0.73. In addition, 
the prognostic value of the six-gene signature was validated in GSE17118 with an AUC greater than 0.72. 
Conclusion: This six-gene signature is an independent prognostic factor in patients with sarcoma and is 
expected to be a potential therapeutic target for sarcoma. 
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sarcoma. In terms of tumor grade, high-grade sarcomas 

are more likely to spread to other parts of the body than 

low-grade sarcomas, resulting in a worse prognosis. 

With the development of genomics, the molecular 

typing of sarcoma has become an important prognostic 

factor. Next-generation sequencing technology can 

detect genetic alterations in sarcomas, providing new 

opportunities for accurate diagnosis and treatment of 

sarcomas [4, 5]. 

 

As a transcription factor, the proto-oncogene MYC is 

considered to be the main driver of various malignant 

tumors. In previous studies, the MYC oncogene was 

found to be overexpressed in a variety of cancers and 

associated with poor outcomes. A number of cancers 

exhibit enhanced invasiveness caused by the c-MYC 

oncogene, and it plays an essential role in cancer 

progression [6, 7]. It is worth mentioning that the 

oncoprotein-regulated transcriptional mechanism of the 

MYC family may promote carcinogenesis independently 

of changes in the expression of its target genes [8]. 

Therefore, down-regulating the transcription of the 

oncogene c-MYC may be a feasible cancer treatment 

strategy [9]. Targeting the function of the MYC 

oncoprotein is expected to realize new and effective 

anticancer therapies that can be applied to a variety  

of cancers. However, the uncharacteristic structure of 

MYC protein has severely hindered the development  

of MYC-targeted therapy [10]. The development of c-

MYC inhibitors has always been an elusive goal in the 

field of cancer therapy [11]. 

 

In this study, using the Cancer Genome Atlas  

(TCGA) database, we examined the correlation between 

cancer hallmarks and sarcoma patient prognosis. Using 

important prognostic genes associated with key cancer 

hallmarks, we established a prognostic gene signature. 

TCGA and Gene Expression Omnibus (GEO) training 

and validation sets were then used to validate the 

prognostic value of the gene signature. Moreover, the 

correlations between risk scores and tumor immune 

microenvironment, including immune cell infiltration 

profiles, immune function, and immune score, were 

investigated. Finally, a nomogram for clinical practice 

was built. To conclude, this study comprehensively 

analyzes the prognostic values of a new gene signature. 

As well as being used as a prognostic biomarker, this 

gene signature might also serve as an immunotherapy 

target for sarcomas. 

 

MATERIALS AND METHODS 
 

Preparation and analysis of data sets 

 

Datasets for training and validation were obtained  

from the TCGA and GEO databases, respectively. 

There were 256 sarcoma patients in the training dataset, 

whose mRNA expression profiles were obtained from 

the TCGA database (http://cancergenome.nih.gov/). 

There were 60 sarcoma patients included in the 

validation dataset (GSE17118) containing sarcoma 

mRNA expression profiles and clinical information 

downloaded from the GEO database (http://www.ncbi. 

nlm.nih.gov/geo/). In addition, we converted TCGA 

FPKM data to TPM format for comparison between 

platforms. Data from the microarrays downloaded 

from GEO were normalized using the R package 

“limma” [12]. Subsequently, chip probes were mapped 

to gene symbols using the R package GEOquery. To 

obtain gene expression profiles, we removed probes 

that map to multiple genes and took the median of 

multiple probes that map to a single gene. In light of 

the fact that both of the above databases are public,  

the local ethics committee does not need to approve 

this study. 

 
The selection of candidate genes and the 

establishment of a gene signature 

 
On the basis of transcriptome profiling data and 

hallmark gene sets from the Molecular Signature 

Database (MSigDB), the single-sample gene set 

enrichment analysis (ssGSEA) algorithm was used to 

quantify the performance of cancer hallmarks by using 

R package “gsva” in the training set [13, 14]. The 

principle of ssGSEA is to sort the gene expression data 

of each sample in order of expression from highest to 

lowest, and then calculate the cumulative distribution 

function (CDF) of the genes in each gene set in  

the sorted gene list. Next, the CDF of each gene set  

is compared to a reference distribution to obtain  

a standardized enrichment score (NES). NES reflects  

the relative enrichment degree of gene set in the 

sample, the larger the gene set is, the more enriched it 

is, and the smaller the gene set is, the sparser it is. The 

advantage of ssGSEA is that it can be used to assess 

the degree of enrichment of gene sets in different 

samples, as well as the degree of enrichment of gene 

sets under different biological conditions. Therefore, 

ssGSEA has been widely used in bioinformatics 

[15, 16]. Various cancer hallmarks in sarcomas were 

assessed by using the R package “survival” to conduct 

a univariate Cox proportional hazards regression 

analysis. Scale-free co-expression networks were 

constructed using the R package “wgcna”. Gene 

ssGSEA modules associated with MYC targets V1  

and V2 were identified using transcriptome profiling 

data and scores [17]. In MYC targets V1 and V2, gene 

significance was utilized as a means of quantifying  

the correlation between individual genes and ssGSEA 

scores. A module member is a correlation between a 

gene’s expression profile and its module-characterized 

http://cancergenome.nih.gov/
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gene. A GS marker threshold of 0.0001 and a Cox 

regression p-value of 0.01 were used to identify  

147 prognostic genes most associated with MYC 

targets V1 and V2 [18]. Using random forest, we 

ranked genes based on their importance and selected 

the top ten most influential genes. From multiple 

combinations of ten genes, a gene signature with a 

small number of genes and a significant p-value was 

chosen. 

 

Survival analysis based on risk scores 

 

ssGSEA scores were normalized using the Z-score 

method [19]. Survival analysis was carried out using 

Kaplan-Meier method. Each parameter’s importance to 

overall survival was assessed with a Cox proportional 

hazards regression model. Patients with sarcoma were 

categorized into high- and low-risk groups based on 

their median risk score. Following that, the prognosis 

of the two groups was compared in the training and 

validation sets. ROC curves and C-indices were then 

used to assess the risk model’s accuracy. Additionally, 

a two-way survival analysis combining risk scores and 

cancer hallmarks Z-scores was conducted to determine 

the impact of the two scores on the prognosis of SARC 

patients. Low-risk patients with low MYC targets 

V1/V2 Z-scores were categorized as low-risk, while 

high-risk patients with high MYC targets V1/V2 

Z-scores were classified as high-risk. Other patients 

were defined as the other group. Survival differences 

between groups were calculated by Kaplan-Meier 

curves. Furthermore, the risk model’s ability to predict 

survival in various subgroups in relation to age and 

gender was examined. 

 

Therapeutic drug prediction based on risk scores 

 

By referring to previous literature, this study identified 

drugs with different therapeutic predictions between 

high-risk and low-risk groups. Specifically, the study 

grouped patients by analyzing their risk scores and 

then predicted which drugs would be most effective 

for a particular group of patients. This approach could 

help doctors better choose treatment options, improve 

treatment effectiveness and reduce unwanted drug side 

effects [20]. 

 

Analysis of six hub genes for drug susceptibility 

 

To explore potential targeted drugs available for  

the six hub genes, drug sensitivity analyses were 

conducted. Potential targeted drugs for these six  

hub genes were explored referring to the previous 
literature [21]. A number of R packages were used for 

data processing and visualization, including “impute”, 

“limma”, “ggplot2”, and “ggpubr”. 

Analysis of GO and KEGG enrichment 

 

We used p < 0.05, |log2FC| >1 as a threshold to identify 

genes that are associated with high risk and low risk. 

These differentially expressed genes were then analyzed 

using GO and KEGG enrichment analysis. 

 

Establishment and evaluation of the nomogram in 

patients with sarcoma 

 

Nomograms are effective methods for predicting 

cancer prognoses in clinical practice [22]. An overall 

survival probability for sarcoma patients was assessed 

with a nomogram based on a six-gene signature. Then 

nomogram survival predictive power was assessed 

using ROC curves and C-index analysis. To verify the 

accuracy of the nomogram, calibration curves were 

used to compare predicted probabilities to actual 

probabilities. 

 

Risk score and tumor immune microenvironment 

(TIME) correlation analysis 

 

Considering TIME’s importance for tumor cell 

growth, we correlated the risk score with TIME. 

Firstly, the correlation between risk score and immune 

cell infiltration status was examined [23]. There are  

a number of immune cells that are involved in  

the analysis, including aDC, B cells, cytotoxic cells, 

DC, eosinophils, iDC, mast cells, NK cells, pDC,  

T cells, Tcm, Tgd, and Th2 cells. Also explored was 

the relationship between the risk score and immune 

function. In addition, immune scores for sarcomas 

were calculated using the ESTIMATE algorithm [24]. 

 

Statisticians and bioinformaticians 

 

Based on MSigDB hallmark gene sets, GSEA analysis 

was conducted to examine MYC targets V1 and V2  

in high- and low-risk score groups [25]. The data 

analysis and graphing were carried out using IBM SPSS 

Statistics 23 (IBM Corp., Armonk, NY, USA) and the 

R programming language (version 3.5.2, http://www.r-

project.org). The ssGSEA scores were normalized using 

Z-scores. The Kaplan-Meier method was used to draw 

survival curves, and the log-rank test was used to assess 

differences between groups. Using Cox proportional 

hazards regression models, the importance of each 

parameter was assessed. Risk scores were compared 

using Wilcox test. 

 

Availability of data and materials 

 
The datasets analyzed in the current study are available 

in the TCGA repository (http://cancergenome.nih.gov/) 

and the GEO (https://www.ncbi.nlm.nih.gov/geo/). 

http://www.r-project.org/
http://www.r-project.org/
http://cancergenome.nih.gov/
https://www.ncbi.nlm.nih.gov/geo/
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RESULTS 
 

Diagram of the research design 
 

Figure 1 illustrates the entire study workflow. Detailed 

procedures for constructing survival prediction models 

for sarcoma patients are provided below. As a first  

step, cancer hallmarks were identified as major risk 

factors for survival in patients with sarcoma, including 

MYC targets V1 and V2. Then ssGSEA, weighted gene 

co-expression network analysis (WGCNA), and 

univariate Cox regression analysis were used to screen 

promising candidates. Using a random forest algorithm 

and combinatorial screening methods, a prognostic gene 

signature associated with MYC targets V1 and V2 was 

developed. The prognostic value of the risk score based 

on the gene signature was assessed in a training set 

(TCGA) and an independent validation set (GSE17918). 

Table 1 summarizes patient information from the TCGA 

and GEO cohorts. 

 

 
 

Figure 1. An overview of this study’s flowchart. Abbreviations: WGCNA: weighted gene co-expression network analysis; ssGSEA: 

single sample gene set enrichment analysis; GO: gene ontology; KEGG: Kyoto encyclopedia of genes and genomes; OS: overall survival; 
ROC: receiver operating characteristic. 
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Table 1. Clinical information of patients with sarcoma included in this study. 

Characteristic TCGA (n = 256) GSE17118 (n = 57) 

Status Alive 158 (61.72%) 27 (47.37%) 

 Dead 98 (38.28%) 30 (52.63%) 

Age ≤60 128 (50.00%) 40 (70.18%) 

 >60 128 (50.00%) 17 (29.82%) 

Gender Female 139 (54.30%) 31 (54.39%) 

 Male 117 (45.70%) 26 (45.61%) 

Race Asian 5 (1.95%)  

 Black 18 (7.03%)  

 White 224 (87.50%)  

 Not reported 9 (3.52%)  

Grade G1 and G2  28 (49.12%) 

 G3  18 (31.58%) 

 Unknown  11 (19.30%) 

 

MYC targets V1 and V2 were identified as critical 

survival factors in sarcoma 

 

TCGA-SARC cohort overall survival data and 

ssGSEA scores were used to calculate and rank the 

Cox coefficients for cancer hallmarks. As a result  

of univariate analysis, MYC targets V1 and V2 had a 

greater impact on sarcoma patient survival than the 

G2M checkpoint, E2F targets, glycolysis, unfolded 

protein response, mtorc1 signaling, cholesterol homeo-

stasis, mitotic spindle and other cancer hallmarks 

(Figure 2A). A higher Z-score was observed for MYC 

targets V1 and V2 for patients who died during the 

follow-up period, as shown in Figure 2B, 2D. The 

 

 
 

Figure 2. MYC targets V1 and V2 play an important role in overall survival in sarcoma patients. (A) In univariate Cox regression 

analysis, MYC targets V1 and V2 exhibited the highest prognostic significance for sarcoma patients. (B) Patients who died during follow-up 
had significantly higher Z-scores for MYC targets V1 than those who survived. (C) In Kaplan-Meier analysis, patients with higher Z-scores for 
MYC targets V1 exhibited poorer OS. (D) Patients who died during follow-up had significantly higher Z-scores for MYC targets V2 than those 
who survived. (E) In Kaplan-Meier analysis, patients with higher Z-scores for MYC targets V2 exhibited poorer OS. Abbreviation: OS: overall 
survival. Asterisks indicate statistical significance at: *p < 0.05 and **p < 0.01. 
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median Z-score was used as the cut off value to separate 

256 TCGA-SARC sarcoma patients into high- and low-

risk groups. In the high MYC targets V1 Z-score group, 

overall survival rates were lower than that in the low 

MYC targets V1 Z-score group (HR = 1.90, P = 0.002; 

Figure 2C). Similarly, in the high MYC targets V2 

Z-score group, overall survival rates were lower than 

that in the low MYC targets V2 Z-score group (HR = 

1.61, P = 0.019; Figure 2E). 

 

WGCNA screening identified genes that correlated 

strongly with MYC targets V1 and V2 

 

A total of 256 SRAC patients’ expression values were 

calculated and then the top 6000 genes by variance  

were selected to construct the WGCNA network (Figure 

3A). In order to generate non-grayscale modules, the 

transcriptome analysis data of 6000 genes was used 

with β = 3 as the optimal soft threshold. Co-expression 

modules related to key cancer hallmarks were then 

developed (Figure 3B). A total of 15 modules were 

obtained by WGCNA network. As shown in Figure  

3C, the brown module showed strong correlation with 

MYC targets V1 (r = 0.72, P < 0.001) and V2 (r = 0.26, 

P < 0.001). Following this, all the genes of the brown 

module were subjected to GO and KEGG analyses 

(Figure 3D, 3E). 

 

A prognostic gene signature relating to MYC targets 

V1 and V2 

 

In a univariate Cox regression analysis, 147 genes  

from the brown module were found to be most 

significantly associated with prognosis in patients with 

sarcoma (Figure 4A). A random forest was used to  

rank the importance of candidate genes, and the 10  

most significant genes were screened (Figure 4B). After 

selecting a gene combination with fewer genes and 

more significant p-values from multiple combinations 

of 10 genes, a survival risk model was constructed 

(Figure 4C). Finally, a prognostic model for sarcoma 

patients was constructed using six hub genes: risk score 

 

 

 
Figure 3. Identification of a gene signature associated with the MYC targets V1 and V2. (A) Identification of DEGs in sarcoma. 

The variance of expression values for each gene in sarcoma patients (n = 256) was calculated using |log2FC|>1 and FDR < 0.05. (B) An 
analysis of the top 6000 DEGs was performed to identify non-grey modules in the WGCNA network. (C) Modules associated with key cancer 
hallmarks were constructed. The brown module had a higher correlation with MYC targets V1 (r = 0.72, P < 0.001) and V2 (r = 0.26,  
P < 0.001). (D, E) All genes from the brown module were analyzed using GO and KEGG. Abbreviations: WGCNA: weighted gene co-
expression network analysis; DEG: differentially expressed genes; FDR: false discovery rate. 
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= 0.05 × VEGFA + 0.25 × HMGB3 + 0.22 × FASN + 

0.40 × RCC1 + 0.46 × NETO2-0.10 × BIRC5. A 

significant difference was found between the risk scores 

of patients who died during follow-up and those who 

survived (Figure 4D). Risk score has been shown to be 

a useful tool for evaluating sarcoma patients’ prognoses 

based on principal component analysis (Figure 4E). The 

overall survival of the high-risk score group was lower 

 

 
 

Figure 4. Risk scores are predictive of poor survival in the TCGA-SARC set. (A) A univariate Cox analysis determined that 147 
candidates from the brown module were associated with prognosis for sarcoma patients (P < 0.05). (B) The top ten genes with the highest 
genetic significance were selected using random forest. (C) A survival prediction model was constructed using a gene combination with a 
relatively small number of genes and a significant P value. (D) A higher risk score was observed in patients who died during follow-up than 
in people who survived. (E) A Kaplan-Meier analysis revealed poor overall survival in the high-risk score group. (F) In a principal component 
analysis, risk score was found to be a useful tool for evaluating a patient’s prognosis with sarcoma. (G) Overall survival was predicted well 
by risk scores (AUC > 0.73) in patients with sarcomas. (H) Risk score was found to be an independent risk factor for OS in both univariate 
and multivariate Cox regression analyses. (I) A C-index analysis concluded that the risk score had significantly more predictive power than 
any other clinical characteristic. Abbreviations: HR: hazard ratio; ROC: receiver operating characteristic. Statistical significance is indicated 
by an asterisk: ***p < 0.001. 
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(HR = 3.52, P < 0.001, Figure 4F). As shown by the 

ROC curve, the AUCs of the risk score were 0.753, 

0.763, and 0.739 for predicting 1-year, 3-year, and 

5-year survival, respectively (Figure 4G). So the  

risk score appeared to be a good predictor of survival 

in patients with sarcoma. Further, univariate and 

multivariate Cox regression analyses showed that age  

(HR = 1.02, p = 0.01) and risk score were independent 

predictors of overall survival (Figure 4H). According 

to a subsequent analysis of the C-index, the risk score 

predicted survival more accurately than clinical factors 

such as age, gender and race (Figure 4I). 

 

Independent validation of the six-gene signature in 

sarcoma 

 

In order to validate the robustness of the prognostic 

six-gene signature associated with MYC targets V1 

and V2, an independent external cohort (GSE17118) 

was utilized. A significant difference between 

patients who died during follow-up and those who 

survived is demonstrated in Figure 5A (P < 0.001). 

Figure 5B shows that the risk score may provide a 

new dimension for assessing sarcoma prognosis. 

Based on Kaplan-Meier analysis, patients with high- 

risk scores had a lower overall survival rate (P < 

0.01; Figure 5C). In the ROC curve, the accuracy of 

the risk score for the prediction of 1-, 3-, and 5-year 

survival was 0.787, 0.721, and 0.769, respectively, 

showing that this model is effective in predicting 

survival (Figure 5D). Moreover, Cox regression 

analysis of univariate and multivariate data showed 

that risk score can be an independent predictor of 

overall survival (HR = 2.05, p = 0.004; Figure 5E).  

In the study of the C-index, the risk score was 

significantly better at predicting survival than any 

clinicopathological characteristic, such as age, gender 

and grade (Figure 5F). 

 

 
 

Figure 5. Using GSE17118 as a validation dataset for the risk model. (A) Patients who died during follow-up had a higher risk score 
than those who survived. (B) Risk score was found to be a useful tool to assess the prognosis of sarcoma patients based on principal 
component analysis. (C) Patients with higher risk scores had a worse overall survival according to Kaplan-Meier analysis. (D) As shown in 
the ROC curve, risk scores had good predictive value for survival in sarcoma patients (AUC > 0.72). (E) Risk score was found to be an 
independent risk factor for OS in both univariate and multivariate Cox regression analyses. (F) The risk score’s predictive power was 
significantly higher than that of other clinical characteristics, according to the C-index analysis. Abbreviations: HR: hazard ratio; ROC: 
receiver operating characteristic. Statistical significance is indicated by an asterisk: ***p < 0.001. 
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A two-way survival analysis based on correlations 

between risk scores and cancer hallmarks 

 

In Figure 6A, both MYC targets V1 and V2 Z- 

scores were higher in the high-risk group. High-risk 

groups had higher proportions of high Z-scores on 

MYC targets V1 and V2 than low-risk groups, as 

shown in Figure 6B. The results of the two-way 

survival analysis combined with cancer hallmarks 

indicated that sarcoma patients with high-risk scores 

and high MYC targets Z-scores showed the lowest 

overall survival rates (Figure 6C, 6D). Figure 6E–6H 

illustrates how the six-gene signature can distinguish 

high-risk patients with poor prognoses based on 

clinical characteristics such as age and gender  

(P < 0.001). 

 

 
 

Figure 6. A two-factor analysis of survival incorporating cancer hallmarks and risk scores. (A) MYC targets V1 and V2 of the high-

risk group showed significantly higher Z-scores than those of the low-risk group. (B) A correlation analysis was conducted among the cancer 
hallmarks, the risk score, and the survival status of sarcoma patients. (C) High MYC targets V1 & high-risk score predicted a worse prognosis 
in a two-factor survival analysis. (D) High MYC targets V2 & high-risk score predicted a worse prognosis in a two-factor survival analysis. (E–H) 
In various subgroups based on clinicopathological characteristics, the risk score was a biomarker of poor prognosis. Abbreviation: HR: risk ratio. 
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Analysis of the correlation between the risk score 

and the tumor immune microenvironment 

 

Based on ssGSEA algorithms, immune cell infiltration 

profiles and immune function status were determined in 

high- and low-risk groups. The results suggested that 

immune infiltration degrees of aDC, B cells, cytotoxic 

cells, DC, eosinophils, iDC, mast cells, NK cells, pDC, 

T cells, Tcm and Tgd in the low-risk group were higher 

than those in the high-risk group, while a higher degree 

of immune infiltration of Th2 cells was observed in the 

high-risk group (P < 0.05; Figure 7A) than in the 

low-risk group. Compared to the high-risk group, the 

low-risk group scored higher on type I IFN response, 

type L IFN response, T cell co-stimulation, T cell 

co-inhibition, inflammation-promoting, HLA, cytolytic 

activity, check-point and APC co-inhibition (P < 0.05; 

Figure 7B). The ESTIMATE algorithm was also used  

to calculate the abundance of immune cells, stromal 

cells, and tumor cells in the sarcoma microenvironment. 

A significant difference was found between the low-risk 

and high-risk groups in stromal scores, immune scores, 

and estimates of sarcoma (P < 0.01; Figure 7C). 

 

Using risk scores to predict drug therapy 

 

For the purpose of selecting effective drugs for sarcoma 

patients, drugs with different treatment predictions for 

high and low risk groups were explored. As shown in 

Figure 8A, BIBR-1532, GDCO810, I-BRD9, IAP5620, 

Lapatinib, and Sapitinib scored higher in the low-risk 

groups than in the high-risk groups (P < 0.001). Low-

risk groups achieved significantly higher drug treatment 

scores with ULK 14989, UMI 77, and Afatinib (P < 

0.001; Figure 8B). The treatment scores for ERK-2440, 

Foretinib, and Gemcitabine in the high-risk groups were 

higher than those in the low-risk groups (P < 0.01; 

Figure 8C). Additionally, a higher treatment score for 

JAK1-8709 and Nutlin-3a(-) was observed for high-risk 

groups (P < 0.001; Figure 8D). 

 

 
 

Figure 7. Analysis of the correlation between sarcoma risk score and tumor immune infiltration.  (A) The degree of immune 
infiltration and immune function status of high- and low-risk groups were calculated using ssGSEA. In the low-risk group, there was a higher 
degree of immune infiltration of aDCs, B cells, cytotoxic cells, DCs, eosinophils, iDCs, mast cells, NK cells, pDCs, T cells, Tcm, and Tgds than 
in the high-risk group, while Th2 cells were more infiltrated in the high-risk group than those in the low-risk group (P < 0.05). (B) In 
comparison with the high-risk group, the low-risk group had higher scores for APC co-inhibition immune function scores, HLA, 
inflammation-promoting, check-point, cytolytic activity, T cell co-inhibition, T cell co-stimulation, type I IFN response and type L IFN 
response (P < 0.05). (C) An ESTIMATE algorithm was used in calculating stromal scores, immune scores, and estimation scores. Abbreviation: 
ESTIMATE: estimation of stromal and immune cells in malignant tumor tissues using expression data. Statistical significance is indicated by 
an asterisk: *p < 0.05; **p < 0.01 and ***p < 0.001. 
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Analyzing the susceptibility of six hub genes to drugs 

 

CellMiner™ database was used to analyze drug 

sensitivity for the six hub genes. Results showed  

a positive correlation between VEGFA expression  

and Abiraterone and Zoledronate drug susceptibility,  

as well as a negative correlation with Fludarabine, 

Cytarabine, Cladribine, and Vorinostat. There was  

a negative correlation between NETO2 expression  

and drug susceptibility to Tamoxifen, Vinorelbine, 

Tyrothricin, Depsipeptide, Actinomycin, Mithramycin 

and Carfilzomib. A positive correlation was observed 

between the expression of RCC1 and the drug 

sensitivity of acricine and 6-thioguanine. There was  

an inverse correlation between BIRC5 expression  

and Selumetinib susceptibility (Figure 9). 

 

Gene differentially expressed and enrichment analysis 

 

256 patients were divided into high- and low-risk 

groups according to the median of their risk scores  

in the TCGA-SARC cohort. Genes with differential 

expression were identified between the two groups.  

We then examined significantly enriched GO terms  

and KEGG pathways associated with DEGs. A total  

of 134 DEGs in sarcoma were identified using  

log2FC > 1 and P < 0.05 as thresholds (Figure 10A).  

As shown in Figure 10B, a heatmap showed the 

differential expression of DEGs between high-risk and 

low-risk groups. Figure 10C shows that 134 DEGs were 

significantly enriched in biological processes such as 

the organization of extracellular structures, organization 

of extracellular matrix, process of muscle contraction, 

processing of proteins, activation of complement, a 

humoral immune response mediated by circulating 

immunoglobulins, complement activation, regulation of 

protein activation cascades and complement activation. 

Among the cell components that were significantly 

enriched were collagen-containing extracellular matrix, 

contractile fiber, contractile fiber part, myofibril, 

sarcomere, blood microparticles, I band, Z disc, actin 

filament bundle and stress fiber. In addition, the 

significantly enriched molecular functions in Figure  

10D included the binding of actin, extracellular matrix 

structural components, glycosaminoglycans, sulfur 

compounds, heparin, antigens, and immunoglobulin 

receptors, oxidoreductase activity acting on the 

CH-NH2 group of donors and oxidoreductase activity 

acting on the CH-NH2 group of donors and oxygen  

as acceptor. Moreover, significant KEGG pathways 

were enriched for vascular smooth muscle contraction, 

cytoskeleton regulation, CAMP signaling, focal 

adhesion, cGMP-PKG signaling pathway, relaxin 

signaling pathway, dilated cardiomyopathy, hypertrophic 

cardiomyopathy, the complement and coagulation 

cascades, and Renin-angiotensin system. So tumori-

genesis and development may be influenced by the six-

gene signature. 

 

 

 
Figure 8. Study of the efficacy of drug therapy for low-risk and high-risk patients. (A) In the low-risk groups, treatment scores for 

BIBR-1532, GDCO-810, I-BRD9, IAP-5620, Lapatinib and Sapitinib were higher than in the high-risk groups. (P < 0.001). (B) In the low-risk 
groups, treatment scores for ULK-14989, UMI-77, and Afatinib were higher than in the high-risk groups (P < 0.001). (C) Foretinib, 
Gemcitabine, and ERK-2440 treatment scores in the high-risk groups were higher than in the low-risk groups (P < 0.01). (D) JAK1-8709 and 
Nutlin-3a(-) treatment scores were higher in high-risk groups than in low-risk groups (P < 0.001). Statistical significance is indicated by an 
asterisk: *p < 0.05; **p < 0.01 and ***p < 0.001. 
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Nomogram construction for predicting survival in 

sarcoma patients 

 

With the six-gene signature and patient age combined,  

a clinically useful nomogram was constructed (Figure 

11A). By analyzing calibration curves (Figure 11B),  

the predictive power of this nomogram was verified. 

According to the results, the predicted 1-, 3-, 5- and 10-

year survival probabilities were mostly in agreement 

with what actually occurred. 

 

DISCUSSION 
 

Sarcomas have a poor prognosis and inadequate 

treatment options. For this reason, sarcoma biomarker 

screening is of great importance for determining 

prognosis and identifying possible therapeutic targets. 

The aim of this study was to build a prognostic gene 

signature using integrated bioinformatics techniques 

based on the cancer hallmarks. Firstly, a ssGSEA and 

Cox-PH analysis identified MYC targets V1 and V2  

as the highly associated cancer hallmarks with overall 

survival in sarcoma patients. For further analysis, all 

genes associated with MYC targets V1 and V2 were 

extracted. Following this, WGCNA, COX univariate 

regression analysis, random forest, and combination 

screening techniques were used to develop a prognostic 

six-gene signature for patients with sarcomas. 

Subsequently, an independent sarcoma cohort was used 

to validate the prognostic values of the gene signature.  

In addition, the six-gene signature was correlated with 

the tumor immune microenvironment. Thus, this six-

gene signature could provide independent prognostic 

information. 

 
Prognostic assessment is essential for clinical treatment 

of sarcoma patients. Sarcoma patients’ prognosis is 

influenced by clinical characteristics, such as age,  

tumor size, metastasis, tumor grade, primary site, and 

histological response [26, 27]. In addition, patients with 

sarcoma have a high mortality rate when their absolute 

lymphocyte counts are abnormally low at diagnosis [28].

 

 
 

Figure 9. An analysis of six hub genes for drug sensitivity. Drug susceptibility to Abiraterone and Zoledronate was positively 
correlated with VEGFA expression, while Fludarabine, Cytarabine, Cladribine, and Vorinostat were negatively correlated. Drug susceptibility 
to Tamoxifen, Vinorelbine, Tyrothricin, Depsipeptide, Actinomycin, Mithramycin, and Carfilzomib was negatively correlated with NETO2 
expression. Drug sensitivity to Acrichine and 6-Thioguanine was positively correlated with RCC1 expression. A negative correlation was 
found between Selumetinib sensitivity and BIRC5 expression. Abbreviation: Cor: correlation coefficient. 



www.aging-us.com 1548 AGING 

A neutrophil-lymphocyte ratio and platelet-lymphocyte 

ratio were considered independent prognostic factors  

in sarcoma patients following surgery [29]. In terms of 

gene signatures, an immune-related five-gene signature 

based on MYBL2, FBN2, TSPAN7, GCSH, and 

DDX39B is a prognostic biomarker for sarcoma 

patients [30]. The presence of hypoxia in sarcoma is 

associated with metastasis and poor prognosis. And a 

hypoxia-related biomarker CAIX has prognostic value 

in sarcoma [31]. A hypoxia-related signature based on 

24 genes is helpful in evaluating the prognosis of 

sarcoma patients [32]. Sarcomas that are at high risk can 

be identified using the genome grading index and 

sarcoma complexity index [33, 34]. In addition, many 

immune-related genetic signatures were identified. For 

example, an immune-related prognostic seven-gene 

signature was negatively associated with tumor purity 

and positively associated with levels of B cell, CD4+ T 

cell, and CD8+ T cell infiltration [35]. Moreover, an 

eleven-gene signature has been shown to be associated 

with the prognosis of Ewing’s sarcoma [36]. In general, 

previous studies have constructed some prognostic 

genetic markers of sarcoma based on phenotypes such 

as immunity [37], apoptosis [38], pyrodeath [39], and 

hypoxia [40]. Different from previous studies, this study 

constructs a new sarcoma prognostic gene marker based 

on MYC targets V1 and V2, which adds new content to 

the research in this field. 

 
The six-gene signature constructed in this study 

included six hub genes, VEGFA, HMGB3, FASN, 

RCC1, NETO2 and BIRC5. VEGFA is associated  

with protein homodimerization activity and protein 

heterodimerization activity. Previous studies have 

shown that the expression of soluble VEGFA subtypes 

can increase the metastasis of fibrosarcoma through 

multiple mechanisms [41]. Inhibition of VEGFA 

expression in human Ewing sarcoma cells can inhibit 

cell growth and tubule formation [42]. NETO2 is 

associated with ionotropic glutamate receptor binding. 

 

 
 

Figure 10. Based on the risk score, enrichment analysis is performed. (A) Determination of significantly different DEGs between 

low-risk and high-risk groups (|log2FC|>1 and FDR < 0.05). (B) DEG expression profiles in high-risk and low-risk groups shown as a heatmap. 
(C, D) Analysis of DEGs between high-risk and low-risk groups using GO and KEGG. Abbreviations: BP: biological process. CC: cell 
component. MF: molecular function. DEGs: differentially expressed genes. FDR: false discovery rate. 
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NETO2 can act as an oncogene for osteosarcoma by 

activating the PI3K/AKT pathway [43]. BIRC5 is 

involved in pathways associated with Class I MHC-

mediated antigen processing and presentation and 

protein metabolism. The overexpression of BIRC5 in 

Ewing sarcoma was an independent adverse prognostic 

factor [44]. In addition, HMGB3 is associated with 

RNA binding and double-stranded DNA binding. 

FASN is associated with RNA binding and identical 

protein binding. RCC1 is related with pathways 

including DNA Damage and Validated targets of C-

MYC transcriptional activation. As far as we know, 

the function of HMGB3, FASN and RCC1 in sarcoma 

has not been reported. 

 

There has been evidence that the tumor micro-

environment influences the prognosis of sarcomas  

in previous studies. For example, CD20/MS4A1 

 

 
 

Figure 11. Using the six-gene signature, a nomogram was developed for clinical practice in patients with sarcoma. (A) A six-

gene signature was combined with age to create a nomogram. (B) Observations and calibration plots showing similar survival probabilities 
for 1, 3, and 5 years. 
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expression can be used as a prognostic tool for 

sarcoma survival prediction, but not in patients with a 

markedly immunosuppressive tumor microenvironment 

[45]. An increase in lymphocytic infiltration was 

associated with a greater overall survival in non-

translocation-related sarcomas. It was found that 

expression of PD-1 and CD56 was associated with 

poorer survival overall [46]. In synovial sarcoma, 

patients with higher CD8+ or FOXP3+ lymphocyte 

infiltration were associated with good overall survival, 

whereas patients with higher CD163+ macrophage 

infiltration had significantly lower overall and 

progression-free survival [47]. Sarcoma is a hetero-

geneous tumor with multiple subtypes. Although a 

subset of sarcomas responds to immune checkpoint 

blockade with PD-1-targeted agents, most subtypes 

require new immunotherapies or combination therapies 

[48]. Sarcoma patients can benefit from immune 

checkpoint inhibitors, adoptive cell therapy, and 

cancer vaccines [49]. Responses to immune checkpoint 

blockade therapy vary widely among various sub- 

types of patients. The immune checkpoint blockade 

therapy was more effective for patients with high  

B-cell infiltration and tertiary lymphoid histology  

[50]. Immune infiltration in sarcoma has been shown 

to correlate with response to pembrolizumab treatment 

[51]. Retroperitoneal liposarcoma patients with high 

PD-1/PD-L1 expression have a poor prognosis, while 

patients with tertiary lymphoid structure have better 

disease-free survival [52]. In the present study, high-

risk patients also had more TH2 cells, which play an 

important role in tumor survival, while low-risk 

patients had more CD8 and NK cells, suggesting that 

immunosuppressive therapies could target the six- 

gene signature which is associated with the immune 

microenvironment. 

 

This study has several limitations. Although the 

present study used various independent datasets for 

mutual validation to verify the prognostic values of 

this six-gene signature. However, in vitro experiment 

is still an important step to further confirm the 

prognostic values of this six-gene signature. In 

addition, this is a retrospective study, so it is necessary 

to verify the robustness of this six-gene signature in 

future prospective studies. 

 

In conclusion, this study not only confirms the 

prognostic significance of MYC targets V1 and V2, 

but also established a new survival model based on  

six hub genes including VEGFA, HMGB3, FASN, 

RCC1, NETO2 and BIRC5. We believe this six-gene 

signature is an independent biomarker for survival 
prediction in sarcoma patients. In addition, whether 

these six hub genes can be used as potential targets for 

targeted therapy is also worthy of further exploration. 
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