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INTRODUCTION 
 

GC poses a significant global health challenge within 

the gastrointestinal tract. In 2020 alone, the global 

incidence of GC surpassed 1,089,103 cases, leading to 

the unfortunate demise of over 760,000 individuals [1]. 

Helicobacter pylori infection stands out as a major 

contributing factor to GC [2]. Diagnostic strategies, 

such as computed tomography, endoscopy, and histo-

pathological examination, form the primary tools for 

GC detection. Surgical intervention remains pivotal for 

early-stage GC, while unresectable cases necessitate  

a multimodal approach combining symptomatic 

management, chemotherapy, and targeted therapies to 

enhance both quality of life and survival periods [3, 4]. 

The intrinsic heterogeneity of GC, as classified by The 

Cancer Genome Atlas (TCGA) into four subtypes, 

poses a formidable challenge, emphasizing the need for 

personalized treatment strategies [5]. Molecular biology 

investigations utilizing high-throughput sequencing 

hold promise in uncovering novel therapeutic targets for 

a more effective GC treatment landscape. 

 

Barrier to autointegration factor 1 (BANF1), 

predominantly situated in the inner nuclear membrane, 
plays a crucial role in fundamental biological processes 

[6]. In the context of DNA repair, BANF1 emerges as a 

central figure in resolving DNA double-stranded breaks, 
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ABSTRACT 
 

Gastric cancer (GC) is a widespread malignancy characterized by a notably high incidence rate and an 
unfavorable prognosis. We conducted a meticulous analysis of GC high-throughput sequencing data downloaded 
from the Gene Expression Omnibus (GEO) repository to pinpoint distinctive genes associated with GC. Our 
investigation successfully identified three signature genes implicated in GC, with a specific focus on the barrier to 
autointegration factor 1 (BANF1), which exhibits elevated expression across various cancer types, including GC. 
Bioinformatic analysis has highlighted BANF1 as a prognostic indicator for patients with GC, with direct 
implications for immune cell infiltration. To gain a more comprehensive understanding of the significance of 
BANF1 in GC, we performed a series of in vitro experiments to confirm its high expression in GC tissues and 
cellular components. Intriguingly, the induction of BANF1 knockdown resulted in a marked attenuation of 
proliferation, migratory capacity, and invasive potential in GC cells. Moreover, our in vivo experiments using 
nude mouse models revealed a notable impediment in tumor growth following BANF1 knockdown. These 
insights underscore the feasibility of BANF1 as a novel therapeutic target for GC. 
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safeguarding cells from demise caused by the exposure 

of double-stranded DNA to the cytoplasm during 

nuclear rupture [7]. Its influence on the cell cycle, 

intricately linked to cell mitosis initiation and cessation 

in phosphorylated and dephosphorylated states, further 

underscores its significance [8]. The relevance of 

BANF1 to human health is exemplified in premature 

aging syndromes, as indicated by previous studies [9]. 

Recent research has linked elevated BANF1 expression 

to breast cancer, correlating with lymph node positive 

and pathological staging, and to differentiation in 

esophageal tumor and influencing the proliferation, 

migration, and invasion of cervical cancer [10–12]. 

These findings suggest the potential of BANF1 as a 

biomarker and therapeutic target in various malignant 

neoplasms, including GC. 

 

Our study aimed to comprehensively analyze 

transcriptome data from GC samples obtained from 

GEO and TCGA repositories. We sought to elucidate 

the pivotal role of BANF1 in GC pathogenesis through 

bioinformatic analyses, assessing its expression pattern, 

diagnostic utility, prognostic implications, and 

relevance within the immune milieu. In vitro 

experiments were conducted to validate BANF1 

expression in gastric cells and understand its impact on 

their proliferative, migratory, and invasive properties. 

The investigation in nude mice aimed to assess the 

effect of BANF1 on tumorigenesis. This study was 

driven by the dual objectives of identifying prospective 

GC biomarkers and empirically validating BANF1 as a 

therapeutic target for this malignancy. 

 

RESULTS 
 

Differentially expressed genes (DEGs) in GC 

 

We obtained gene expression data for a cohort of 162 

GC samples from the GSE54129 and GSE118916 

datasets. The principal component analysis (PCA) plots 

depict gene expression in the GSE54129 and 

GSE118916 datasets before and after removal of batch 

effect. Supplementary Figure 1A illustrates the PCA 

results before batch-effect removal, where the two 

datasets were initially separated. Subsequently, the PCA 

plot after batch-effect removal demonstrated an 

intersection of gene expression data from the two 

datasets (Supplementary Figure 1B), enabling further 

analysis. By examining the expression patterns across 

tumor and normal samples, we successfully identified 

157 DEGs characterized by |Log2FC| >2 and p < 0.01, 

as shown in Figure 1A. Among these, 93 genes were 

downregulated, while 64 were upregulated, visually 

depicted in Figure 1B, 1C. 

 

Identification of hub genes through weighted 

correlation network analysis (WGCNA) 

 

To uncover pivotal genes of significance within GC 

samples, we conducted a comprehensive WGCNA. The 

optimal soft threshold was selected as 7, as depicted in 

Figure 2A, led to the establishment of gene clustering 

results marked by a threshold ensuring at least 60 genes 

per module, resulting in 11 distinct modules (Figure 

2B). These modules underwent consolidation with a 

clipping height of 0.25, ultimately amalgamating into 

eight unique modules (Figure 2C). Subsequently, we 

computed the correlation coefficients between each 

gene module and samples from both normal and GC 

contexts. Upon rigorous assessment of correlation 

coefficients and associated p-values, we observed that 

the black module exhibited a noteworthy correlation 

with clinical traits, characterized by a correlation 

coefficient of 0.78 and p < 0.001 (Figure 2D). Figure 2E 

contains 444 data points, visually represents the 

relationship between gene significance (GS) and 

module membership (MM). The horizontal axis 

signifies MM, while the vertical axis represents GS. 

 

 
 

Figure 1. Identification of differentially expressed genes in gastric cancer and paracancerous tissues. (A) Volcano plot of 157 
differentially expressed genes (|Log2FC| > 2, p < 0.01). (B) Heatmap of 93 down-regulated genes expressed in gastric cancer tissues. (C) 
Heatmap of 64 expressed up-regulated genes in gastric cancer tissues. 
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Applying stringent criteria (MM >0.8 and GS >0.5), we 

identified a cadre of 213 hub genes. 

 

Machine learning screens for disease characterizing 

genes 

 

To delineate the key genes linked to GC, we conducted 

a rigorous analysis employing least absolute shrinkage 

and selection operator (LASSO), support vector 

machine-recursive feature elimination (SVM-RFE), and 

random forest (RF) methodologies. Within the LASSO 

algorithm framework, we carefully selected optimal 

lambda parameters and executed a 10-fold cross-

validation procedure, ultimately pinpointing a cohort of 

12 genes, as illustrated in Figure 3A, 3B. The SVM-

RFE algorithm identified the optimal subset of genes by 

pinpointing points corresponding to the lowest error 

rate, resulting in the selection of 28 genes, as 

demonstrated in Figure 3C. Furthermore, the RF 

algorithm provided a comprehensive assessment of each 

gene, ranking them based on their relative importance 

levels, as depicted in Figure 3D, 3E. Converging the 

outcomes derived from WGCNA, LASSO, SVM-RFE, 

and RF algorithms, we conducted an intersection 

analysis using a Venn diagram. This meticulous process 

led to the identification of three distinct genes – 

BANF1, ADH7, and TMEM27 – collectively 

characterized as hallmark genes associated with GC 

(Figure 3F). 

 

Diagnostic evaluation of three characterizing genes 

 

The expression levels and diagnostic efficacy of three 

key genes, namely BANF1, ADH7, and TMEM27, 

were thoroughly examined across diverse datasets. This 

assessment utilized the Wilcoxon test and receiver 

operating characteristic (ROC) analysis. Notably, 

BANF1 exhibited significant upregulation in the 

GSE54129-GSE118916 dataset, GSE65801, and TCGA 

datasets, while ADH7 and TMEM27 showed down-

regulation (Figure 4A, 4C, 4E; p < 0.05). In the 

GSE54129-GSE118916 dataset, the area under the 

curve (AUC) values for BANF1, ADH7, and TMEM27 

were 0.996, 0.952, and 0.949 respectively (Figure 4B). 

 

 

 
Figure 2. Identification of hub genes in gastric cancer using the WGCNA algorithm. (A) The soft threshold is determined by 

function. The left panel shows the relationship between the scale-free network evaluation metric R2 and the soft threshold, and the right 
panel shows the relationship between average connectivity and the soft threshold. (B) Dendrogram of gene clustering and different colored 
modules. (C) Gene clustering dendrogram obtained by merging similar modules. (D) Correlations between merged modules and clinical 
traits, correlation coefficients and p-values are shown in the corresponding modules of different colors. (E) Scatterplot of MM and GS in the 
black module. 
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For the GSE65801 dataset, the AUC values for BANF1, 

ADH7, and TMEM27 were 0.737, 0.902, and 0.897 

respectively (Figure 4D). In the TCGA dataset, AUC 

values of 0.878, 0.854, and 0.617 were assigned to 

BANF1, ADH7, and TMEM27, respectively (Figure 4F). 

 

Prognostic evaluation of three characterizing genes 

 

To assess the prognostic implications of BANF1, 

ADH7, and TMEM27, we utilized the Kaplan–Meier 

plotter database to construct survival curves. Compared 

with patients with low BANF1 expression, GC patients 

with high BANF1 expression level had significantly 

lower overall survival (OS), progression-free survival 

(FP), and post-progression survival (PPS) than GC 

patients with low BANF1 expression. (Figure 5A–5C, 

p < 0.001). Patients in the ADH7 high-expression 

cohort were distinctly associated with significantly 

lower OS and PPS compared to those in the low-

expression group (Figure 5D, 5E, p < 0.01). However, 

there was no significant difference between the 

expression of ADH7 and FP in GC patients (Figure 5F, 

p > 0.05). Intriguingly, TMEM27 expression levels 

showed no substantive disparities in OS, FP, or PPS 

between the high- and low-expression groups (Figure 

5G–5I, p > 0.05). 

Expression of BANF1 in different cells and its 

relationship with tumor immunity 

 

We obtained single-cell RNA sequencing (scRNA-seq) 

datasets, specifically GSE167297 and GSE134520, 

from Tumor Immune Single Cell Center (TISCH) 

database. Using the t-distributed stochastic neighbor 

embedding (t-SNE) algorithm, we conducted a 

comprehensive clustering analysis, resulting in 12 

distinct cell clusters within the GSE167297 dataset. In 

the GSE134520 dataset, a total of 14 cell clusters were 

delineated. Subsequent cell annotations were anchored 

in the expression patterns of diverse cellular feature 

genes. Notably, the uniform manifold approximation 

and projection (UMAP) plot revealed the ubiquity of 

BANF1 expression across all cell types, as shown in 

Figure 6A, 6B. Gene set enrichment analysis (GSEA) 

showed that BANF1 expression was associated with the 

cell cycle, Huntington's disease, olfactory transduction, 

spliceosomes, and systemic lupus erythematosus 

(Supplementary Figure 2). Subsequent correlation 

analysis between BANF1 expression data and immune 

infiltration data revealed a noteworthy negative 

correlation. Specifically, BANF1 expression exhibited 

an inverse relationship with the presence of various 

immune cell types, including Tcm, Mast cells, B cells,

 

 
 

Figure 3. Machine learning screens for disease characterizing genes. (A, B) LASSO regression analysis screening variables. (C) Cross-

validation error rate graph based on SVM-RFE. (D, E) Genes were scored using a random forest algorithm to rank genes by importance 
algorithm. (F) VEEN graph to obtain the intersection of key genes screened by the 4 methods. 
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Tem, pDC, TFH, Eosinophils, CD8+ T cells, T helper 

cells, T cells, and NK cells, within GC tissues (Figure 

6C; p < 0.05). In the realm of tumor microenvironment 

(TME) analysis, we ascertained that the immune score, 

stromal score, and Estimation of Stromal and Immune 

cells in Malignant Tumor tissues using Expression data 

(ESTIMATE) score in the BANF1 high-expression 

cohort markedly lagged those in the BANF1 low-

expression group, as exemplified in Figure 6D (p < 

0.05). Moreover, the investigation of disparities in 

immune infiltration between the high and low BANF1 

expression groups underscored a reduction in the 

abundance of various immune cell populations, 

including B cells, Eosinophils, Mast cells, pDC, T 

helper cells, Tcm, Tem, and TFH, within the high 

BANF1 expression group, as elucidated in Figure 6E 

(p < 0.05). In addition, we investigated the effect of 

BANF1 on immunotherapy. The results showed that 

BANF1 was significantly associated with immuno-

therapy efficacy in the IMvigor210 cohort 

(Supplementary Figure 3, p < 0.01). 

 

BANF1 expression is elevated in GC cell lines and 

tissues 

 

We conducted a thorough analysis of BANF1 

expression across all cancer types within the TCGA 

database. The results revealed a significant upregulation 

of BANF1 expression in various cancers, totaling 15, 

including GC, when analyzing unpaired samples, as 

depicted in Figure 7A. A parallel analysis of paired 

samples showed a similar pattern, with BANF1 

expression significantly increased in 13 cancers, once 

again including GC, as shown in Figure 7B. Examining 

 

 
 

Figure 4. Expression and diagnostic value of characterized genes. (A) The box plots showed the expression of three GC 

characteristic genes (BANF1, ADH7, TMEM27) in GSE54129-GSE118916 dataset. (B) ROC curves were used to evaluate the diagnostic 
efficacy of three GC characteristic genes (BANF1, ADH7, TMEM27) in GSE54129-GSE118916 dataset. (C) The box plots showed the 
expression of three GC characteristic genes (BANF1, ADH7, TMEM27) in GSE65801 dataset. (D) ROC curves were used to evaluate the 
diagnostic efficacy of three GC characteristic genes (BANF1, ADH7, TMEM27) in GSE65801 dataset. (E) The box plots showed the expression 
of three GC characteristic genes (BANF1, ADH7, TMEM27) in TCGA dataset. (F) ROC curves were used to evaluate the diagnostic efficacy of 
three GC characteristic genes (BANF1, ADH7, TMEM27) in TCGA dataset. *p < 0.05, ***p < 0.001. 
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mRNA and protein expression levels, our investigation 

revealed a marked increase in BANF1 within cancer 

tissues compared to para-cancerous tissues, as 

demonstrated in Figure 7C (n = 23; p < 0.001) and 

Figure 7D (n = 10; p < 0.001). Furthermore, both the 

mRNA and protein expression levels of BANF1 were 

conspicuously elevated in various GC cell lines, namely 

AGS, HGC-27, MKN-45, MGC-803, and BGC-823, in 

comparison to a Gastric mucosal epithelial cell line 

(GES-1), as illustrated in Figure 7E, 7F (p < 0.05). The 

expression level of BANF1 was the highest in MKN-45 

and BGC-823 cell lines. Immunofluorescence staining 

on MKN-45 and BGC-823 cell lines delineated the 

predominant localization of BANF1 protein within the 

nucleus, with limited presence in the cytoplasm, as 

illustrated in Figure 7G. 

 

Knockdown of BANF1 inhibits proliferation, 

migration, and invasion of GC cells 

 

Silencing BANF1 remarkably impedes the proliferation, 

migration, and invasion of GC cells. To examine the 

 

 
 

Figure 5. The prognostic value of three characteristic genes. (A–C) OS, PPS, FP km survival curves between high and low expression 

groups of BANF1. (D–F) OS, PPS, FP km survival curves between high and low expression groups of ADH7. (G–I) OS, PPS, FP km survival 
curves between high and low expression groups of TMEM27. 
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effect of BANF1 on the phenotypic attributes of these 

cells, we used lentiviral vectors to establish stable cell 

lines with downregulated BANF1 expression. This 

intervention resulted in a substantial reduction in both 

the mRNA (p < 0.001) and protein levels of BANF1 in 

MKN-45 and BGC-823 cell lines, as shown in Figure 

8A, 8C. Furthermore, a cell viability assay decisively 

underscored the diminished proliferative capacity of 

 

 
 

Figure 6. Single-cell expression of BANF1 in gastric cancer and its immune correlation. (A, B) Validation of BANF1 expression in 

different cell types in two gastric cancer single cell datasets (GSE167297, GSE134520). From left to right, cell clustering plot, cell annotation 
plot, violin plot of cellular signature genes expressed in different cell clusters, and BANF1 expression plot in different cells. (C) Lollipop plot 
of BANF1 expression correlating with immune cells. (D) Stromal score, immune score, ESTIMATE score violin plots between high and low 
BANF1 expression groups. (E) Box line plot showing immune infiltration between high and low BANF1 expression groups. ns means no 
statistical difference, *p < 0.05, **p < 0.01, ***p < 0.001. 
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Figure 7. Expression and localization of BANF1. (A) BANF1 expression among pan-cancer unpaired samples in the TCGA database. (B) 

BANF1 expression among paired samples of pan-cancer in the TCGA database. (C) RT-qPCR detection of BANF1 mRNA expression in 23 pairs 
of GC tissues and paired paracancerous tissues. (D) WB detection of BANF1 protein expression in 10 pairs of GC tissues, and the difference 
of gray values between gastric cancer tissues (n = 10) and adjacent tissues (n = 10) were compared. (E) RT-qPCR was used to detect the 
expression of BANF1 mRNA in GC cell lines (AGS, HGC-27, MKN-45, MGC-803, BGC-823) and gastric mucosal epithelial cell line (GES-1), 
respectively. (F) The expression of BANF1 protein in 6 cell lines was detected by WB, and the gray values of gastric cancer cell lines (AGS, 
HGC-27, MKN-45, MGC-803, and BGC-823) and gastric epithelial cells (GES-1) were compared. (G) Immunofluorescence staining showed 
the expression and localization of BANF1 protein in MKN-45 and BGC-823 cells. All experiments were repeated at least three times. ns 
means no statistical difference, *p < 0.05, **p < 0.01, ***p < 0.001. 
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MKN-45 and BGC-823 cells after BANF1 knockdown 

in contrast to their blank control counterparts, as shown 

in Figure 8B, 8D (p < 0.001). The plate clone formation 

assay also showed that the knockdown of BANF1 

inhibited the proliferation of GC cells (Figure 8E, 8F; 

p < 0.001). Elaborating on the migratory attributes, 

wound healing assays unveiled a significant attenuation 

in the migration capability of GC cells following 

BANF1 knockdown, an observation vividly captured in 

Figure 8G, 8H (p < 0.001). Transwell assays further 

reinforced these findings, affirming that the knockdown 

of BANF1 resulted in a marked impediment to the 

migration and invasion capacities of GC cells, as shown 

in Figure 8I, 8J (p < 0.001). 

Knockdown of BANF1 significantly inhibited the 

growth of subcutaneous tumors in nude mice 

 

To elucidate the influence of BANF1 expression on 

tumorigenesis and tumor growth, we performed in vivo 

experiments using a cell line-derived xenograft (CDX) 

model. In this model, both the control and 

experimental groups received injections of MKN-45 

cells treated with sh-NC and sh-BANF1, respectively, 

enabling a meticulous assessment of subcutaneous 

tumor development. The results distinctly indicated a 

noteworthy suppression of tumor growth after BANF1 

knockdown, with the knockdown group showing 

substantially reduced tumor volume and weight in 

 

 
 

Figure 8. Knockdown of BANF1 inhibits the proliferation, migration and invasion ability of GC cells in vitro. (A) Knockdown 

efficiency of MKN-45 cell line was detected using RT-qPCR and WB. (B) CCK8 assay was used to detect the effect of BANF1 knockdown on the 
viability of MKN-45 cell line. (C) Knockdown efficiency of BGC-823 cell line was detected using RT-qPCR and WB. (D) CCK8 assay was used to 
detect the effect of BANF1 knockdown on the viability of BGC-823 cell line. (E, F) The effect of BANF1 knockdown on the proliferative capacity 
of MKN-45 and BGC-823 cells was detected by plate clone formation assay. (G, H) Effects of BANF1 knockdown on the migration ability of 
MKN-45 and BGC-823 cells were detected by wound healing assay. (I, J) Effect of BANF1 knockdown on the migration and invasion of MKN-45 
and BGC-823 cells by Transwell assay. All experiments were repeated at least three times. ***p < 0.001. 
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comparison to the control group, as depicted in Figure 

9A–9D (n = 6). Furthermore, immunohistochemical 

staining of mouse tumors provided deeper insights into 

the influence of BANF1 on tumor proliferative capacity. 

The results unequivocally revealed a conspicuous 

reduction in Ki67 expression within the BANF1 

knockdown group as opposed to that in the control 

group, as shown in Figure 9E. Subsequently, the 

terminal deoxynucleotidyl transferase (TdT)-mediated 

dUTP nick-end labeling (TUNEL) assay was deployed 

to examine the impact of BANF1 on apoptosis in GC 

cells, where the findings showcased a markedly 

heightened level of tumor apoptosis after BANF1 

knockdown relative to the control group, as depicted in 

Figure 9F. 

 

DISCUSSION 
 

The incidence and fatality rates of GC remain high, 

often leading to delayed surgical interventions due to 

late-stage diagnoses, resulting in unfavorable prognoses 

[13]. The current therapeutic landscape for GC 

emphasizes personalized and precision-oriented 

approaches, including surgery, chemotherapy, 

radiotherapy, targeted therapy, and immunotherapy, all 

aimed at improving patient outcomes [14]. GC is a 

highly heterogeneous disease, leading to varying 

treatment responses among patients [15]. The molecular 

subtype-based classification has paved the way for 

individualized therapeutic strategies, offering a 

promising avenue for identifying novel therapeutic 

targets [16]. 

 

Various analytical techniques, such as WGCNA, 

LASSO, SVM-RFE, and RF, have been widely 

employed to explore disease markers and potential 

therapeutic targets. In a study by Zhang et al. [17], the 

WGCNA and RF algorithms were used to identify 

marker genes in acute pancreatitis. Feng et al. [18] 

utilized the LASSO algorithm to identify key genes for 

constructing a diagnostic model for coronary artery 

disease. A recent study [19] employed LASSO and 

SVM methods to identify metastatic biomarkers in 

colorectal cancer. These studies utilized either one or 

both machine learning algorithms, and the results 

validated the effectiveness and reliability of these 

 

 
 

Figure 9. Knockdown of BANF1 inhibited tumor growth in in vivo experiments. (A) Photographs of nude mice injected with 

BANF1 knockdown MKN-45 (n = 6) and blank control MKN-45 cells (n = 6). (B) Photographs of subcutaneous tumors of nude mice in the 
knockdown group (n = 6) and control group (n = 6). (C, D) Comparison of subcutaneous tumor volume and weight of nude mice in 
knockdown and control groups. (E) Immunohistochemical staining of Ki67 in subcutaneous tumors of nude mice. (F) TUNEL staining of 
subcutaneous tumors in nude mice. All experiments were repeated at least three times. **p < 0.01, ***p < 0.001. 
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approaches. To identify new ways to treat GC, we 

jointly applied these four algorithms in an exhaustive 

exploration of GC transcriptome data derived from the 

GEO database. Ultimately, we identified three genes 

(BANF1, ADH7, and TMEM27). The KM plotter 

database, known for its extensive data and reliable 

results, has been widely used for studying the 

correlation between gene expression and the prognosis 

of various cancers, mainly breast, ovarian, lung and 

stomach cancers [20–23]. Survival analysis of the three 

characterized genes revealed a significant correlation 

between elevated BANF1 expression and poor 

prognosis (including OS, FP, and PPS) in patients with 

GC. Our study, based on TCGA database, revealed 

substantial overexpression of BANF1 in more than a 

dozen different cancer types, including GC. Zhang 

et al. [10] showed that BANF1 expression is elevated 

in breast cancer and is correlated with lymph node 

metastasis. Jin et al. [11] showed that BANF1 

expression is elevated in esophageal cancer. We also 

verified the high expression of BANF1 in GC tissues 

and cells, which is consistent with the results of 

previous bioassay analyses. Mao et al. [12] showed that 

inhibition of BANF1 in cervical cancer inhibited the 

proliferation, migration, and invasion of cervical cancer 

cells, and Ren et al. [24] showed that inhibition of 

BANF1 inhibited the proliferation and migration of 

esophageal cancer cells. Recent clinical studies have 

shown that BANF1 expression is elevated in patients 

with pancreatic cancer and short survival times [25]. 

There are very few studies on the mechanism of action 

of BANF1 in cancer, and most of the studies have only 

included expression- and cellular-level studies. Our 

study demonstrated that BANF1 inhibition significantly 

suppressed the proliferation, migration, and invasion of 

GC cells. In addition, we performed animal 

experiments and showed that BANF1 knockdown 

significantly inhibited the growth of subcutaneous 

tumors in nude mice, further demonstrating the pro-

tumorigenic role of BANF1 in GC. However, the exact 

molecular mechanism of BANF1 involvement in 

cancer remains unclear. We analyzed BANF1 

expression and immune infiltration in GC and found 

that BANF1 expression negatively correlated with 

immune infiltration. Immune infiltration in the TME 

plays a critical role in tumor development and affects 

patient prognosis; an effective immune response can 

inhibit tumor progression [26]. This may also be one of 

the reasons for the poor prognosis in patients with high 

BANF1 expression. 

 

Immunotherapy is a highly effective approach to cancer 

treatment. However, its clinical efficacy varies due to 
individual differences and the development of drug 

resistance. Cyclic GMP-AMP synthase (cGAS), a key 

player in the stimulator of the interferon genes (STING) 

pathway, has gained widespread attention for its critical 

role in promoting antitumor immune responses [27–30]. 

The cGAS-STING pathway enhances the cytotoxicity 

of immune effectors, including T and natural killer 

cells, by initiating downstream signaling events, 

particularly type I interferons. This activation 

significantly improves the efficacy of immunotherapy 

[31]. The exposure of large amounts of nuclear DNA to 

the cytoplasm and its interaction with cGAS effectively 

trigger an immune response. BANF1, vital for 

maintaining the structural integrity of the nuclear 

membrane, competitively binds to cGAS [32]. 

Consequently, BANF1 exerts a regulatory effect on the 

cGAS-STING pathway. Recent studies have shown that 

the upregulation of BANF1 results in reduced 

expression of cGAS proteins, hindering the innate 

immune response through the cGAS-STING cascade. 

Conversely, inhibiting BANF1 upregulates cGAS 

protein expression, thereby triggering an antiviral 

immune response [33]. We investigated the effect of 

BANF1 on immunotherapy efficacy (Supplementary 

Figure 3) and showed that there was a significant 

difference in the expression of BANF1 in the response 

and non-response groups in the iMvigor210 cohort. This 

suggests that BANF1 may be an important target for 

modulating the effects of immunotherapy. A recent 

study exploring the role of BANF1 in tumor immunity 

revealed that the knockdown of BANF1 increased 

immune cell infiltration into the tumor micro-

environment. This resulted in a significant inhibition of 

melanoma and colon tumor growth in immuno-

competent mice. Moreover, BANF1 knockdown 

enhanced the therapeutic effect of anti-PD-1 [34]. 

Despite these findings, the precise role of BANF1 in 

GC immunotherapy remains unknown. Conventional 

therapies have demonstrated limited efficacy in treating 

middle- and advanced-stage GC, prompting the 

exploration of immunotherapy as a viable alternative 

[35]. Clinical observations underscore the potential of 

immune checkpoint inhibitors as stand-alone or 

combination therapy options, leading to improved 

prognostic outcomes in selected patient cohorts [36, 

37]. Our analysis, based on the TCGA database, 

indicated a negative correlation between elevated 

BANF1 expression in GC tumor tissues and immune 

cell infiltration within these tissues. This suggests that 

increased BANF1 expression may inhibit anti-tumor 

immune responses within GC. Combining these 

findings with existing literature, targeting BANF1 has 

emerged as a promising avenue to enhance GC 

responsiveness to immunotherapeutic interventions. 

 

Our investigation has encountered several limitations. 
First, we have not fully elucidated the precise molecular 

mechanisms that govern the inhibition of GC 

progression following BANF1 knockdown. Second, the 
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limited availability of clinical specimens has impeded 

our ability to conduct a comprehensive analysis of the 

relationship between BANF1 expression and clinical 

parameters. Lastly, the effectiveness and safety of 

therapeutic interventions targeting BANF1 in the 

clinical milieu await rigorous empirical verification. In 

summary, despite these limitations, our study presents a 

promising avenue for the prospective treatment of GC 

through the strategic targeting of BANF1. 

 

CONCLUSION 
 

Our study used WGCNA in conjunction with three 

distinct machine-learning algorithms to identify a triad 

of signature genes implicated in the pathogenesis of 

GC. These genes—BANF1, ADH7, and TMEM27—

emerged as crucial players in this disease. Notably, 

BANF1 exhibits heightened expression levels in GC 

and is closely associated with an unfavorable prognosis 

in individuals affected by this malignancy. Additionally, 

our study provides evidence of the impact of BANF1 on 

the proliferation and migratory capacity of GC cells. 

This evidence is drawn from both in vivo and in vitro 

experimental paradigms. However, it is important to 

emphasize that the mechanistic intricacies underlying 

the role of BANF1 in the genesis and progression of GC 

require further comprehensive elucidation in future 

studies. 

 

MATERIALS AND METHODS 
 

GC transcriptome data and tissue samples 
 

Three high-throughput sequencing datasets about GC 

(GSE54129, GSE118916, and GSE65801) were 

acquired from the GEO repository (https://www.ncbi. 

nlm.nih.gov/geo/), while cancer transcriptome data from 

the TCGA database were procured using the GDC 

download tool. The data were meticulously organized 

using the R software (v4.1.2). Twenty-three paired 

fresh GC tissues and corresponding paracancerous 

tissues were surgically excised and collected under the 

auspices of the Medical Ethics Committee of the First 

Affiliated Hospital of Anhui Medical University. The 

samples were preserved in liquid nitrogen for 

subsequent use. 

 

Identify differentially expressed genes 
 

Transcriptome data encompassing a cohort of 162 GC 

samples were meticulously curated through a process 

involving the integration and harmonization of batch 

effects within the GSE54129 and GSE118916 datasets 

using the sva R package. PCA was performed, and the 

results were visualized using the ggplot2 package. To 

elucidate the intricate disparities in molecular 

expression patterns between tumor and normal tissues, 

we subjected the transcriptome data to rigorous analysis 

using the Limma package. Differential gene expression 

profiling was performed, adhering to stringent criteria, 

with a focus on genes exhibiting a |log2fold change 

(FC)| >2 and a false discovery rate (FDR) <0.01. 

Visualization of the DEGs within GC tissues was 

accomplished by generating heat maps using the 

pheatmap R package. 

 

Weighted correlation network analysis 

 

WGCNA is a pivotal biological approach used to 

explore gene interrelationships across multiple samples 

[38–40]. This method discerns clusters of genes that 

exhibit high inter-correlations, thus forming cohesive 

modules. Moreover, we aimed to identify biomarkers 

and prospective therapeutic targets by scrutinizing the 

correlation between these gene modules and the disease 

phenotype. Gene expression data were meticulously 

processed using the WGCNA R package, culminating in 

the creation of a heat map illustrating the interplay 

between gene modules and clinical information. Among 

the diverse spectrum of gene modules identified, 

paramount attention was paid to the one exhibiting the 

highest correlation with GC, designating it as the 

pivotal module. Subsequently, hub genes were 

methodically sieved in accordance with stringent 

criteria, whereby they were mandated to possess a GS 

exceeding 0.5, and MM surpassing the threshold of 0.8. 

 

Identification of hub genes related to GC 

 

Machine learning, with its capacity to adeptly navigate 

intricate genomic data and discern more precise 

associations with diseases, offers an efficient avenue for 

exploring disease-related genes. In this study, we 

harnessed a trio of machine learning algorithms, 

namely, LASSO regression analysis, Random Forest 

(RF), and Support Vector Machine Recursive Feature 

Elimination (SVM-RFE) [41–43], to conduct an 

additional layer of scrutiny of the previously identified 

DEGs. The ensuing step involved the convergence of 

the key genes identified through WGCNA with a set of 

differential genes gleaned through the application of the 

three machine-learning algorithms. This amalgamation 

yielded a distinctive ensemble of genes that are 

characteristic of GC. 

 

Evaluation of characterization genes 

 

To assess the predictive performance of the three 

identified genes in diagnosing GC, we conducted an 
ROC analysis of the transcriptomic data. This analysis 

was performed using the pROC package, with the AUC 

serving as the benchmark for evaluating diagnostic 

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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efficacy. Subsequently, we investigated the prognostic 

relevance of these three genes in the context of GC 

using the Kaplan–Meier plotter database 

(https://kmplot.com/analysis). Patients were stratified 

into high- and low-expression groups based on median 

gene expression values and survival curves, 

encompassing OS, FP, and PPS, which were 

constructed. Differences in survival outcomes between 

the two groups were rigorously scrutinized using the 

log-rank test for statistical comparison. 

 

Single-cell RNA sequencing data analysis and 

immunocorrelation analysis 

 

Retrieve the scRNA-seq datasets pertinent to GC from 

the TISCH (database http://tisch.comp-genomics.org/). 

Employing the “FindClusters” function with a 

resolution parameter set at 0.2, we ascertained cellular 

clusters within the datasets. Subsequently, we visualized 

the data by employing t-SNE, we visualized the data. 

To identify the DEGs within each of these clusters, we 

leveraged the FindAllMarkers algorithm and selected 

the top 10 genes with the most significant differences as 

markers for each cell cluster. Cell annotation was 

performed manually using these markers. For data 

dimensionality reduction analysis, we opted for the 

UMap method and visualized the expression of BANF1 

across various cell types. Furthermore, in the TCGA GC 

samples, we computed immune infiltration using 24 

immune cell markers and the single sample gene set 

enrichment analysis (ssGSEA) algorithm in the GSVA 

R package. The Spearman method was employed to 

analyze the correlation between BANF1 expression and 

the degree of immune infiltration, and the results were 

depicted as a Laplace plot using the ggplot2 R package. 

We categorized the samples into high and low BANF1 

expression groups based on the median BANF1 

expression value, and compared immune infiltration 

between these groups using the Wilcoxon rank-sum test. 

To gauge the impact of BANF1 expression on the 

immune microenvironment, we calculated the immune, 

stromal, and ESTIMATE scores for GC samples using 

the ESTIMATE R package. Higher scores indicated a 

greater abundance of these components within the 

tumor microenvironment. Differences in scores between 

the groups characterized by high and low BANF1 

expression were assessed using the Wilcoxon rank-sum 

test. The renal cell carcinoma and melanoma 

immunotherapy cohorts were obtained from the GEO 

website, the urothelial carcinoma dataset was 

downloaded from the IMvigor210 (http://research-

pub.gene.com/IMvigor210CoreBiologies), and the 

gastric cancer immunotherapy cohort (PRJEB25780) 
was obtained from Tumor Immune Dysfunction and 

Exclusion (TIDE). The patients were divided into 

response group and non-response group, and the 

difference of BANF1 expression between the two 

groups was compared. 

 

Gene set enrichment analysis 

 

To identify the enriched pathways associated with 

BANF1 expression, GSEA was performed on the 

BANF1 high and low expression groups using GSEA 

software (v4.2.1) and gene set (C2. Cp.kegg. V7.4. 

Symbols GMT). The top five pathways were selected 

based on the p < 0.05 criterion. 

 

Pan-cancer expression analysis of BANF1 

 

Data retrieval and curation involved the acquisition of 

information from TCGA database (https://portal.gdc. 

cancer.gov/), encompassing transcript data expressed in 

transcripts per kilobase million (TPM) format for 33 

tumor types. Groups consisting of fewer than three 

samples or those displaying zero variance were 

excluded from subsequent analyses. To discern 

disparities in BANF1 expression, the Wilcoxon rank-

sum test was used to compare the expression between 

the cancer and paracancer groups. 

 

RNA extraction and real-time quantitative 

polymerase reaction 

 

In the investigation of GC tissues and adjacent non-

tumor tissues, total RNA extraction was performed 

utilizing the HiPure Universal RNA Kit (Magen, 

Shanghai, China), following the manufacturer’s 

guidelines. Subsequently, the concentration and purity 

of the RNA samples were assessed employing a 

Nanodrop 2000 (Thermo Fisher Scientific, USA). The 

transcribed cDNA was generated from the extracted 

RNA using the PrimeScript RT kit (Vazyme, Nanjing, 

China). The quantification of BANF1 mRNA 

expression was conducted through the 2−ΔΔCT method, 

utilizing GAPDH as an internal control. 

 

Western blotting 

 

Tissues and cells underwent lysis using a phenyl-

methanesulfonyl fluoride (PMSF)-containing lysis 

buffer (Beyotime, Shanghai, China) to extract proteins. 

After electrophoresis and membrane transfer, the 

proteins were sealed with 5% skim milk for 1.5 hours, 

and the membrane was incubated with anti-BANF1 

(1:1000, Abcam, UK) or anti-GAPDH (1:50000, 

Proteintech, China) at 4°C overnight. After washing 

with Tris-buffered saline containing 0.1% Tween 20 

(TBST), the membranes were immersed in anti-
rabbit/mouse secondary antibodies (1:10000, 

Proteintech, China) for 2 hours at room temperature. 

Finally, membrane visualization and imaging were 

https://kmplot.com/analysis
http://tisch.comp-genomics.org/
http://research-pub.gene.com/IMvigor210CoreBiologies
http://research-pub.gene.com/IMvigor210CoreBiologies
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achieved using an ECL chemiluminescence system 

(Tanon, Shanghai, China). 

 

Immunohistochemistry 

 

Immunohistochemical staining was used to detect ki67 

expression in subcutaneous tumors from nude mice. 

Samples were embedded in paraffin to prepare paraffin 

sections, which were dewaxed, hydrated, and 

antigenically repaired according to standard procedures. 

Sections were titrated with anti-ki67 antibody (1:1000, 

CST, USA) and incubated at 4°C overnight. After 

washing, enzyme-labeled sheep anti-rabbit IgG polymer 

was added dropwise and incubated at 37°C for 20 min. 

Incubate with freshly prepared diaminobenzidine 

chromogenic solution and finally with hematoxylin 

staining solution. 

 

Immunofluorescence 

 

The assessment of BANF1 protein expression and 

subcellular localization was conducted in MKN-45 and 

BGC-823 cells. Following fixation with 4% 

paraformaldehyde, cells were subjected to overnight 

incubation with the BANF1 primary antibody at 4°C. 

Subsequent to thorough washing, Fluorescent secondary 

antibody was applied and incubated at room 

temperature for 1 hour. The cellular nuclei were 

counterstained with 4′,6-diamidino-2-phenylindole 

(DAPI) for a duration of 10 minutes. 

 

Cell culture and stabilized cell line construction 

 

Human gastric cancer cell lines (AGS, HGC-27, MKN-

45, MGC-803, and BGC-823) and the normal gastric 

mucosal epithelial cell line GES-1 were sourced from 

the American Type Culture Collection (ATCC). The 

cells were cultured in 1640 medium (Gibco), 

supplemented with fetal bovine serum and penicillin-

streptomycin. Incubation occurred at 37°C with a CO2 

concentration maintained at 5%. For transfection, GC 

cells and co-transfection reagents (GeneChem, 

Shanghai, China) were added to 12-well plates at 

specific ratios. Notably, MKN-45 and BGC-823 cells 

were utilized for gene knockdown experiments. Stably 

expressing cells were subsequently selected through 

screening with 5 µg/ml puromycin. 

 

Cell proliferation capacity assay 

 

The cell proliferative capacity was determined using a 

cell counting kit-8 (CCK8) assay and a plate clone 

formation assay. Stably transformed cells were added to 
96-well plates at 3000 cells/well. The absorbance at 450 

nm was measured using an enzyme marker after adding 

the CCK8 reagent at 0 h, 24 h, 48 h, 72 h, and 96 h 

respectively. The plate clone formation assay was 

performed by adding 1000 cells/well to 6-well plates 

and changing the medium every 3 d for a total of 

approximately 10 d. Cells were fixed with para-

formaldehyde and stained with crystal violet after clone 

formation. 

 

Wound healing assays 

 

GC cells were cultured in 6-well plates, and when the 

cells were fully grown, the tip of a pipette was used to 

make a scratch approximately 2 mm wide. Low-serum 

medium containing 2% fetal bovine serum was added, 

and the culture was continued. Scratch healing was 

observed at 0 h and 24 h. 

 

Transwell assay 

 

Migration and invasion capabilities of gastric cancer 

(GC) cells were assessed using the Transwell assay. 

Cells were suspended in a serum-free medium, with 

30,000 cells added to the upper layer of each chamber. 

The lower layer of the chamber received a complete 

medium containing 10% FBS. For the assessment of 

cell invasiveness using the Transwell assay, Matrigel 

(BD, USA) was added to the chambers beforehand, 

while the Transwell assay without Matrigel was 

employed to evaluate the migration ability of the cells. 

Following a 48-hour incubation period, the chambers 

were carefully removed, washed with PBS, fixed using 

4% paraformaldehyde, and subsequently stained with a 

crystal violet staining solution. 

 

Cell line-derived xenograft 

 

The immunodeficient mice used in this study were 

purchased from Empharmatech (Jiangsu, China). 

Breeding conditions and all operational procedures were 

performed in accordance with the requirements of the 

Animal Ethics Committee of Anhui Medical University. 

We selected 4-week-old nude mice for experiments 

after acclimatization in a specific pathogen-free (SPF) 

environment for seven days. Stable BANF1 knockdown 

MKN-45 cells and MKN-45 control cells were injected 

subcutaneously into nude mice, and the number and 

volume of cells injected into each nude mouse were 5 

million and 200 µl. The volume of subcutaneous tumors 

in the nude mice was measured every two days, and the 

formula for calculating the volume of the tumors was V 

= ab2/2. The mice were sacrificed at the end of the 

experiment and disposed of. 

 

TUNEL assay for apoptosis detection 

 

The principle of apoptosis detection by TUNEL assay is 

that when DNA breaks during apoptosis, the exposed 
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3′-OH is labeled with TMR-5-dUTP catalyzed by TdT, 

which can be fluorescently microscopically observation. 

Paraffin sections of nude mouse subcutaneous tumors 

were stained using a one-step TUNEL apoptosis 

detection kit (Servicebio, Wuhan, China). 

 

Statistical analysis 

 

Disparities in molecular expression between tumor and 

normal tissues in publicly available data were assessed 

through the Wilcoxon rank-sum test. Kaplan–Meier 

survival curves were employed to illustrate the 

prognostic differences between high and low BANF1 

expression groups, with log-rank tests utilized for inter-

group comparisons. The correlation between BANF1 

expression and immune cell infiltration was scrutinized 

using Spearman’s method, and variations in immune 

infiltration results between high and low BANF1 

expression groups were evaluated through the Wilcoxon 

rank-sum test. Differences in BANF1 expression across 

various cancer types were examined using the Wilcoxon 

rank-sum test. All bioinformatics analyses were 

executed using R software (v4.1.2). Experimental 

procedures were replicated a minimum of three times. 

Western blot (WB) results were quantified with ImageJ 

software, and inter-group differences were analyzed 

using the t-test in GraphPad Prism 8.02. A significance 

threshold of p < 0.05 was applied. Bar graphs depict the 

mean ± standard deviation (SD) based on the outcomes 

of the three experiments. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 

 
 

 

Supplementary Figure 1. Principal component analysis to view the differences between samples. (A) Difference between raw 

data of GSE118916 and GSE54129. (B) Expression of data of GSE118916 and GSE54129 after removing batch effects. 
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Supplementary Figure 2. Gene set enrichment analysis. The samples were divided into two groups according to the high and low 
expression of BANF1, the differential genes between the two groups were calculated, and the signaling pathways in which BANF1 might be 
involved were speculated based on the analysis of the up- and down-regulation of the differential genes. 
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Supplementary Figure 3. Effect of BANF1 expression level on immunotherapy. Differences in BANF1 expression in renal cell carcinoma 

(A), melanoma (B), urothelial carcinoma (C), and gastric cancer (D) immunotherapy cohorts between response and non-response groups. 

 

 


