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INTRODUCTION 
 

Acute lung injury (ALI) is a clinical syndrome induced 

by damages to lung tissue, leading to various 

pathological and structural changes, characterized by 

alveolar injury, pulmonary edema development, 

neutrophil-produced inflammation, and surfactant 

malfunction [1, 2]. Clinically, ALI is manifested as 

decreased pulmonary compliance, severe hypoxemia, and 

bilateral pulmonary infiltrates. The American-European 

consensus criteria (AECC) defines ALI as the presence of 

acute onset, bilateral pulmonary infiltrates on chest 

radiography, pulmonary arterial wedge pressure ≤18 

mmHg or no left atrial hypertension, and PaO2/FiO2 

≤300 mmHg if present [3, 4]. ALI has a high incidence, 

with over three million cases diagnosed worldwide each 

year, accounting for 10% of Intensive Care Units (ICU) 

admissions [5]. The mortality rate associated with the 

condition is even more concerning than the incidence 
rate. In a study conducted in King County, Washington, 

the incidence of ALI in children aged 0.5–15 years was 

12.8 cases per 10000 people per year, with a mortality 
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ABSTRACT 
 

Acute lung injury (ALI) is one of the most common high-risk diseases associated with a high mortality rate and is 
still a challenge to treat effectively. Netrin-1 (NT-1) is a novel peptide with a wide range of biological functions, 
however, its effects on ALI have not been reported before. In this study, an ALI model was constructed using 
lipopolysaccharide (LPS) and treated with NT-1. Pulmonary function and lung wet to dry weight ratio (W/D) 
were detected. The expressions of pro-inflammatory cytokines and chemokines interleukin-8 (IL-8), interleukin-
1β (IL-1β), and chemokine (C-X-C motif) ligand 2 (CXCL2) were measured using real-time polymerase chain 
reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA). We found that the levels of NT-1 were 
reduced in the LPS-induced ALI mice model. Administration of NT-1 improved histopathological changes of lung 
tissues and lung function in LPS-challenged ALI mice. We also report that NT-1 decreased Myeloperoxidase 
(MPO) activity and ameliorated pulmonary edema. Additionally, treatment with NT-1 reduced the levels of pro-
inflammatory cytokines and chemokines such as IL-8, IL-1β, and CXCL2 in lung tissues of LPS-challenged ALI 
mice. Importantly, NT-1 reduced cell count in BALF and mitigated oxidative stress (OS) by reducing the levels of 
MDA and increasing the levels of GSH. Mechanistically, it is shown that NT-1 reduced the levels of Toll-like 
receptor 4 (TLR4) and prevented nuclear translocation of nuclear factor-κB (NF-κB) p65. Our findings indicate 
that NT-1 is a promising agent for the treatment of ALI through inhibiting TLR4/NF-κB signaling. 
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rate of 18% [6]. Unbridled pulmonary inflammation is 

the primary mechanism underlying ALI [7]. In the 

inflammatory process of ALI, cytokines such as IL-8, IL-

1β, and CXCL2 mediate the accumulation and infiltration 

of various immune cells into lungs, activating 

intracellular signaling pathways and releasing a large 

number of cytokines. Immune cells are continuously 

activated to form a vicious cycle, ultimately leading to 

cytokine storms [8]. OS also closely participates in ALI 

processing. When exposed to ALI risk factors, excessive 

reactive oxygen species (ROS) are generated. Cells 

typically express several enzymes to safeguard from OS 

damage [9], however, excessive ROS that exceed the 

antioxidant capacity cause lipid peroxidation in cell 

membranes, leading to pulmonary edema and pulmonary 

expansion [10]. Thus, regulating inflammatory reactions 

and OS may become important research directions for 

treating ALI. LPS is a major component of the outer 

membranes of gram-negative bacteria, and increasing 

research indicates that gram-negative bacterial infection 

is one of the most important causes of ALI. LPS is able 

to cause lung injury and elicit inflammatory response [11, 

12], thus, LPS-induced ALI in mice has become a well-

accepted model for disease investigation [13]. NT-1 is a 

biologically active molecule that has multiple critical 

biological functions, it closely participates in the 

development and function of the nervous system and is 

therefore called a neural guidance molecule [14, 15]. NT-

1 exerts a vital function in the growth and guidance of 

axons during embryonic development, especially in the 

central nervous system, which affects the establishment 

of neuronal networks and the formation of synapses, 

helping to build the complexity of neuronal networks. In 

the absence of NT-1, axons may fail to orient correctly, 

leading to defects in neuronal network formation [16]. 

NT-1 is recently claimed to alleviate cirrhosis by 

inhibiting the inflammatory response mediated by  

the UNC5b/Peroxisome proliferator-activated receptor γ 

(PPARγ) signaling axis [17]. In addition, NT-1 alleviates 

cerebral reperfusion injury by blocking OS by limiting 

mitochondrial ROS release [18]. However, the 

therapeutic potential of NT-1 for ALI remains 

unknown. In this study, we aim to investigate the 

potential beneficial effects of NT-1 in ALI using an 

animal model. Also, we examine the underlying 

mechanism whereby NT-1 exerted its protective actions 

by examining oxidative stress and inflammatory 

response. The involvement of TLR4/NF-κB signaling has 

also been assessed. 

 

MATERIALS AND METHODS 
 

ALI modeling 

 

Forty-eight male C57BL/6 mice aged between 6 to 8 

weeks old were used. Each mouse was anesthetized 

with 45 mg/kg pentobarbital sodium in 100 μL, fixed  

in the supine position, and then 50 μg LPS solution  

was dropped into the nostril, dissolved in 20 μL 

physiological saline. Before dropping the LPS solution, 

the mouse’s tongue was gently pulled out using 

ophthalmic forceps to prevent swallowing of the LPS 

liquid. At the same time, the mouse’s respiratory 

movement was observed, and the LPS solution was 

dropped into the mouse’s nose when it took a deep 

breath. The LPS solution was dropped slowly and 

repeatedly. Finally, the mouse was gently rotated to 

promote uniform distribution of LPS in the lungs [19]. 

 

Grouping 

 

The mice were divided into 4 groups: Vehicle, NT-1, 

LPS, and LPS+NT-1. In the NT-1 and LPS+NT-1 

groups, normal mice and LPS mice were intra-

peritoneally injected with 80 μg/mL mouse Netrin-1 

protein (R&D, 1109-N1-025, USA) for 1 week before 

the ALI model induction. In the vehicle and LPS 

groups, normal mice and LPS mice were injected with 

the same volume of normal saline [20]. 

 

Enzyme-linked immunosorbent assay (ELISA) 

 

The following kits were used in this experiment: mice 

NT-1 ELISA kit (JINMEI BIOTECHNOLOGY, 

Yancheng, China), mice IL-8 ELISA kit (Cat#FT-

P9S3048X, Shanghai Fan Tai Biotechnology, 

Shanghai, China), mice IL-1β ELISA Kit (Cat#E-EL-

M0037c, Elabscience, Wuhan, China), and mice 

CXCL2 ELISA Kit (Cat#ml058180, Shanghai Enzyme-

linked Biotechnology Co., Ltd, China). MPO activity in 

lung tissues was determined using the ELISA assay 

(Cat#EEA016, Invitrogen, USA). The microplate, 

which had already been coated with the antibody, was 

successively added with serum samples, standards, and 

horseradish peroxidase (HRP). Afterwards, the reaction 

plate was placed in a constant temperature water bath to 

allow for a full reaction. After thoroughly washing the 

plate, the substrate 3.3′5.5′ tetramethylbenzidine (TMB) 

was added for color development, and under the action 

of peroxidase and acid, the substrate color changed 

from blue to yellow. Finally, the wavelength of the 

reader was set to 450 nm, and the optical density (OD) 

values of each microplate were measured. Based on the 

standard curve equation, the concentrations of each 

sample were further calculated. 

 

Real-time polymerase chain reaction (RT-PCR) 

assay 

 
Total RNA was extracted from the lung tissue using 

TRIzol (Cat#15596026, Invitrogen, USA) and quantified 

using NanoDrop Lite (Thermo Fisher Scientific, USA). 
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2 μg total RNA was reverse transcribed into cDNA using 

a cDNA kit (Takara, Japan). The SYBR Green assay kit 

(Takara, Japan) and real-time PCR instrument (Bio-Rad, 

USA) were used for real-time PCR. Expression levels of 

mRNA were normalized using the 2−ΔΔCT method, and 

the mRNA expression levels of the relevant genes, IL-1β, 

IL-8, and CXCL2, were compared with the internal 

reference gene Glyceraldehyde-3-phosphate dehydro-

genase (GAPDH) [21]. 

 

The detection of pulmonary function 

 

Mice were anesthetized utilizing pentobarbital sodium 

(90 mg/kg) and their spontaneous breathing was 

completely suppressed. The trachea was exposed and 

connected to a pulmonary function analyzer (DSI Buxco, 

USA), with a frequency setting of 90, a respiratory ratio 

of 15:10, and a tidal volume of 5 mL/kg. The body 

contour was monitored using a computer, and relevant 

pulmonary function indicators were recorded, including 

resistance of airway (RAW), peak expiratory flow 

(PEF), and dynamic lung compliance (Cdyn), etc. The 

mice were then removed after 30 min. 

 

Lung wet to dry weight ratio (W/D) detection 

 

After mice were sacrificed, lungs were carefully and 

completely dissected using ophthalmic scissors. The 

right lung without lavage was taken and the surface 

liquid was absorbed using filter paper. The weight was 

measured and recorded (wet weight). The temperature 

was set at 60°C and the drying time was set to more 

than 48 h. Then, the weight was measured again (dry 

weight). The formula R = W/D was used to calculate 

the ratio [22]. 

 

Cell counting in bronchoalveolar lavage fluid 

(BALF) 

 

A pair of scissors with a suitable angle was chosen to 

make a small horizontal incision on the trachea just 

below the animal’s throat. A 1-milliliter syringe filled 

with buffered salt solution (HBSS) was gently inserted 

into the cannula to inject 900 microliters slowly and 

continuously into the trachea, inflating the lungs. The 

BALF was removed immediately, followed by 

centrifugation to discard the supernatant. The cell 

precipitate was collected, and 1 milliliter of PBS 

solution was added. A cell counter (Beckman, USA) 

was used to determine counts of leukocytes and 

neutrophils [23]. 

 

The detection of the protein concentrations in BALF 

 

The BALF of each animal was collected to check the 

concentrations of protein utilizing the bicinchoninic 

acid (BCA) method (Keygen, China), with the 

instructions on the kit strictly followed. 

 

The detection of MDA and GSH content in the lung 

tissue 

 

The 0.02% 2-thiobarbituric acid reagent was weighed 

out, buffered with buffer solution to a concentration of 2 

mg/ml TBA solution, then wrapped in tin foil and stored 

in a refrigerator at 4°C. The lung tissues were collected, 

weighed and recorded, followed by being cut into small 

pieces, mixed with a small amount of physiological 

saline solution, and made into a 10% tissue homo-

genate. The supernatant was discarded following 

centrifugation to collect the precipitate. 5% trichloro-

acetic acid was added to the precipitate, mixed evenly, 

and centrifuged at 10000 r/min for 10 min. The 

supernatant was collected and 0.4 volume of 

chloroform-isopentanol mixture (volume ratio of 2:1) 

was added to the supernatant, mixed gently with a glass 

stick, centrifuged at 10000 r/min for 10 minutes, and the 

supernatant was collected. The MDA content was 

calculated by measuring the absorbance at a wavelength 

of 532nm and a light path length of 1 cm, while the 

reduced GSH content was calculated by detecting the 

absorbance at a wavelength of 412 nm and a light path 

length of 1 cm, using a visible spectrophotometer 

(Shimadzu, Japan). 

 

Western blotting assay 

 

100 mg of mouse lung tissue was chopped and 

incubated in a mixture of strong RIPA lysis buffer and 

PMSF (100:1) to extract cytoplasmic and nuclear 

proteins. The protein content of the lung tissue was 

determined with a BCA protein quantification kit 

(Keygen, China). The volumes of 5× loading buffer and 

diluent were calculated and mixed with the lung tissue 

protein solution, followed by boiling, cooling, and 

aliquoting. Separation and concentration gels were 

prepared, samples were loaded, electrophoresis was 

performed, membranes were transferred, and the 

membranes were blocked. Primary antibodies (TLR4, 

1:1000; NF-κB p65, 1:800; β-actin, 1:1000, CST, USA) 

were incubated overnight, washed with TBST, and 

incubated with secondary antibodies (1:6000, CST, 

USA) for 2 h. Following washing, blots were exposed. 

Finally, the ImageJ software was applied for analysis 

[24]. 

 

Statistical analysis 

 

All data were presented as “mean ± standard deviation”, 
and all bar graphs were generated using GraphPad 

Prism 8. The statistical significance of all data was 

analyzed using one-way ANOVA and Tukey’s Post hoc 
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test. P < 0.05 indicated significant differences, and P < 

0.01 indicated extremely significant differences. 
 

Data availability statement/availability of data 

materials 
 

The data that support the findings of this study are 

available from the corresponding author upon 

reasonable request. 

 

RESULTS 
 

The levels of serum NT-1 were reduced in ALI mice 

 

To predict the possible function of NT-1 in ALI, the 

serum NT-1 level in ALI mice was detected. The serum 

level of NT-1 was remarkably declined in ALI mice 

(Figure 1), implying a protective function of NT-1 in 

ALI. 

 

NT-1 improved histopathological changes and lung 

function in ALI mice 

 

In the vehicle and NT-1 groups, there were no 

manifestations of ALI, and the color was uniform and 

pink. In the ALI group, the lung tissue was extensively 

swollen and showed diffuse ecchymoses, with obvious 

pulmonary consolidation and foam-like secretions 

exuding from the trachea. These histopathological 

changes observed in ALI mice were sharply alleviated 

by NT-1 (Figure 2A). The values of RAW (Figure 2B) 

in the control, NT-1, ALI, and NT-1+ALI groups were 

 

 
 

Figure 1. The levels of serum Netrin-1 were reduced in LPS-induced ALI mice model. The levels of serum Netrin-1 were measured 

using ELISA (††P < 0.01 vs. vehicle group). 

 

 
 

Figure 2. Netrin-1 improved histopathological changes and lung function in lung tissues in LPS- challenged ALI mice. (A). 

Histopathological changes of the lung tissue; Scale bar, 100 μm; (B). RAW (cmH2O mL/min); (C). Cdyn (mL/cmH2O); (D). PEF (mL/S) (††P < 
0.01 vs. vehicle group; **P < 0.01 vs. LPS group). 
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0.45, 0.43, 2.31, and 1.27 cmH2O mL/min, respectively. 

Moreover, the Cdyn value was slightly altered from 

2.72 to 2.64 mL/cmH2O in the NT-1 group, markedly 

declined to 0.93 mL/cmH2O in ALI mice, then largely 

elevated to 1.82 mL/cmH2O by NT-1 (Figure 2C). The 

PEF values in the control, NT-1, ALI, and NT-1+ALI 

groups were 5.7, 6.0, 3.3, and 5.6 mL/S, respectively 

(Figure 2D). 

 

NT-1 decreased MPO activity and edema in ALI 

mice 

 

The activity of MPO was changed from 1.96 to 1.87 

U/g in the NT-1 group, was notably increased to 6.27 

U/g in ALI mice, then remarkably reduced to 3.65 U/g 

by NT-1 (Figure 3A). Furthermore, the lung W/D ratio 

in the control, NT-1, ALI, and NT-1+ALI groups was 

4.31, 4.25, 7.05, and 5.61, respectively (Figure 3B). 

 

NT-1 inhibited inflammation in ALI mice 

 

Slightly altered levels of IL-1β, IL-8, and CXCL2 were 

observed in the NT-1 group, all of which were largely 

increased in ALI mice, then sharply repressed by NT-1 

treatment (Figure 4A–4C). The IL-8 content was altered 

from 35.1 to 33.8 pg/mL in the NT-1 group, was notably 

increased to 205.5 pg/mL in ALI mice, then remarkably 

repressed to 137.4 pg/mL by NT-1 (Figure 4D). 

 

 
 

Figure 3. Netrin-1 decreased MPO activity and pulmonary edema in LPS-challenged ALI mice. (A) MPO activity; (B) Lung wet to 

dry weight ratio (††P < 0.01 vs. vehicle group; **P < 0.01 vs. LPS group). 

 

 
 

Figure 4. Netrin-1 inhibited the expression of pro-inflammatory cytokines and chemokines in lung tissues in LPS-challenged 
ALI mice. (A) mRNA of IL-8; (B) mRNA of IL-1β; (C) mRNA of CXCL2; (D) Protein of IL-8; (E) Protein of IL-1β; (F) Protein of CXCL2 (††P < 0.01 

vs. vehicle group; **P < 0.01 vs. LPS group). 
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The content of IL-1β in the control, NT-1, ALI, and 

NT-1+ALI groups was 58.2, 57.9, 435.6, and 267.1 

pg/mL, respectively (Figure 4E). Moreover, the CXCL2 

level was changed from 25.2 to 26.3 pg/mL in the NT-1 

group, was signally increased to 356.5 pg/mL in ALI 

mice, then largely suppressed to 185.2 pg/mL by NT-1 

(Figure 4F). 

 

NT-1 reduced cell counts in BALF of ALI mice 

 

Subsequently, the counts of main lymphocytes were 

detected in BALF. The total leukocyte number in BALF 

was altered from 1.7 to 1.6 × 107 cells/mL in the NT-1 

group, was largely increased to 15.3 × 107 cells/mL in 

the ALI group, then remarkably reduced to 9.2 × 107 

cells/mL by NT-1 (Figure 5A). The total number of 

neutrophils in BALF in the control, NT-1, ALI, and NT-

1+ALI groups was 2.6, 2.4, 6.6, and 3.5 × 107 cells/mL, 

respectively (Figure 5B). In addition, the total protein 

content of BALF in the NT-1 group was slightly 

changed from 172.3 to 167.5 μg/mL, was signally 

elevated to 211.8 μg/mL in ALI mice, then markedly 

decreased to 183.2 μg/mL by NT-1 (Figure 5C). 

 

NT-1 attenuated OS in ALI mice 

 

OS is one of the main inducers of ALI [25]. The MDA 

content in the control, NT-1, ALI, and NT-1+ALI 

groups was 12.6, 11.7, 56.2, and 31.5 nmol/mg protein, 

respectively (Figure 6A). Moreover, the GSH content 

was changed from 0.51 to 0.55 nmol/mg protein in the 

NT-1 group, was notably declined to 0.27 nmol/mg 

protein in ALI mice, then significantly increased to 0.46 

nmol/mg protein by NT-1 (Figure 6B). 

 

NT-1 inactivated the TLR4/NF-κB axis in ALI mice 

 

The TLR4/NF-κB axis is partly responsible for the 

inflammatory response in ALI development [26]. The 

TLR4 and NF-κB p65 levels in the NT-1 group were 

slightly altered, but were dramatically increased in 

ALI mice, then significantly repressed by NT-1 

(Figure 7A, 7B). 

DISCUSSION 
 

The basic pathophysiological changes of ALI are due to 

the destruction of pulmonary endothelial and epithelial 

barriers resulting in pulmonary edema (non-

cardiogenic). The pathological features of ALI involve 

the loss of pulmonary alveolar capillary membrane 

integrity, excessive trafficking of neutrophils across the 

epithelium, and the release of pro-inflammatory 

cytotoxic mediators [27]. The pulmonary alveoli and 

capillaries are lined by type I and type II alveolar 

epithelial cells, respectively, and the integrity of the 

pulmonary endothelial vascular endothelium is crucial 

for gas exchange and pulmonary edema formation. 

Neutrophils are a frequent mechanism for the 

breakdown of vascular integrity [28, 29]. When damage 

occurs, neutrophils accumulate in the pulmonary 

capillary system and are stimulated, leading to the 

release of various harmful mediators, including 

proteases, reactive oxygen radicals, pro-inflammatory 

cytokines and thrombogenic substances, causing 

enhanced permeability of blood vessels to generate 

edema [30, 31]. Neutrophils participate in innate 

immunity [32, 33], the depletion of which prevents the 

development of ALI. It is claimed that the host 

experiences severe endothelial damage without 

experiencing alveolar epithelial damage. In preclinical 

models, edema, a signature feature of ALI, does not 

occur until alveolar epithelial damage occurs [34]. 

Typically, alveolar epithelial cells construct tight 

junctions and selectively regulate the flow of liquid 

through the epithelial barrier. Under pathological 

conditions, with the massive migration of neutrophils, 

injured epithelial cells cause increased permeability 

during ALI and allow protein-rich edema fluid to be 

deposited in the alveolar spaces. The damage to epithelial 

cells also disrupts the normal means of removing edema 

through Na+ channels and Na+/K+ ATPase pumps [35]. 

Injury to type II alveolar epithelial cells also leads to a 

reduction in surfactant production, reducing overall 

lung compliance [36]. Type II pneumocytes play a key 

role in epithelial regeneration, and their malfunction can 

lead to a pathological fibrotic repair process. All these 

 

 
 

Figure 5. Netrin-1 reduced cell count in BALF of LPS-challenged ALI mice. (A) Total leukocyte number in BALF; (B) Total neutrophils 
in BALF; (C) Total protein concentrations in BALF (†, ††P < 0.05, 0.01 vs. vehicle group; *, **P < 0.05, 0.01 vs. LPS group). 
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pathogenic factors contribute to pulmonary alveolar 

damage, which is a hallmark of ALI [1, 3]. Herein, as 

referred to in previous studies [37], the ALI model was 

constructed in mice by administering LPS. Severe 

histopathological changes, impaired lung function, 

decreased MPO activity, and serious pulmonary edema 

were observed in ALI mice, in line with data reported 

by Zou [38] and Zhu [39]. These pathological changes 

in lung tissues were remarkably alleviated by NT-1, 

revealing the anti-ALI property of NT-1. 

 

Inflammation is an important component of innate 

immune reactions that protect tissues from damage. 

However, when the balance in the body is disrupted, 

 

 
 

Figure 6. Netrin-1 attenuated oxidative stress in LPS-challenged ALI mice. (A) Lipid peroxidation was assayed by measuring MDA 

content; (B) The levels of reduced GSH (††P < 0.01 vs. vehicle group; **P< 0.01 vs. LPS group). 

 

 
 

Figure 7. Netrin-1 prevented activation of the TLR4/NF-κB signaling in the lung tissue in LPS- challenged ALI mice. (A) The 

levels of TLR4; (B) Levels of nuclear NF-κB p65 were measured by western blot analysis (††P < 0.01 vs. vehicle group; **P < 0.01 vs. LPS group). 
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inflammation causes damage to tissues and organs. The 

pathogenesis of ALI can also be attributed to prolonged 

or excessive inflammatory processes that lead to lung 

tissue damage [40]. Numerous studies have shown that 

during the sepsis induced by LPS, inflammatory cells 

produce large amounts of inflammatory mediators that 

play a crucial role in the disease progression [25]. For 

instance, TNF-α activates neutrophils to adhere to lung 

tissue and release large amounts of oxygen radicals. 

Additionally, in the process of ALI, a large amount of 

fluid accumulates in the alveoli and pulmonary 

interstitium, leading to pulmonary edema [41, 42]. 

Herein, in line with results presented by Li [43], the 

enhanced inflammation was observed in ALI mice, 

accompanied by increased infiltration of lymphocytes 

and protein content in BALF, which were observably 

ameliorated by NT-1, revealing that the anti-ALI 

function of NT-1 might result from its anti-

inflammatory role. A previous study has shown that OS 

damage is an important factor in ALI, and the main 

degradation product of cell lipid peroxidation is MDA, 

which can indirectly reflect the extent of cell oxidative 

damage [44]. Reducing the level of MDA and activating 

the SOD activity will significantly alleviate the 

pathological changes of lung tissue caused by endotoxin 

[45]. Herein, OS was enhanced in lung tissues of ALI 

mice, which was remarkably alleviated by NT-1. 

During the development of LPS-induced ALI, 

activation of TLR4/NF-κB signaling is involved [46]. 

TLR4 specifically recognizes and binds to LPS, 

activating NF-κB and inducing inflammation, initiating 

endogenous immune reactions that cause tissue and 

organ damage [47]. Herein, the TLR4/NF-κB axis was 

also found to be activated in ALI mice, which was 

markedly repressed by NT-1, hinting that NT-1 exerted 

its anti-ALI function by mediating the TLR4/NF-κB 

axis. Moreover, in normal mice, no remarkable changes 

were observed following NT-1 administration, 

suggesting that NT-1 would not bring obvious impact 

under normal physiological states. In future work, the 

influence of NT-1 on the TLR4/NF-κB axis will be 

further studied in in vitro assays, such as LPS-

stimulated macrophages or bronchial epithelial cells. 

 

CONCLUSION 
 

In conclusion, NT-1 mitigated ALI in mice by 

preventing TLR4/NF-κB activation. Our findings 

provide strong support for the possibility of NT-1-

mediated anti-inflammatory interventions for ALI. 
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