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INTRODUCTION 
 

Multicellular organisms present different controlled 

programmed cell death modalities such as apoptosis, 

necroptosis, pyroptosis, and ferroptosis [1]. Among 

these, ferroptosis, a novel cell death modality named in 

2012, has recently become a research focus [2]. Similar 

to iron, copper is an indispensable microelement in 

living organisms and usually is present at extremely low 

levels in mammalian cells. Cellular copper ions can also 
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ABSTRACT 
 

Background: Copper-dependent controlled cell death (cuproptosis) is a novel cell death modality that is distinct 
from known cell death mechanisms. Nonetheless, the potential role of the cuproptosis regulator in tumour 
microenvironment (TME) of GBM remains unknown. 
Methods: Based on 13 widely recognised cuproptosis regulators, the cuproptosis regulation patterns and the 
biological characteristics of each pattern were comprehensively assessed in GBMs. Machine learning strategies 
were used to construct a CupScore to quantify the cuproptosis regulation patterns of individual tumours. A PPI 
network was constructed to predict core-associated genes of cuproptosis regulators. The function of the novel 
cuproptosis regulators SLC30A7 was examined by in vitro and in vivo experiment. 
Results: We identified three distinct cuproptosis regulation patterns, including immune activation, metabolic 
activation, and immunometabolic double deletion patterns. The CupScore was shown to predict the abundance 
of tumour inflammation, molecular subtype, stromal activity, gene variation, signalling pathways, and patient 
prognosis. The low CupScore subtype was characterised by immune activation, isocitrate dehydrogenase 
mutations, sensitivity to chemotherapy, and clinical benefits. The high CupScore subtype was characterised by 
activation of the stroma and metabolism and poor survival. Novel cuproptosis regulator SLC30A7 knockdown 
inhibited the cuproptosi via JAK2/STAT3/ATP7A pathway in GBM. 
Conclusion: Cuproptosis regulators have been shown to play a vital role in TME complexity. Constructing 
CupScores were trained to evaluate the regulation patterns of cuproptosis in individual tumours. The novel 
cuproptosis-related genes SLC30A7 was involved in regulation the tumorigenicity of GBM cell via 
JAK2/STAT3/ATP7A pathway in vitro and in vivo. 
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exhibit cytotoxicity when their concentration exceeds a 

threshold for maintaining homeostatic mechanisms [3]. 

In March 2022, Tsvetkov et al. demonstrated a novel 

copper-dependent controlled cell death modality in 

human cells, named cuproptosis, which is distinct from 

known cell death mechanisms [4]. The team further 

unravelled the mechanism of cuproptosis, which occurs 

through the direct binding of copper ions to lipoylated 

components of the tricarboxylic acid cycle (TCA) in 

mitochondrial respiration, leading to lipoylated protein 

aggregation and subsequent loss of Fe-S cluster 

proteins, resulting in proteotoxic stress and ultimately 

cell death. More importantly, this study also identified 

13 key genes affecting cuproptosis, including the FDX1 

gene encoding an elesclomol molecular target protein 

and six genes involved in mitochondrial metabolism 

(LIPT1, LIAS, and DLD) and protein lipoylation 

modification (DLAT, PDHA1, and PDHB). Four protein 

lipoylation enzymes (DBT, GCSH, DLST, and DLAT) 

are involved in metabolic complexes that regulate 

carbon entry into the TCA cycle. In addition, DLAT is 

an essential component of the Pyruvate dehydro-

genase (PDH) complex. The three copper ionophores 

include the copper importer SLC31A1 (CTR1) and 

copper exporters ATP7A and ATP7B. An in-depth 

understanding of these regulators would help reveal  

the mechanism of copper dysregulation syndromes, 

including Menke’s and Wilson’s diseases [5, 6]. Studies 

have confirmed that high levels of FDX1 and protein 

lipoylation promote cell death induced by copper 

ionophores [4]. Thus, cuproptosis regulatory factors 

may be potential therapeutic targets in cancer cells. 

 

Targeted therapy has shown striking clinical efficacy in 

patients with several solid tumours such as lung and 

breast cancers. Unfortunately, the clinical benefits for 

most patients with glioblastoma multiforme (GBM) are 

minimal or have no clinical benefit, which is far from a 

met clinical need [7]. The new metabolic mode of cell 

death, cuproptosis, has brought dawn to the treatment of 

GBM [8]. The intractability of tumours is largely 

attributed to their unique metabolic and immunological 

modalities [9]. Malignant cells proliferate rapidly and 

survive in harsh environments by reprogramming their 

metabolism and energy production [10]. The micro-

environment in which tumour cells depend for growth 

and survival also plays a crucial role in tumour 

progression [11]. Cancer cell interactions with tumour 

microenvironment (TME) components result in multiple 

biological behavioural changes, such as proliferation 

and invasion, metabolic alterations, inhibition of 

apoptosis, and immune escape [12]. Recently, evidence 

suggested that cuproptosis contributes toward pro-
moting tumorigenesis and remodeling of TME [13–15]. 

Copper combined with αPD-L1 enhances cancer 

immunotherapy [16]. A study describes the overall 

characteristic immune cell infiltration of the TME 

mediated by the interconnected functions of multiple 

regulators of cuproptosis in pan-cancer [17]. Therefore, 

characterisation of TME cell infiltration driven  

by cuproptosis regulators will enhance our under-

standing of the antitumour response of TME 

components and benefit the search for immunotherapy 

strategies. 

 

In this study, cuproptosis regulation patterns and TME 

cell-infiltrating characteristics of each pattern were 

identified in 469 patients with GBM. Three distinct 

cuproptosis regulation phenotypes were identified: 

immune activation, metabolic activation, and 

immunometabolic double deletion. Interestingly, we 

discovered that the metabolic activation phenotype was 

a cuproptosis phenotype. Moreover, we established the 

cuproptosis score (CupScore) to comprehensively 

evaluate the cuproptosis regulation pattern in individual 

tumours. These findings suggest that cuproptosis 

regulation plays a vital role in the TME. Interestingly, 

we found that the novel cuproptosis-related genes 

SLC30A7 was involved in regulating the cuproptosis of 

GBM cell through the JAK2/STAT3/ATP7A pathway. 

Thus, SLC30A7 may be valuable in directing therapeu-

tic intervention plans for GBM. 

 

METHODS 
 

Acquisition and processing of GBM expression 

datasets 

 

The workflow of this study is shown in Supplementary 

Figure 1A. Gene expression data and clinical features of 

GBM samples were obtained from the Gene Expression 

Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/), 

ArrayExpress (https://www.ebi.ac.uk/arrayexpress/), 

Chinese Glioma Genome Atlas (CGGA; http://www. 

cgga.org.cn/), and The Cancer Genome Atlas (TCGA; 

http://cancergenome.nih.gov/) databases. In total, six 

eligible GBM cohorts with survival information 

(GSE7696, GSE16011, GSE108474, ArrayExpress-E-

TABM-898, CGGA-GBM, and TCGA-GBM) were 

included for further analysis. The “affy” package was 

performed for background adjustment and quantile 

normalisation of GEO, ArrayExpress, and TCGA 

databases. Copy number aberrations and somatic 

mutation data from TCGA-GBM were downloaded 

from the Broad Institute (https://www.broadinstitute. 

org/). TCGA RNA-seq data (FPKM value) downloaded 

from the Genomic Data Commons (GDC, https://portal. 

gdc.cancer.gov/) were transformed into transcripts per 

kilobase million (TPM) values [18]. The ComBat 

algorithm from the ‘SVA’ R package was used to 

correct the non-biological technical biases among the 

different datasets. All the eligible GBM datasets with 
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complete information are listed in Supplementary 

Table 1. 

 

Consensus clustering of cuproptosis regulation 

patterns 

 

A total of 13 cuproptosis regulators were extracted from 

four integrated datasets (GSE7696, GSE16011, 

GSE108474, and ArrayExpress-E-TABM-898) to 

distinct different cuproptosis modification patterns 

using the ConsensusClusterPlus package. These 13 

cuproptosis regulators included mitochondrial meta-

bolism genes (LIPT1, LIAS, and DLD), protein 

lipoylation modification genes (DLAT, PDHA1, and 

PDHB), protein lipoylation enzymes (DBT, GCSH, 

DLST, and DLAT), copper importer SLC31A1 (CTR1), 

and copper exporters ATP7A and ATP7B. A consensus 

clustering algorithm was used to determine the number 

of clusters and 1000 iterations to ensure the stability of 

the classification [19]. The consensus cumulative 

distribution function (CDF), consensus matrix (CM), 

and consensus heatmap were performed to determine 

the optimal number of clusters. The principle of 

unsupervised clustering analysis is described [19, 20], 

including how to assign each sample to a cluster. 

 

Gene set variation analysis (GSVA) and functional 

annotation 

 

GSVA analysis was used to investigate the variation in 

biological processes between different cuproptosis 

regulation patterns with the R package ‘GSVA’. Gene 

sets of “c2.cp.kegg. v7.5.1. symbols” were derived from 

the MSigDB database with a false discovery rate cutoff 

value of < 0.01. The “clusterProfiler” package was  

used to explore Gene Ontology (GO) and Kyoto 

Encyclopedia of Genes and Genomes (KEGG) 

enrichment analyses of differentially expressed genes 

(DEGs) between different cuproptosis regulation 

patterns. 

 

Estimation of TME cell infiltration 

 

We quantified the relative abundance of immune cell 

infiltration in the GBM tumour microenvironment using 

single-sample gene set enrichment analysis (ssGSEA). 

The enrichment score in the ssGSEA analysis, which 

represents cell infiltration, was normalised to a unity 

distribution from 0 to 1. The abundance of 22 distinct 

leukocyte subsets with the gene expression profile of 

GBM was evaluated using CIBERSORT 44. 

 

DEG analysis 

 

The “limma” package of R software was used to 

identify the DEGs among the cuproptosis clusters based 

on the expression of 13 cuproptosis regulators. The 

cutoff criteria were set as | log2 fold change | >0.7 and 

p < 0.05. 

 

Development of the CupScore 

 

A cuproptosis scoring scheme was established to 

quantify the cuproptosis regulation patterns of 

individual patients using principal component analysis 

(PCA). The procedures for establishment of cuproptosis 

gene signature (termed as CupScore) were as follows: 

 

The limma R package was used to identify DEGs 

between different modification patterns, and the 

overlap genes from different cuproptosis clusters were 

extracted. The criteria for identifying DEGs was set as 

adjusted P-value < 0.001. The overlap DEGs were 

applied to classify patients into several groups using 

unsupervised clustering method. The consensus 

clustering algorithm was used to determine the 

number of gene clusters and their stability. DEGs 

were used for prognostic analysis using a univariate 

Cox regression model (P-value < 0.05). Then, the 

genes with the significant prognosis were performed 

to construct cuproptosis gene signature using principal 

component analysis (PCA) method. This method 

concentrated on the score of a set comprising the most 

significantly associated genes and involved scaling 

down the score of genes that were not tracked to other 

members of the set. The CupScore, which is described 

according to a GGI-like procedure [21], was 

calculated as follows: CupScore = ∑(PC1i+PC2i), 
and the “i” is the expression of cuproptosis 

phenotype-related genes.  

 

Correlation analysis of CupScore and other 

biological pathways or clinical information 

 

Correlation analysis was performed to deeply explore 

the correlation between the cuproptosis gene signature 

and other related biological processes, including (1) 

angiogenesis; (2) antigen processing machinery; (3) 

CD8 T effector; (4) cell cycle; (5) DNA damage repair; 

(6) DNA replication; (7) epithelial-mesenchymal 

transition (EMT1), EMT2, and EMT3; (8) FGFR3-

related genes; (9) immune checkpoint; (10) mismatch 

repair; (11) nucleotide excision repair; (12) pan-

fibroblast TGF-β response signature; and (13) WNT 

target [22]. 

 

We further analysed the relationship between the 

CupScore and other related clinical information, 

including age, sex, isocitrate dehydrogenase (IDH), 06- 
methylguanine DNA methyltransferase, molecular 

subtype, temozolomide (TMZ), and tumour somatic 

mutation. 
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Construction of a protein-protein interaction (PPI) 

network 

 

The mRNAs were included in a PPI network using the 

STRING database (https://string-db.org/) with a 

confidence score of >0.7. Cytoscape (version 3.8.1) was 

used to visualise the PPI network [7]. 

 

Cell culture 

 

Glioma primary cells (HG6, HG9) were obtained from 

tumour tissue of GBM patients in the Department of 

Neurosurgery, Affiliated Drum Tower Hospital, School 

of Medicine, Nanjing University. Primary cell line was 

cultured in DMEM medium mixed with 10% fetal 

bovine serum. 

 

Chemical reagents, antibodies, and transfection 

 

The JAK2/STAT3 inhibitor WP1066 was purchased 

from Selleck Chemicals (Boston, MA, USA). 

Antibodies for p-JAK, JAK, p-STAT3, STAT3, 

ATP7A were purchased from Proteintech Group 

(Wuhan, China). SLC30A7 overexpression plasmids 

and short hairpin RNA (shRNA) were produced by 

GV112 vector (hU6-MCS-CMV-Puromycin; Gene-

Chem, China). On the basis of the manufacturer’s 

recommendation, lentiviral vectors expressing shRNA 

or scrambled transfected into cells. Steady cell clones 

transfected with shRNA expressing constructs were 

chosen with puromycin intervention after infection. 

 

Immunohistochemistry 

 

The antibiotin protein-biotin method got accustomed 

to performing immunostaining on paraffin-embedded 

sections. Slides were dewaxed in xylene, then 

rehydrated in graded ethanol, then the endogenous 

peroxidase activity was then quenched with 0.3% 

hydrogen peroxide (China), and the strong antigen 

recovery solution was heated to 37°C to recover the 

antigen. 5% goat serum (Solarbio, China) was used to 

block nonspecific proteins. Primary antibodies (1:100 

dilutions) were used to incubate sections at 4°C 

overnight, subsequently the appropriate biotinylated 

secondary antibody was added (1:100 dilutions) 

(ZSGBBio, China) at 37 °C for 60 minutes. The, slides 

were then hatched with ABC peroxidase and 

diaminobenzidine (ZSGBBio, China). Next, the slides 

were counter-stained for nuclear staining by Mayer 

hematoxylin solution (Solarbio, China). For going on 

H&E staining, the slides were deparaffinized and 

rehydrated. Next, the slides were stained by nuclear 
staining, subsequently re-staining using HE kit 

(Solarbio, China). The images were taken with an 

inverted microscope (Olympus, Japan). The human 

tissue samples used in this study research has 

complied with the relevant national and institutional 

policies. 

 

Colony formation assay 

 

For the colony formation assay, transfected cells (1 × 

103 cells/well) were cultured in 12-well plate. The cells 

were fixed with methanol and stained with 0.4% crystal 

violet solution when number of colonies more than 50 

cells. 

 

Transwell migration assay 

 

To evaluate cell migratory ability, Transwell assays 

were performed in 24-well cell culture chambers with 8 

mm pore Transwell inserts precoated with Matrigel. In 

brief, cells were seeded in 200 μL of culture medium 

containing 1% FBS. Five hundred microliters of 

medium containing 50% FBS was added to each lower 

chamber. After 24 h, T cells migrating through the 

membrane of Transwell inserts were stained with 

crystal violet and photographed by microscopy. 

 

Western blot 

 

For Western blot, after the cell protein sample was 

extracted, the protein concentration was detected by the 

BCA kit (Beyotime, China) and balanced, and a 1/3 

proportion of loading Buffer was added for high-

temperature (100°C) denaturing for 15 minutes. Then, 

the samples were added to the glue-plate sample adding 

tank. Electrophoresis was carried out at constant voltage 

for about 90 minutes, and then membrane was carried 

out at constant current for about 90 minutes. Then, it 

was sealed with milk, incubated with primary antibody 

at 4°C overnight, and then exposed after incubation 

with secondary antibody the next day. 

 

Nude mouse tumour model 

 

Primary cells were used to establish a model of 

intracranial tumour in Female nude mice, refer to 

previous studies for details [23]. The cells stably 

transfected with SLC30A7 related lentivirus were 

divided into three groups as Scramble, shSLC30A7-1 

and SLC30A7-2. These cells that had been transfected 

with luciferase encoding lentivirus (GeneChem, China) 

were stereotaxically injected into the intracranial of 

mice (n = 6 in each group) to establish tumour models. 

At day 7, 14, and 28, intracranial tumour size was 

assessed using the IVIS spectral real-time imaging 

system (Blandford, USA). For HE, mice brains were 

immobilized in 4% paraformaldehyde and then 

embedded in paraffin. 
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Statistical analysis 

 

Statistical analyses were performed using R, version 

3.6.1. Student’s t-test was used to evaluate the statistical 

significance of normally distributed variables, and 

Wilcoxon rank-sum test analysis was performed for 

non-normally distributed variables. Comparisons of ≥2 

groups were conducted using analysis of variance and 

Kruskal-Wallis tests [24]. The correlation between two 

groups was determined using the Pearson correlation 

analysis. The chi-square test or Fisher’s exact test was 

used for the statistical analysis of clinical information 

and gene clusters. Kruskal-Wallis and log-rank tests 

were used to analyse the association between the 

cuproptosis regulation pattern and prognosis. Univariate 

and multivariate analyses were used to establish a Cox 

proportional hazards regression model. A receiver 

operating characteristic (ROC) curve was used to 

evaluate the power of the CupScore model. The area 

under the curve was calculated using ‘timeROC’ 

package. Waterfall function was performed to show the 

mutation landscape in high- and low-CupScore patients 

with GBM using the maftools package in TCGA. The 

landscape of the copy number variation (CNV) of 13 

cuproptosis regulators in 23 pairs of chromosomes  

was plotted using “RCircos” package. Statistical 

significance was set at P < 0.05. The bar chart is 

represented by mean standard deviation from at least 

three experimental replicates. Most of the experiments 

were statistically analyzed using Student’s t test. One-

way analysis of variance (ANOVA) followed by 

Tukey’s post hoc test was used to assess differences 

between groups. The data were analyzed by graph pad 

prism 6. Significance of p-values were set at NSP > 0.05, 
*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. 

 

Limitations of the study 

 

Our study only explored the biological characteristics 

and predictive ability of the constructing cuproptosis 

regulation patterns in GBMs, which is not universal for 

other tumours. In this study, there is insufficient 

evidence on the effectiveness and toxic side effects of 

therapeutic strategies based on targeting cuproptosis 

regulators or pathways, which still needs more research 

to investigate. 

 

Key points 

 

1. Genomic information from eligible GBM cohorts 

was employed to comprehensively evaluate the 

biological characteristics of distinct cuproptosis 

regulation patterns. 
2. Three distinct cuproptosis regulation patterns were 

identified to differ in immune infiltration, biological 

processes, and prognosis. 

3. Three regulated genomic phenotypes (cuproptosis 

gene clusters A, B and C) were determined by 

clustering analysis of the phenotype-related DEGs. 

4. Machine-learning strategies for constructing 

CupScores were trained to quantify cuproptosis 

regulation patterns of individual samples and 

perform a comprehensive analysis of the regulators’ 

genome. 

5. The novel cuproptosis regulator SLC30A7 predicted 

by PPI network was involved in regulation the 

tumorigenicity of GBM cell through the 

JAK2/STAT3/ATP7A pathway in vitro and in vivo. 

 

Availability of data and materials 

 

Clinical information and high-throughput sequencing-

counts were retrieved from the GTEx, TCGA and CGGA 

data portal, which is a publicly available database. 

 

RESULTS 
 

Landscape of genetic and expression variation of 

cuproptosis regulators in GBM 

 

Thirteen known regulators of cuproptosis were analysed 

in this study. A schematic of the potential biological 

functions exploited by cuproptosis regulators to influence 

metabolic alterations is shown in Figure 1A. We found 

that the expression of these 13 cuproptosis regulators 

completely distinguished GBM samples from normal 

samples (Figure 1B). An investigation of the frequency of 

CNV alterations revealed the presence of CNV alterations 

in the 13 cuproptosis regulators. ATP7B, DLST, and 

GCSH showed copy number deletions, whereas 

SLC31A1 and FDX1 had CNV amplification frequencies 

(Figure 1C). As cuproptosis regulators with CNV 

amplification were significantly higher in GBM tissues 

(SLC31A1 and FDX1) and vice versa (ATP7B, DLST, 

and GCSH) than in normal brain tissues (Figure 1C, 1D), 

these genetic variations could be prominent factors 

altering the expression of cuproptosis regulators in 

patients with GBM. Analysis of the incidence of CNVs 

and somatic mutations of the 13 cuproptosis regulators in 

GBM revealed that these regulators were altered at a 

frequency of 2.31% (9 mutations) in the 390 samples. 

ATP7A exhibited the highest mutation frequency, 

followed by ATP7B, whereas FDX1, LIAS, and GCSH did 

not show any mutations in the GBM samples (Figure 1E). 

Further analyses revealed a significant mutation-negative 

relationship between ATP7A and DLD (Supplementary 

Figure 1B). The locations of CNV alterations in the 13 

cuproptosis regulators on the chromosomes are shown in 

Figure 1F. The above analyses indicated significant 

differences and links in the genomic and transcriptomic 

landscapes of cuproptosis regulators between normal and 

GBM samples. Thus, altered expression and genetic 
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variation of cuproptosis regulators play crucial roles in 

regulating GBM initiation and progression. 

 

Cuproptosis specific regulation patterns and 

biological characteristics of each pattern 

 

Two datasets (TCGA and CGGA) with complete 

clinical information were included in this analysis. A 

univariate Cox regression model was used to determine 

the prognostic value of the 13 cuproptosis regulators in 

patients with GBM (Supplementary Figure 1C). 

Survival analysis suggested that 10 of the 13 regulators 

had significant survival effects in GBM (Supplementary 

Table 2). The cuproptosis regulator network revealed 

that cuproptosis regulators not only exhibited significant 

correlations in expression within the same functional 

 

 
 

Figure 1. Landscape of genetic and expression variation of cuproptosis regulators in GBM. (A) Essential regulators in 

cuproptosis events, and their biological functions. (B) Principal component analysis of total 13 cuproptosis regulators for distinguishing 
tumour from normal patients in merge cohort (TCGA and GTEx). (C) The CNV mutation frequency of 13 cuproptosis regulators in TCGA 
cohort. The column represented the alteration frequency. The deletion frequency, green dot; The amplification frequency, red dot. (D) 
Differential expression of cuproptosis regulators between normal and GBM tissues. GBM, blue; LGG, yellow; Normal, red. Significant results 
are indicated as *p < 0.05, **p < 0.01, and ***p < 0.001. (E) The mutation frequency of key cuproptosis regulators in TCGA-GBM cohort. Each 
column represented individual patients. The upper barplot showed TMB. (F) The location of CNV alteration of cuproptosis regulators on 
chromosomes in TCGA-GBM cohort. 
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category but also between CM, LME, LMS, and TACE 

(Figure 2A and Supplementary Table 3). We found that 

FDX1 positively correlated with the expression of 

SLC31A1, ATP7A, LIPT1, LIAS, DBT, and DLAT but 

negatively correlated with ATP7B, GCSH, and PDHA1, 

suggesting that FDX1 broadly influences the process of 

lipoylation modification of proteins. These results 

suggest that perturbing events among different classes 

 

 
 

Figure 2. Patterns of cuproptosis specific regulation. (A) The interaction of expression on 13 cuproptosis regulators in GBM. Different 
biological functions of cuproptosis regulators were depicted by circles in different colors. The lines linking regulators showed their 
interactions, pink represented positive correlation, and blue represented negative correlation. The circle size represented the effect of each 
regulator on the prognosis by P-value. Purple dots in the circle showed risk factors of prognosis; Green dots in the circle showed favorable 
factors of prognosis. Abbreviations: CM: copper metabolism; LME: lipoylation modified enzyme; LMS: lipoylation modified substrates; 
TACe: tricarboxylic acid cycle enzymes. (B) Survival analyses of GBM (n = 469) with three cuproptosis regulation patterns; cuproptosis 
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cluster A (n = 70), cuproptosis cluster B (n = 223), and cuproptosis cluster C (n = 176). Kaplan-Meier curves with p < 0.001 showed significant 
differences in OS among the three patterns. (C) Unsupervised clustering of 13 cuproptosis regulators in the GBM cohort (Consensus 

clustering matrix for k = 3). (D) Principal component analysis of GBM (n = 469, GSE7696, GSE16011, GSE108474, ArrayExpress-E-TABM-898), 
showing significant differences the transcriptome profiles of three cuproptosis regulation patterns. (E) Gene expression of overlapping 
cuproptosis regulators in GBM cohort (GSE7696, GSE16011, GSE108474, ArrayExpress-E-TABM-898). Cupcluster, gender, age, molecular 
subtypes, and survival status were used as patient annotations. Yellow: low expression; Purple: high expression. 

 

of regulators may lead to the formation of different 

cuproptosis regulation patterns and characteristic TME 

alterations in GBM. 

 

Four datasets (GSE7696, GSE16011, GSE108474, and 

ArrayExpress-E-TABM-898) were used to identify 

three distinct cuproptosis regulation patterns based on 

the 13 cuproptosis regulators using the unsupervised 

clustering method (Figure 2C). There was a significant 

difference in the cuproptosis transcriptional profile 

among the three cuproptosis regulation patterns (Figure 

2D). Prognostic analysis revealed that among those in 

Cupcluster A, B, and C, patients in Cupcluster C 

showed the worst survival performance (p < 0.001; 

Figure 2B). Cuproptosis regulators differ significantly 

in three distinct modes of regulation. The regulators of 

cuproptosis were most highly expressed in Cupcluster C 

patients and least expressed in Cupcluster A patients 

(Figure 2E), which indicated that the Cupcluster C 

group may have an active cuproptosis phenotype. The 

results of the ESTIMATE algorithm showed that 

Cupcluster A exhibited a high immune score and that 

Cupcluster C had a high stromal score (Supplementary 

Table 4), which meant that Cupcluster A may have 

significantly increased immune cell infiltration, and 

Cupcluster C has a pro-tumorigenic phenotype (Figure 

3A, 3B). Analyses of TME cell infiltration revealed that 

CupCluster A was significantly enriched in immune cell 

infiltration, including macrophages, dendritic cells, B 

cells, and antigen-presenting cell stimulation (Figure 

3C). We hypothesize that the diverse immune cells 

enriched in Cupcluster A tumours may inhibit the 

initiation and progression of cancer, thereby exhibiting 

a distinct survival advantage. Immune cell-rich tumours 

have been shown to have distinct survival advantages 

[25–27]. A GSVA enrichment analysis was used to 

further explore the biological characteristics of each 

pattern (Supplementary Table 5). Cupcluster A showed 

enrichment in immune activation-related pathways such 

as antigen processing and presentation, extracellular 

matrix receptor interaction, and leukocyte trans-

endothelial migration (Supplementary Figure 2A). 

Cupcluster C was markedly enriched in metabolic 

activation pathways, including citrate cycle, TCA cycle, 

cuproptosis, and nucleotide sugar metabolism 

(Supplementary Figure 2B). Cupcluster B was enriched 

in the immunometabolism pathway. Subsequent 

analyses revealed that the CupCluster C regulatory 

pattern was significantly associated with stromal 

activation, including angiogenesis, EMT, and 

transforming growth factor beta, which was consistent 

with the shorter survival in CupCluster C (Figure 3D). 

The specific correlation between each TME infiltrating 

cell type and each cuproptosis regulator was examined 

using Spearman’s correlation analysis (Supplementary 

Figure 3B). We focused on FDX1, as an important 

cuproptosis regulator, which was negatively correlated 

with immune score (Supplementary Figure 3A) and 

revealed its relationship with TME infiltrating immune 

cells using the ESTIMATE algorithm (Supplementary 

Figure 3C). The results showed that FDX1 expression 

affected the infiltration of a small number of immune 

cells. Therefore, we hypothesised that FDX1 may be 

involved in regulating tumour progression through 

metabolic pathways rather than the surrounding immune 

microenvironment. Based on the above analysis, we 

unexpectedly found that the three cuproptosis regulation 

patterns had significantly different biological 

characteristics. Cupcluster A was classified as an 

immunoinflammatory phenotype characterised by 

increased immune cell infiltration, Cupcluster B was 

classified as an immunometabolism-deficient phenotype 

characterised by the absence of immune cell infiltration 

and metabolic activity, and Cupcluster C was classified 

as a metabolically active phenotype characterised by 

high stromal activity. 

 

Generation of cuproptosis gene signatures and 

functional annotation 

 

To further investigate the potential biological 

characteristics of each cuproptosis regulatory pheno-

type, 272 cuproptosis pattern-related DEGs were 

identified using the limma package (Supplementary 

Figure 4A). GO and KEGG enrichment analyses of 

DEGs revealed that these significantly enriched 

biological processes were associated with cuproptosis 

metabolism and immunity, which again demonstrated 

that the cuproptosis regulation phenotype plays a non-

negligible role in the TME (Supplementary Figure 4C, 

4D). The DEGs were prognostically filtered to 205 

genes using univariate Cox regression analysis 

(Supplementary Table 6). To verify this regulatory 

mechanism, unsupervised clustering analysis was used 

to classify patients into distinct genomic subtypes based 

on the acquired 205 cuproptosis phenotype associated 

DEGs. The analysis revealed three distinct cuproptosis-

regulated genomic phenotypes (cuproptosis gene 

clusters A-C) (Supplementary Figure 4B). We observed 

that patients with GBM in the cuproptosis gene cluster 
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C exhibited more mesenchymal subtypes and death 

status than those in the cuproptosis gene clusters A and 

B. The opposite pattern was observed in cuproptosis 

gene clusters A and B. Patients with survival status or 

proneural subtype were mainly clustered in cuproptosis 

gene cluster A (Figure 4A). Survival analysis also 

showed that among the patients in the cuproptosis gene 

clusters A, B, and C, those in the cuproptosis gene 

 

 
 

Figure 3. Potential characteristics in distinct cuproptosis-related phenotypes. (A) Differences in immune score among three 

cuproptosis regulation patterns in merge cohort (P < 0.05, Kruskal-Wallis test). (B) Differences in stromal score among three cuproptosis 
regulation patterns in merge cohort (P < 0.05, Kruskal-Wallis test). (C) The fraction of TME infiltrating cell in distinct cuproptosis regulation 
patterns using the CIBERSORT algorithm. The bottom and top of the boxes were interquartile range of values. The thick line in the boxes 
indicated median value. Significant results are indicated as *p < 0.05, **p < 0.01, and ***p < 0.001. (D) Differences of stroma-activated 
pathways in three cuproptosis regulation patterns. Significant results are indicated as *p < 0.05, **p < 0.01, and ***p < 0.001. 
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cluster C exhibited the worst survival (Figure 4B). Most 

of the cuproptosis regulators were highly expressed in 

cuproptosis gene cluster C (Figure 4C). To further 

explore the function of the distinct cuproptosis gene 

clusters A-C, we examined other known signatures in 

patients with GBM (Supplementary Table 7). The 

results also showed that gene cluster A was significantly 

associated with immune activation states, and gene 

 

 
 

Figure 4. Construction of cuproptosis signatures. (A) Unsupervised clustering of overlapping cuproptosis regulation patterns-related 

DEGs to classify patients into different genomic subtypes (cuproptosis gene clusters A, B, and C). The cupcluster, genecluster, gender, age, 
molecular subtypes, and survival status were used as patient annotations. (B) Kaplan-Meier plotter was used to estimate the survival of 
patients in the cuproptosis gene clusters. (p < 0.001, Log-rank test). (C) Differential expression of cuproptosis regulators in three gene 
cluster. Significant results are indicated as *p < 0.05, **p < 0.01, and ***p < 0.001. (D) Correlation analysis of CupScore and other known gene 
signatures using Spearman analysis. (E) Differences in stroma-activated pathways between high- and low-CupScore groups. (F) Alluvial 
diagram showing the changes of cuproptosis clusters, molecular subtypes, gene cluster and CupScore. (G) Differences in CupScore among 
three cuproptosis regulation patterns in merge cohort (P < 0.001, Kruskal-Wallis test). (H) Differences in CupScore among three gene 
clusters in merge cohort (P < 0.001, Kruskal-Wallis test). 
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cluster C was characterised by stromal activation and 

cancer promotion (Supplementary Figure 4E). The 

above analyses have shown important roles for 

cuproptosis regulators in shaping the surrounding 

landscape of GBM. However, these analyses were based 

on patient populations and did not accurately assess the 

mode of cuproptosis regulation in individual patients. To 

further explore the heterogeneity and complexity of 

cuproptosis regulators in individual tumours, we 

constructed a scoring system, CupScore, for cuproptosis 

regulatory patterns in individual GBM patients. A total 

of 469 patients with GBM were randomly allocated to 

the training and validation cohorts. A total of 205 

cuproptosis phenotype-related DEGs were subjected to 

LASSO regression followed by PCA (Supplementary 

Figure 5A, 5B and Supplementary Table 8). With a 

cutoff value of 0.3054, patients were divided into low- 

or high-CupScore groups in the training and validation 

sets. Patients with a low CupScore showed a prominent 

survival benefit (Supplementary Figure 5C, 5D). The 

CupScore was confirmed to be a robust and independent 

prognostic biomarker for GBM in univariate and 

multivariate Cox regression analyses (Supplementary 

Figure 5E, 5F). The ROC curve further demonstrated the 

ability of the CupScore signature to predict patient 

outcomes (Supplementary Figure 5G, 5H). Dramatic 

changes in the attributes of individual GBM patients 

were observed in the alluvial diagram (Figure 4F). We 

explored the association between CupScore and known 

signatures using both correlation analyses (Figure 4D). 

Analysis of relevant pathway activities showed that low 

CupScore in patients with GBM was associated with 

Wnt and CD8 T pathways, whereas high CupScore was 

related to enhanced activation of angiogenesis and EMT 

pathways (Figure 4E). The Kruskal–Wallis test revealed 

that CupScore was the lowest in Cupcluster A and 

highest in Cupcluster C (Figure 4G). Similarly, 

CupScore was lowest in gene cluster A and highest in 

cluster C (Figure 4H). These results strongly suggest that 

a low CupScore could be associated with immune 

activation, whereas a high CupScore could be associated 

with stromal activation. Patients with a high CupScore 

showed a poor survival benefit. Therefore, CupScore 

provides a better assessment of cuproptosis regulation 

patterns for individual tumours. 

 

Characteristics of cuproptosis metabolism in clinical 

information and tumour somatic mutation 

 

We further explored the relationship between 

cuproptosis regulation modalities and clinical traits, 

mutant phenotypes, and molecular subtypes through 

correlation analysis of the CupScore system in TCGA 
and CGGA cohorts. We found that older patients 

(Figure 5A), IDH wild-type patients (Figure 5B), and 

mesenchymal subtype (Figure 5C) patients were 

significantly associated with a higher CupScore, 

implying that these patients may be ascribed a 

Cupcluster-C modification pattern and stromal 

activation phenotype with worse clinical outcomes. 

Using the same cutoff value, patients were divided into 

low or high CupScore groups, with 223 and 160 

patients, respectively. Kaplan-Meier curves indicated 

that low CupScore was markedly related to the overall 

survival of 383 patients in the merged cohort (Figure 

5D). We examined the ability of the CupScore signature 

to predict the efficacy of adjuvant chemotherapy (TMZ) 

in GBM patients. We found that patients with a low 

CupScore showed a significant treatment advantage 

among those who received TMZ (Figure 5E). 

Interestingly, we were surprised to find that the 

predictive ability of the CupScore was not disturbed by 

adjuvant chemotherapy, with or without TMZ, and the 

low CupScore group exhibited a significant survival 

advantage (Figure 5E). The maftools package was used 

to show the distribution differences of somatic 

mutations between low and high CupScores in TCGA-

GBM. We found that the high CupScore group 

presented a slightly higher tumour mutation burden than 

the low CupScore group, with the rate of the 5th most 

significantly mutated gene being 17% versus 12% 

(Figure 5F, 5G). The above results indicated that the 

CupScore could also be used to evaluate certain clinical 

characteristics of patients, such as older age, wild-type 

IDH, and molecular subtypes. 

 

Novel cuproptosis-related genes and their prognostic 

value 

 

To further explore the regulatory mechanism of 

cuproptosis, we identified several new cuproptosis 

regulators using PPI network analysis based on 13 

cuproptosis regulators and 205 cuproptosis regulation 

pattern related DEGs. Among these genes, seven were 

direct cuproptosis regulators and 26 were indirect 

regulators (Figure 6A), which provides strong 

foundations for further research on the occurrence and 

development of cuproptosis. Prognostic analysis 

suggested that all seven direct regulators of cuproptosis 

were risk factors (Figure 6B). Survival analysis showed 

that GBM patients with high expression (ETFA, FN1, 

GLUL, PGK1, SCO1, and SLC30A7) possessed poorer 

prognosis (Figure 6C–6H). These results strongly 

suggest that the newly identified cuproptosis regulators 

may contribute to tumour-promoting characteristics. 

 

SLC30A7 overexpression predicted poor survival and 

SLC30A7 knockdown inhibited cell proliferation, 

migration, invasion and reverse EMT in vitro 

 

Disruption of zinc homeostasis has been found to be 

causally associated with tumorigenesis in various cancer 
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patients [28]. As a Golgi located zinc transporter, 

SLC30A7 exhibits anti oxidative stress effect and 

induced apoptosis via the NFE2L2/HMOX1 pathway 

under high glucose (HG) conditions (32949653). 

SLC30A7 may be involved in tumour initiation and 

progression [29]. But there are few reports about 

SLC30A7 in gliomas. To explore the prognostic value of 

SLC30A7 in gliomas, public databases were used to 

analyzed SLC30A7 expression. SLC30A7 was increased 

in higher WHO grade, mesenchymal subtype and GBM 

histology (Figure 7A–7C). GBM patients with high 

SLC30A7 expression possessed a shorter survival 

(Figure 6H). Immunohistochemistry (IHC) analysis 

revealed that SLC30A7 was upregulated in GBM tissues 

than normal tissues (Figure 7D). To investigate  

the oncogenic role of SLC30A7 in glioma cells, 

SLC30A7-silenced cell models was constructed by 

transfecting siRNAs into DT001 cells (Figure 7H, 7I). 

 

 
 

Figure 5. Characteristics of cuproptosis metabolism in molecular subtypes and tumour somatic mutation. (A) Differences in 

CupScore between different age status. (P = 0.012, Kruskal-Wallis test). (B) Differences in CupScore between different IHD1 status. (P < 
0.001, Kruskal-Wallis test). (C) Differences in CupScore between different GBM molecular subtypes. (P < 0.001, Kruskal-Wallis test). (D) 
Survival analyses for high (n = 160) and low (n = 223) CupScore GBM groups in merge cohort (TCGA and CGGA, P = 0.032, Log-rank test). (E) 
Survival analyses for subgroup patients stratified by both CupScore and treatment with pharmacological chemotherapy (TMZ, 
temozolomide) using Kaplan–Meier curves. (P < 0.001, Kruskal-Wallis test). (F, G) The waterfall plot of tumour somatic mutation established 
by those with high- (F) and low CupScore (G). 
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CCK-8 and wound-healing and Transwell assay verified 

that silencing SLC30A7 significantly attenuated the 

proliferation, migration, and invasion of glioma cells 

(Figure 7E–7G). These data suggest that SLC30A7 may 

regulate the EMT process to facilitates malignant 

behavior in GBM cells. 

SLC30A7 knockdown inhibited the tumorigenicity 

of GBM cell in vivo 

 

To confirm the effects of SLC30A7 in GBM 

tumorigenesis in vivo. Intracranial orthotopic xeno-

transplantation models were constructed to verify 

 

 
 

Figure 6. Identification of cuproptosis-related novel genes and their potential characteristics. (A) Identification of cuproptosis-

related novel genes using PPI network. Purple represented known cuproptosis regulators, blue represented novel cuproptosis regulators, 
and green represented indirect cuproptosis regulators. (B) Forest plot of novel cuproptosis regulators using univariate Cox regression 
analysis in merge cohort (GSE7696, GSE16011, GSE108474, ArrayExpress-E-TABM-898). (C–H) Kaplan-Meier survival curves for patients of 
GBM with high and low gene expression in merge dataset (GSE7696, GSE16011, GSE108474, ArrayExpress-E-TABM-898). 
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that silencing SLC30A7 significantly decreased 

transplant tumour size (Figure 8A, 8B, 8D). KM 

survival analysis demonstrated that the survival time of 

xenograft mice was noticeably prolonged after silencing 

SLC30A7 to control mice (Figure 8C). These data 

further confirm that SLC30A7 plays a role in promoting 

the malignant progression of GBM in vivo. 

SLC30A7 suppressed cuproptosis via activating the 

JAK2/STAT3/ATP7A pathway 

 

To investigate the function of SLC30A7 as a novel 

cuproptosis regulator in GBM, the concentration of 

copper in the cell fraction and medium was analyzed. 

Knockdown of SLC30A7 led to an increase of copper in 

 

 
 

Figure 7. The expression of SLC30A7 and its effect on proliferation, invasion, migration and epithelial mesenchymal 
transformation of primary GBM cells. (A–C) Boxplots showing the SLC30A7 distributions according to grade, molecular subtype, and 
histology in CGGA cohort (P < 0.001). (D) Expression of SLC30A7 in normal tissues and GBM. (E) Proliferation of cells stably transfected with 
SLC30A7 knockdown lentivirus in different group. Significant results are indicated as **p < 0.01. (F–I) Cell scratch and Trans-well assays 
detected the invasion and migration of GBM primary cells after inhibition of SLC30A7, H is the statistic of the migration distance in scratch 
assay at different time points, I is the counting of the invasion penetrated out chamber cells after Transwell assay. Significant results are 
indicated as **p < 0.01, and ***p < 0.001. 
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cytoplasm and mitochondria, but a decrease in medium 

(Figure 9A), suggesting that SLC30A7 affected copper 

homeostasis in GBM cells. Knockdown of SLC30A7 

decreased ATP7A levels and SLC30A7 overexpression 

increased ATP7A levels (Figure 9B). The GSEA 

analysis showed that SLC30A7 was significantly 

enriched in the JAK-STAT signaling pathway (Figure 

9C). Importantly, Knockdown of SLC30A7 decreased 

phosphorylated (p)-JAK2 and p-STAT3 levels (Figure 

9D), and SLC30A7 overexpression increased p-JAK2 

and p-STAT3 levels (Figure 9E). JAK2 inhibitor 

WP1006 reversed SLC30A7-induced APT7A in HG6 

and HG9 cells (Figure 9F). In addition, Inhibition of 

JAK2/STAT3 signaling prevented SLC30A7-induced 

proliferation and migration in GBM cells 

overexpressing SLC30A7 (Figure 9G, 9H). These data 

demonstrate that SLC30A7 suppressed cuproptosis 

through the JAK2/STAT3/ATP7A pathway. 

DISCUSSION 
 

The emergence of copper-dependent controlled cell 

death modalities has revealed that the interplay between 

individual cuproptosis regulators plays an indispensable 

role in tumour metabolism, the tumour micro-

environment, and antitumour effects [30, 31]. However, 

swarming characteristics mediated by the combined 

actions of multiple cuproptosis regulators have not been 

explored. Thus, identifying the roles of distinct modes 

of cuproptosis regulation in the tumour micro-

environment can help enhance our understanding of 

tumorigenesis and guide more effective therapeutic 

strategies. 

 

Based on 13 cuproptosis regulators, we found three 

distinct modes of cuproptosis regulation. Cluster A was 

characterised by increased immune cell infiltration, 

 

 
 

Figure 8. Detection of tumorigenesis of SLC30A7 stably knocked down in nude mouse orthotopic implanted tumour model. 
(A) Representative images of bioluminescence of mice on days 7, 14, and 28 after implantation. (B) Quantitative analysis of these 
bioluminescence images for the Scramble, shSLC30A7-1 and shSLC30A7-2 treatment groups. Data are shown as the mean ± S.D. n = 6, ****P 
< 0.0001 compared to the control, Student’s t-test. (C) The overall survival of mice in different groups. Data are shown as the mean ± S.D. 
n = 6, NSP > 0.05, **P < 0.01 compared to the control, ANOVA test. (D) Representative images of the HE (×4 magnification, scale bar = 1000 
μm) and HE staining in local area enlargement of tumour (×40 magnification, scale bar = 200 μm). The three rows of HE samples are 
repeated data from different processing groups. The outlined sections of left images were defined as higher magnification sections right. 
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corresponding to an immunoinflammatory phenotype; 

Cluster B was characterised by absence of immune and 

metabolic activity, corresponding to an immuno-

metabolic deficient phenotype; Cluster C was 

characterised by high metabolic activity, corresponding 

to a metabolic activation phenotype [32]. The immuno-

metabolic null phenotype is considered indolent. 

Tumours exhibiting immunoinflammatory and metabo- 

 

 
 

Figure 9. SLC30A7 suppressed cuproptosis via activating the JAK2/STAT3/ATP7A pathway. (A) Cu2+ levels in cytoplasm, 

mitochondria and medium were measured using Copper (Cu) Colorimetric Assay Kit (Elabscience, E-BC-K300-M). (B) Western blot showing 
the protein level of ATP7A following SLC30A7 knockdown in GBM cells. (C) GSEA analysis showed that the high expression SLC30A7 group 
was positively correlated with the JAK-STAT pathway. (D, E) Western blot analysis showed that SLC30A7 activated the JAK2/STAT3 pathway. 
(F) Western blot analysis demonstrated that JAK2/STAT3 pathway promoted APT7A protein levels in GBM cells. Conversely, inhibitor of 
JAK2/STAT3 signaling partially rescued APT7A protein levels in GBM cells. (G) Colony formation assay of the effect of WP1066 on the 
growth of GBM cells after overexpression of SLC30A7. (H) Transwell migration analysis showing the effect of WP1066 on GBM cells after 
overexpression of SLC30A7 on GBM cells. 
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lic activation phenotypes are considered hot tumours 

[33, 34]. Altered cellular metabolism has been reported 

to be a hallmark of cancer [35]. Alterations in stromal 

cell metabolism have also been reported with tumour 

destruction [36]. Catabolites are transferred from 

supporting stromal cells to adjacent cancer cells as a 

result of cellular metabolic interactions within the 

tumour [37]. Thus, metabolic crosstalk between the 

tumour and stroma is crucial for the progressive 

malignant journey of tumour cells. Consistent with the 

appeal descriptions, we found that cluster C was a 

metabolically active phenotype exhibiting a marked 

stromal activation state, including high expression of 

angiogenic and EMT pathways. These results confirm 

the reliability of typing cuproptosis regulation patterns. 

 

In this study, the DEGs identified in the different 

cuproptosis regulation patterns were significantly 

associated with immune and metabolic pathways. These 

DEGs are considered cuproptosis-related signature 

genes. Similar to the clustering results for the regulation 

patterns of cuproptosis, three genomic subtypes were 

identified based on cuproptosis signature genes, which 

were also associated with metabolic and immune 

pathways. This again illustrates that cuproptosis 

regulators play an important role in shaping the TME. 

Therefore, a comprehensive assessment of cuproptosis 

regulatory modes may enhance our understanding of 

copper ion-induced alterations in the TME. Considering 

the heterogeneity of individual tumour cuproptosis 

regulation patterns, we established a scoring system, a 

cuproptosis gene signature, to evaluate the cuproptosis 

regulation pattern in individual patients with GBM. The 

immunoinflammatory phenotype had a lower CupScore, 

whereas the metabolic activation phenotype had a 

higher CupScore. In addition, it was well validated that 

the high CupScore was significantly associated with 

advanced age, IDH wild-type, and mesenchymal 

subtypes in both TCGA and CGGA cohorts, and 

patients with low CupScore were more sensitive to 

TMZ adjuvant chemotherapy. 

 

Our data also revealed a markedly negative correlation 

between the CupScore and tumour mutation burden. 

Integrated analysis demonstrated that the CupScore is 

an independent prognostic marker for GBM. This 

suggests that the CupScore is a reliable and robust tool 

for comprehensively assessing cuproptosis regulation 

patterns for individual tumours. 

 

We identified seven novel regulators of cuproptosis that 

are risk factors for GBM. Importantly, we found that 

SLC30A7 overexpression predicted poor survival and 
SLC30A7 knockdown inhibited cell proliferation, 

migration, and invasion in vitro. Meanwhile, SLC30A7 

knockdown inhibited the tumorigenicity of GBM cell 

in vivo. Mechanistically, SLC30A7 suppressed 

cuproptosis through the JAK2/STAT3/ATP7A pathway. 

 

In short, in clinical practice, the CupScore provides a 

comprehensive assessment of cuproptosis regulation 

patterns and microenvironmental features of individual 

tumours. Patient prognosis can be predicted further by 

determining the tumour phenotype. We demonstrated 

that CupScore can be used to evaluate the clinical 

features of patients, including age, IDH status, and 

molecular types. The CupScore is effective for predicting 

patient survival. In addition, the CupScore can effectively 

predict patient response to TMZ treatment. Importantly, 

this study provides a new approach for the treatment of 

GBM, targeting cuproptosis regulators or cuproptosis-

associated DEGs to reverse the malignant tumour 

phenotype and contribute to future new drug discovery. 

Interestingly, this is the first study to report SLC30A7 in 

GBM. SLC30A7 knockdown evidently inhibited GBM 

cell proliferation through the JAK2/STAT3/ATP7A 

pathway in vitro and in vivo. 

 

CONCLUSION 
 

In conclusion, three distinct cuproptosis regulation patterns 

(immune activation, metabolic activation, and immune-

metabolic double deletion patterns) were identified by 

Cuproptosis regulators. Three regulated genomic pheno-

types (cuproptosis gene clusters A, B and C) were 

determined based on clustering analysis of three distinct 

phenotypes related DEGs. Constructing CupScores were 

used to evaluate cuproptosis regulation patterns of 

individual samples. The results of the PPI network analysis 

illustrated novel cuproptosis-related genes. Furthermore, 

we revealed that SLC30A7 knockdown inhibited 

the tumorigenicity of GBM cell through the 

JAK2/STAT3/ATP7A pathway in vitro and in vivo. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Overview of study design and prognostic analysis of 13 cuproptosis regulators. (A) Overview of this 

work. (B) Expression differences of DLD between ATP7A wild and ATP7A mutation in TCGA and CGGA cohorts. (C) The prognostic analyses 
for 13 cuproptosis regulators in TCGA and CGGA cohorts using a univariate Cox regression model. 
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Supplementary Figure 2. Biological characteristics of cuproptosis regulation pattern. (A) GSVA enrichment analysis showing the 

activation biological pathways between cuproptosis regulation patterns A and B. Purple: activated pathways; yellow: inhibited pathways. 
The GBM cohorts were used as sample annotations (GSE7696, GSE16011, GSE108474, ArrayExpress-E-TABM-898). (B) GSVA enrichment 
analysis showing the activation biological pathways between cuproptosis regulation patterns B and C. Purple: activated pathways; yellow: 
inhibited pathways. The GBM cohorts were used as sample annotations (GSE7696, GSE16011, GSE108474, ArrayExpress-E-TABM-898). 
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Supplementary Figure 3. Correlation analysis between TME infiltrating cells and cuproptosis regulators. (A) Expression 

differences of ImmuneScore in high- and low-FDX1 expression and mutation in four GBM cohorts. (B) Difference in the abundance of each 
TME infiltrating cell between FDX1 high expression and low expression groups. (C) The correlation between each cuproptosis regulator and 
each TME infiltration cell type. Red: positive correlation; Purple: negative correlation. 
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Supplementary Figure 4. Identification and functional annotation of cuproptosis pattern related DEGs. (A) Venn diagram 
indicating cuproptosis-related genes identified in three patterns. (B) Unsupervised clustering of 205 cuproptosis regulation pattern related 
DEGs and consensus matrices for k = 3, which was the optimal cluster number in four GBM cohorts. (C, D) Functional annotation for 
cuproptosis-related genes using GO and KEGG enrichment analysis. The color depth of the barplots represented the number of genes 
enriched. (E) Difference in the expression of known signatures including stromal-activation related signatures among three gene clusters. 
significant results are indicated as *p < 0.05, **p < 0.01, and ***p < 0.001. 
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Supplementary Figure 5. Construction and validation of cuproptosis gene signature. (A) LASSO coefficient profiles of the 

cuproptosis regulation pattern related DEGs in the training set. (B) A coefficient profile plot was generated against the log (lambda) 

sequence. Selection of the optimal parameter (lambda) in the LASSO model. (C) Survival analyses for low (116 cases) and high (116 cases) 
CupScore patient groups in training cohort using Kaplan-Meier curves. (D) Survival analyses for low (125 cases) and high (107 cases) 
CupScore patient groups in testing cohort using Kaplan-Meier curves. (E, F) Forest plot showing univariate and multivariate Cox regression 
analyses of CupScore associated with age, gender, subtype and CupScore of two cohorts. (G, H) The predictive value of the quantification of 
cuproptosis gene signatures in training cohort (AUC, 0.721) and testing cohort (AUC, 0.716). 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 4 and 6–8. 

 

Supplementary Table 1. Basic information of datasets included in this study for identifying distinct cuproptosis 
modification. 

Accession number/Source Platform Number of patients Sex 

GEO: GSE7696 
Affymetrix Human Genome U133 

80 
Female:21 

Plus 2.0 Array Male:59 

GEO: GSE16011 
Affymetrix Human Genome U133 

155 
Female:50 

Plus 2.0 Array Male:105 

GEO: GSE108474 
Affymetrix Human Genome U133 

219 NA 
Plus 2.0 Array 

ArrayExpress: E-TABM-898 
Affymetrix Human Genome U133 

48 NA 
Plus 2.0 Array 

CGGA-GBM 
Illumina HumanHT-12 V3.0 

365 
Female:146 

expression beadchip Male:219 

TCGA-GBM Illumina RNAseq 115 
Female:45 

Male:70 

patterns 

Histology Survival data 

GBM OS 

GBM OS 

GBM OS 

GBM OS/RFS 

GBM OS 

GBM OS 

 

 

Supplementary Table 2. survival analysis of the 13 cuproptosis regulators. 

Id HR HR.95L HR.95H p-value km 

FDX1 1.006973402 0.987041029 1.02730829 0.495712101 0.047968317 

LIPT1 1.001648786 0.956404591 1.049033328 0.944307596 0.164799545 

LIAS 0.973771457 0.942201084 1.00639966 0.113970167 0.041093939 

DLD 1.003393364 0.998367707 1.008444319 0.186067075 0.000934189 

DBT 0.981688519 0.913508262 1.054957452 0.614810538 0.321149256 

GCSH 0.994710163 0.989782823 0.999662032 0.036315368 0.001451297 

DLST 1.001105558 0.997555792 1.004667955 0.542076987 0.001019463 

DLAT 1.004374207 0.985211189 1.023909959 0.656989661 0.1576814 

PDHA1 0.996353581 0.992678727 1.000042039 0.052663976 0.021418894 

PDHB 0.997764372 0.989033005 1.006572822 0.617721571 0.022048795 

SLC31A1 1.014496499 1.002571364 1.026563478 0.017049571 0.000886202 

ATP7A 1.062507059 0.959832307 1.176165088 0.242276723 0.006947257 

ATP7B 0.890913734 0.781113912 1.016147925 0.085204493 0.006653688 
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Supplementary Table 3. Spearman correlation analysis of the 13 cuproptosis regulators. 

From To cor p-value Weight 

FDX1 SLC31A1 0.5424231 2.55E-43 3.2545385 

FDX1 ATP7A 0.1926444 5.46E-06 1.1558662 

FDX1 ATP7B −0.17246281 4.86E-05 1.0347769 

FDX1 LIPT1 0.3857323 6.41E-21 2.3143938 

FDX1 LIAS 0.478961 7.89E-33 2.873766 

FDX1 DBT 0.4830635 1.92E-33 2.8983811 

FDX1 GCSH −0.20627506 1.09E-06 1.2376504 

FDX1 DLAT 0.594214 1.05E-53 3.565284 

FDX1 PDHA1 −0.44662004 2.84E-28 2.6797203 

SLC31A1 ATP7A 0.5431786 1.86E-43 3.2590717 

SLC31A1 LIAS 0.1985246 2.76E-06 1.1911478 

SLC31A1 DLD 0.2576007 9.03E-10 1.5456041 

SLC31A1 DBT 0.670527 6.02E-73 4.023162 

SLC31A1 GCSH −0.4165432 1.88E-24 2.4992592 

SLC31A1 DLST 0.2832381 1.38E-11 1.6994285 

SLC31A1 DLAT 0.709952 2.44E-85 4.2597123 

SLC31A1 PDHA1 −0.52089866 1.64E-39 3.125392 

ATP7A ATP7B 0.19685 3.36E-06 1.1810998 

ATP7A DBT 0.4609091 3.16E-30 2.7654546 

ATP7A GCSH −0.36054854 2.69E-18 2.1632912 

ATP7A DLST 0.4572562 1.02E-29 2.7435369 

ATP7A DLAT 0.3955124 5.32E-22 2.3730745 

ATP7A PDHA1 −0.34186315 1.70E-16 2.0511789 

ATP7A PDHB −0.2156689 3.36E-07 1.2940134 

ATP7B LIPT1 −0.31381789 5.18E-14 1.8829074 

ATP7B LIAS −0.21137111 5.80E-07 1.2682267 

ATP7B DBT 0.2095438 7.28E-07 1.2572626 

ATP7B GCSH −0.20255898 1.71E-06 1.2153539 

ATP7B DLST 0.5434111 1.68E-43 3.2604664 

LIPT1 LIAS 0.5354436 4.70E-42 3.2126618 

LIPT1 DLST −0.29883206 8.68E-13 1.7929924 

LIAS DBT 0.3483581 4.15E-17 2.0901488 

LIAS DLST −0.19971439 2.40E-06 1.1982864 

LIAS PDHA1 −0.24828938 3.70E-09 1.4897363 

DLD DBT 0.3195885 1.68E-14 1.9175312 

DLD GCSH 0.2177158 2.58E-07 1.3062949 

DLD DLAT 0.4111505 8.31E-24 2.4669027 

DLD PDHA1 0.1898045 7.54E-06 1.1388272 

DLD PDHB 0.4052214 4.13E-23 2.4313284 

DBT GCSH −0.19107973 6.53E-06 1.1464784 

DBT DLST 0.2474685 4.18E-09 1.4848112 

DBT DLAT 0.7333104 1.03E-93 4.3998624 

DBT PDHA1 −0.37823222 4.10E-20 2.2693933 

GCSH DLST −0.41227933 6.10E-24 2.473676 

GCSH DLAT −0.222563 1.37E-07 1.335378 

GCSH PDHA1 0.4654182 7.32E-31 2.7925091 
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GCSH PDHB 0.5535259 2.15E-45 3.3211556 

DLST PDHA1 −0.42071574 5.84E-25 2.5242944 

DLST PDHB −0.34297013 1.34E-16 2.0578208 

DLAT PDHA1 −0.34249597 1.49E-16 2.0549758 

PDHA1 PDHB 0.337695 4.13E-16 2.0261702 

 

Supplementary Table 4. ESTIMATE score of each sample. 

 

Supplementary Table 5. The activation states of biological pathways in distinct cuproptosis regulation patterns 
by GSV. 

Pathway: Cupcluster-A VS Cupcluster-B 

Id logFC AveExpr t 

KEGG_BLADDER_CANCER −0.13155 −0.01951 −5.89681 

KEGG_FOCAL_ADHESION −0.15472 −0.02283 −5.87106 

KEGG_ARACHIDONIC_ACID_METABOLISM −0.15541 0.027795 −5.79329 

KEGG_LEUKOCYTE_TRANSENDOTHELIAL_MIGRATI −0.13634 0.005152 −5.75656 

KEGG_ECM_RECEPTOR_INTERACTION −0.23234 −0.0098 −5.69656 

KEGG_VIRAL_MYOCARDITIS −0.12326 −0.0121 −5.31573 

KEGG_ANTIGEN_PROCESSING_AND_PRESENTATION −0.14283 −0.0054 −5.12251 

KEGG_CELL_ADHESION_MOLECULES_CAMS −0.11796 0.042424 −5.09634 

KEGG_COMPLEMENT_AND_COAGULATION_CASCA −0.19742 0.02303 −4.95739 

KEGG_ETHER_LIPID_METABOLISM −0.12373 −0.01611 −4.83955 

KEGG_P53_SIGNALING_PATHWAY −0.16576 −0.03704 −4.7901 

KEGG_ALPHA_LINOLENIC_ACID_METABOLISM −0.14856 0.008494 −4.46508 

KEGG_PRION_DISEASES −0.14409 −0.03086 −4.37548 

KEGG_NICOTINATE_AND_NICOTINAMIDE_METABO −0.11648 −0.00757 −4.06478 

KEGG_SYSTEMIC_LUPUS_ERYTHEMATOSUS −0.17244 0.008308 −3.88144 

KEGG_RNA_POLYMERASE 0.343526391 0.025566473 11.5533587 

KEGG_BASAL_TRANSCRIPTION_FACTORS 0.392728826 0.024174141 11.24354121 

KEGG_RNA_DEGRADATION 0.301024519 0.004463213 10.55191561 

KEGG_PURINE_METABOLISM 0.135874337 0.005149463 10.44143427 

KEGG_PYRIMIDINE_METABOLISM 0.239242189 0.009011862 10.41595569 

KEGG_NEUROACTIVE_LIGAND_RECEPTOR_INTERA −0.23329498 −0.01269365 −10.3388519 

KEGG_N_GLYCAN_BIOSYNTHESIS 0.242639638 0.037772467 9.952752337 

KEGG_CITRATE_CYCLE_TCA_CYCLE 0.250696153 0.012379116 9.207961649 

KEGG_AMINOACYL_TRNA_BIOSYNTHESIS 0.235454972 0.017217915 9.112191971 

KEGG_LINOLEIC_ACID_METABOLISM −0.23944119 −0.04131769 −9.05620993 

KEGG_CUPROPTOSIS 0.352442134 −0.00313381 9.012571505 

KEGG_CALCIUM_SIGNALING_PATHWAY −0.17580545 −0.01435262 −8.80908583 

KEGG_SPLICEOSOME 0.292468432 0.016449469 8.459234927 

KEGG_APOPTOSIS 0.133369138 0.015753211 8.443294698 

KEGG_AMINO_SUGAR_AND_NUCLEOTIDE_SUGAR_ 0.196199771 0.001322688 8.139285561 

KEGG_DRUG_METABOLISM_CYTOCHROME_P450 −0.16903141 −0.02115796 −8.1349272 

A enrichment analysis 

P-Value adj.P-Val B 

1.00E-08 6.84E-07 9.629578967 

1.15E-08 6.84E-07 9.497786533 

1.75E-08 7.59E-07 9.102453535 
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2.13E-08 7.59E-07 8.91722985 

2.93E-08 8.70E-07 8.616618679 

2.09E-07 5.30E-06 6.768080906 

5.42E-07 1.07E-05 5.870368531 

6.16E-07 1.10E-05 5.750889809 

1.20E-06 1.94E-05 5.125151692 

2.09E-06 3.10E-05 4.605952454 

2.63E-06 3.60E-05 4.391213771 

1.14E-05 0.000134905 3.027153084 

1.68E-05 0.000186621 2.665744429 

6.16E-05 0.000570227 1.462558314 

0.000127883 0.001071823 0.789685106 

7.11E-27 1.26E-24 50.26455005 

1.05E-25 9.34E-24 47.6163656 

3.73E-23 2.21E-21 41.84306186 

9.35E-23 4.11E-21 40.93963993 

1.15E-22 4.11E-21 40.73206604 

2.18E-22 5.56E-21 40.10567513 

5.11E-21 1.14E-19 37.01010973 

1.82E-18 3.60E-17 31.24425758 

3.79E-18 6.75E-17 30.52366346 

5.82E-18 9.41E-17 30.10472874 

8.11E-18 1.20E-16 29.77934674 

3.76E-17 5.15E-16 28.2759355 

4.98E-16 5.91E-15 25.7458195 

5.59E-16 5.91E-15 25.63222723 

4.97E-15 4.56E-14 23.4947501 

5.12E-15 4.56E-14 23.46451168 

 

 

Supplementary Table 6. Prognostic analysis of 205 cuproptosis phenotype-related genes using a univariate Cox 
regr. 

 

 

Supplementary Table 7. The score of other known signatures in patients with GBM. 

 

 

Supplementary Table 8. The changes of Cupclusters, gene clusters and CupScore. 
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