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INTRODUCTION 
 

In 2018, about 403,000 cases of renal cancer were 

newly diagnosed worldwide, bringing huge challenges 

to public health and serious socio-economic burden  

[1, 2]. As a heterogeneous tumor, clear cell carcinoma 

(ccRCC) accounts for 80% of renal cell carcinoma  

[3]. Different from advanced ccRCC, patients with  

early diagnosis and treatment have a better prognosis 

[2]. Although many cancer biomarkers have been 

discovered, their accuracy in predicting the prognosis of 

patients has not been clinically recognized and applied. 

The mining of biomarkers can improve the efficiency of 

diagnosis and the efficacy of cancer treatment.  

 

Anoikis is one apoptosis form due to disruption of cell-

ECM attachment or cell-cell connection [4]. Under 

physiological conditions, anoikis eliminates misplaced 

or shed cells and contributes to tissue homeostasis. 

Under pathological conditions, anoikis is involved 

many pathological processes including tumorigenesis. 

By dissociating from the ECM and avoiding systemic 

apoptosis in the process, cancer cells eventually spread, 

thus loss of opportunity for surgery [4]. This process 
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ABSTRACT 
 

Background: Clear cell carcinoma (ccRCC) usually has a high metastasis rate and high mortality rate. To enable 
precise risk stratification, there is a need for novel biomarkers. As one form of apoptosis, anoikis results from 
the disruption of cell-cell connection or cell-ECM attachment. However, the impact of anoikis-related lncRNAs 
on ccRCC has not yet received adequate attention. 
Methods: The study utilized univariate Cox regression analysis in order to identify the overall survival (OS) 
associated anoikis-related lncRNAs (ARLs), followed by the LASSO algorithm for selection. On this basis, a risk 
model was subsequently established using five anoikis-related lncRNAs. To dig the inner molecular mechanism, 
KEGG, GO, and GSVA analyses were conducted. Additionally, the immune infiltration landscape was estimated 
using the ESTIMATE, CIBERSORT, and ssGSEA algorithms. 
Results: The study constructed a novel risk model based on five ARLs (AC092611.2, AC027601.2, AC103809.1, 
AL133215.2, and AL162586.1). Patients categorized as low-risk exhibited significantly better OS. Notably, the 
study observed marked different immune infiltration landscapes and drug sensitivity by risk stratification. 
Additionally, the study preliminarily explored potential signal pathways associated with risk stratification. 
Conclusion: The study exhibited the crucial role of ARLs in the carcinogenesis of ccRCC, potentially through 
differential immune infiltration. Furthermore, the established risk model could serve as a valuable stratification 
factor for predicting OS prognosis. 
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involves genetic and molecular changes that allow cells 

to survive without ECM attachment [5]. Recent studies 

have shown that anoikis has potential therapeutic  

value in RCC. Some anoikis key genes was reported  

to promote proliferation and migration in RCC [6].  

In addition, progression of RCC can be inhibited by 

reversing anoikis resistance [7]. Quinazolines activates 

anoikis by AKT signal pathway adjustment, leading to 

an antitumor effect [8]. Anoikis resistance is one key 

characteristic of metastatic tumor cells. However, as a 

tumor prone to hematogenous metastasis, the mechanism 

of anoikis in ccRCC is not fully studied. Multiple 

biological functions of ccRCC are regulated by ECM by 

providing adhesion substrates and modulating signal 

transduction, including proliferation, angiogenesis and 

invasion [9]. There is evidence that increased anoikis 

activity can reduce the invasive ability of ccRCC cancer 

cells through regulation of key protein expression levels 

[10]. All these evidences indicate the potential role of 

anoikis in ccRCC. 

 
The immune microenvironment (TME) plays a critical 

role in ccRCC carcinogenesis. The dynamic and 

complex role of TME includes both immunostimulation 

and immunosuppression [11]. Tumor-infiltrating 

lymphocytes (TILs) are associated with a favorable 

prognosis for ccRCC. The antitumor immune-response 

can be inhibited by the high density of myeloid-derived 

suppressor cells (MDSC) in ccRCC [12]. In addition, 

tumor-associated macrophages (TAM) as well as 

cancer-associated fibroblasts (CAF) also participated in 

the shaping of TME [13]. Due to the important role of 

TME, the treatment regimen that targets TME-related 

groups also has positive clinical value [14]. Immuno-

related therapies have achieved initial efficacy in 

clinical trials of ccRCC [13]. Further exploration of 

immune-related pathways and related targets is of great 

significance. 

 
Long non-coding RNA (lncRNA), as a type of RNA 

that exists in the nucleus or cytoplasm, has a transcript 

length of more than 200nt [15]. LncRNAs have been 

shown to be involved in many important gene expression 

regulation processes, including chromatin modification, 

transcriptional interference, DNA methylation and 

histone modification [16]. Increasing evidence showed 

in the development of RCC, lncRNAs interact with a 

variety of RNAs and proteins at transcription, post- 

transcription and epigenetic level, which further leads  

to the involvement of RCC invasion and metastasis  

[17–20]. According to the 2021 review, anoikis-related 

lncRNAs including ANRIL, FOXD2-AS1, HOTAIR, 

and SNHG12 have been unveiled to participate in the 

process of tumor metastasis, stem cell formation and 

tumor survival [4]. In addition, the combination of 

chemotherapy drugs and specific lncRNAs can improve 

the therapeutic effect [21, 22]. Therefore, risk 

stratification based on lncRNA has a clinical value. 

However, the research of anoikis-related lncRNAs in 

ccRCC in insufficient. 
 

To dig the role of anoikis-related lncRNAs (ARLs) in 

ccRCC, we built a novel risk signature based on 5 ARLs 

and verified its effectiveness in predicting the prognosis 

of patients with ccRCC. Immune microenvironment 

differences by risk stratification were comprehensively 

analyzed. Differences in immune response and drug 

sensitivity by risk stratification were also further 

explored. In view of the rapid development of targeted 

drugs in ccRCC treatment [23], our study provides idea 

for further finding the ideal target responsible for 

disease development and clinical application potential. 
 

MATERIALS AND METHODS 
 

Data download  
 

The open transcriptome matrix and clinicopathological 

characteristic information were collected from TCGA. 

After excluding samples with no effective survival time, 

525 samples were included for analysis. The gene 

expression matrix was extracted by Perl scripts. The 

ensemble human genome browser GRCh38. p13 was 

utilized to annotate the symbol of mRNA and lncRNA. 
 

Identification of anoikis-related lncRNAs (ARLs) 
 

From the MSigDB database, 34 anoikis-related genes 

(ARGs) were obtained (Supplementary Table 1). 

Pearson correlation analysis was set at a threshold of 

|correlation coefficient (r) | > 0.6, and P < 0.001 [24]. 

Then, 44 lncRNAs were identified as ARLs for analysis 

(Supplementary Table 2).  
 

ARLs risk model establishment 
 

On the basis of univariate-LASSO Cox algorithm to 

identify the overall survival (OS) related ARLs, the risk 

score = (0.683 x AL162586.1) + (-0.753 x AC027601.2) 

+ (-0.993 x AC103809.1) + (1.679 x AL133215.2) + (-

0.414 x AC092611.2). The median of risk score is used 

to stratify risk. The Kaplan-Meier survival curve was 

utilized by R package “survival”. The training and test 

cohort were randomly divided with a ratio of 7:3 [25].  
 

Molecular functional evaluation 
 

The differently expressed genes (DEGs) of ccRCC by 

risk stratification were identified by algorithm “limma” 

(|FC| ≥ 2, P < 0.05). Metascape database was used to 

perform DEGs enrichment analysis. The GO analysis 

and KEGG analysis were estimated via “clusterProfiler” 

R package [26].  
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Independent prognosis analysis  

 

Univariate/multivariate Cox analysis were carried out 

via R package “survival”. Algorithm “timeROC” was 

conducted to evaluate the AUC at 1-, 3-, and 5-years. A 

nomogram model was constructed via “rms” script. The 

consistence of OS rate predicted nomogram and actual 

OS rate was evaluated by calibration diagram.  

 

Consensus clustering analysis of ccRCC 

 

Different molecular subtype clustering from ccRCC 

samples was done via algorithm “ConsensusClusterPlus” 

by R language based on the 5 prognostic ARLs. 

Partitioning around medoids with “euclidean” distances 

and optimal classification of K = 2-9 were used for 

clustering process. 

 

Immune microenvironment landscape and drug 

sensitivity evaluation 

 

The estimate scores were estimated by algorithm 

“estimate” from R package. CIBERSORT and  

ssGSEA algorithms from R package were employed  

to calculate the immune cell proportions. “GSVA” 

script was used to estimate the immune function score. 

Immunophenoscore (IPS) results, Immune Dysfunction 

and Exclusion (TIDE) score and drug sensitivity data 

were obtained from TCIA database, TIDE database and 

GDSC database, respectively. 

 

Statistical analysis 

 

All statistical analysis were performed by using the R 

software (version 4.1.0) and Perl scripts. Wilcoxon rank-

sum test and ANOVA were used for the assessment 

differential functions of two groups and multiple 

groups, respectively. All statistical significance were set 

at P < 0.05. 

 

RESULTS 
 

Generation of prognostic anoikis-related lncRNAs 

(ARLs)  

 

As shown in Sankey plot, a total of 44 lncRNAs 

associated with anoikis-related genes were identified as 

anoikis-related lncRNAs (ARLs) in this study (Figure 

1A and Supplementary Figure 1). By the univariate-

LASSO analysis, 10 OS associated ARLs for ccRCC 

were identified (Figure 1B, 1C). 5 prognostic ARLs 

were confirmed by multivariate Cox regression analysis 

to be able to independently predict the OS rate, which 

further led to the establishment of the ARLs risk model. 

Correlation analysis results suggested a significant 

association between the 5 selected ARLs and anoikis-

related genes (Figure 1D). As shown in Figure 1E,  

the expressions of AL162586.1, AC027601.2, and 

AC103809.1 were relatively highly expressed in the 

tumor group, while the expressions of AL133215.2  

and AC092611.2 were higher in the normal group.  

 

Construction of ARLs risk model in ccRCC 

 

Since 5 ARLs with ccRCC prognostic value were 

selected, a novel risk model was further established. 

Patients with ccRCC were risk stratified according to 

their ARLs risk scores. The inverse association between 

the survival time and risk score could be observed 

(Figure 2A). Heatmap diagram showed the expressions 

of AC092611.2, AC027601.2, and AC103809.1 were 

overexpressed in the low-risk group, whereas the 

expressions of AL133215.2 and AL162586.1 were 

higher in the other group (Figure 2B). The results of 

KM survival curve suggested a large advantage in 

survival for patients for patients with low risk (Figure 

2C). The ROC curve results show an AUC value of 

0.758 for this novel ARLs risk model (Figure 2D).  

 
Validation of ARLs prognostic signature in ccRCC 

 

An internal validation was subsequently developed  

to investigate the independence and accuracy of the 

established ARLs risk model in prognosis evaluating. 

The training and test cohorts were randomly divided 

into 525 ccRCC patients in a 7:3 ratio. Patients in the 

training and test cohorts were then randomly divided 

into two subgroups. Survival time was demonstrated 

by scatter plots to be negatively correlated to risk 

score in both groups (Figure 3A, 3C). In both cohorts, 

significantly better OS rate could be observed in the 

low-risk group, which was shown by Kaplan-Meier 

analysis (Figure 3B, 3D). The results of time ROC 

curve exhibited the acceptable AUC values at 1-, 3-, 

and 5-years for both training and test cohort (Figure 3E, 

3G). The heatmap diagrams showed that the expressions 

of AC092611.2, AC027601.2, and AC103809.1 were 

higher, while the expression of AL133215.2 and 

AL162586.1 were lower in the low-risk group (Figure 

3F, 3H). These results indicate the effectiveness of the 

established ARLs in predicting the ccRCC prognosis. 

 
Risk scores for different clinicopathological features 

 

The subgroup analysis was subsequently performed. 

According to the median risk score, patients were 

stratified according to different clinicopathological 

features by dichotomy. The OS rate of ccRCC patients 

in the low-risk group were significantly higher in grade 

I-II, grade III-IV, male, female, age < 65, age ≥ 65, 

stage III-IV, N 0, M 0, M 1, T I-II, and T III-IV. 

However, the OS rate of patients with ccRCC in  
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stage I-II and N 1 was similar (Figure 4). These results 

illustrate the established risk score allows prognosis 

assessment of different clinical features. 

 

Independence analysis of ARLs-based prognostic 

model of ccRCC 

 

Univariate Cox regression analysis showed in  

addition to multiple clinical characteristics, risk score  

was also significantly correlated with ccRCC OS  

rate (Figure 5A). Multivariate Cox regression analysis 

further demonstrated risk score as an independent 

prognostic indicator for ccRCC patients (Figure 5B). 

We subsequently established nomograms to accurately 

predict patient survival time (Figure 5C). Calibration 

curves showed that the OS rates predicted by the 

nomogram were consistent with the actual OS rates 

(Figure 5D). The time dependent ROC curve also 

yielded acceptable AUC values for 1, 3, and 5 years 

(Figure 5E). In summary, the independent prognostic 

significance of ARLs risk model for ccRCC prognosis 

was confirmed. 

 

Molecular function analysis of ARLs-related risk 

groups 

 

To investigate the potential molecular mechanism  

of ARLs risk model, multiple enrichment analysis 

algorithms were further performed. Volcano diagram 

illustrated the DEGs by risk stratification, showing  

in the high-risk group, most of the DEGs were 

significantly upregulated (Figure 6A). Subsequently

 

 

 
Figure 1. Identification of prognostic ARLs. (A) Identification of lncRNAs associated with anoikis-related genes by the Sankey diagram. 

(B, C) Prognostic ARLs identification via univariate-LASSO analysis. (D) Correlation analysis of the prognostic ARLs and ARGs. (E) The 
expression profiler of prognostic ARLs in the normal and tumor groups. 
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Figure 2. Risk model establishment of the prognostic ARLs in ccRCC. (A) Distribution plot of the risk score and correlation analysis of 

the survival time and risk score of ccRCC patients. (B) The expression of prognostic ARLs in ARLs score subgroup. (C) Kaplan-Meier survival 
curve of ccRCC patients in ARLs score subgroup. (D) ROC curve of risk model, and the AUC was 0.756.  

 

 
 

Figure 3. Validation of risk model in training cohort and test cohort. (A) Distribution of the risk score and correlation analysis of 

survival time and risk score in training cohort. (B) Kaplan-Meier survival curve of ccRCC patients with in the low- and high-risk group in 
training cohort. (C) Distribution of the risk score and correlation analysis of survival time and risk score in test cohort. (D) Kaplan-Meier 
survival curve of ccRCC patients with in the low- and high-risk group in test cohort. (E–H) ROC curve analysis and the expression of 5 ARLs in 
low- and high-risk group in training and test cohort. 
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performed enrichment analysis result suggested the 

DEGs were significantly enriched in some immune 

related signaling pathways, such as adaptive immune 

response and phagocytosis, recognition (Figure 6B). 

KEGG enrichment analysis illustrated that cytokine− 

cytokine receptor interaction was enriched (Figure 6C). 

Enriched immune related biological processes could  

be observed by GO enrichment analysis, including 

defense response to bacterium, positive regulation of 

lymphocyte activation and humoral immune response 

(Figure 6D). These results suggested the role of 

immune-associated signaling pathways in mediating 

ARL-related functions. 

 

Characteristic of molecular subtypes and immune 

microenvironment analysis  

 

Based on the selected 5 ARLs, consensus clustering was 

performed for ccRCC subtype clustering. The heat map 

shows the optimal classification when K = 3, with 

classes A, B and C having 154, 166 and 205 samples 

respectively (Figure 7A). Survival curve exhibited  

that class B patients had the most optimistic OS rate 

(Figure 7B). The principal component analysis score 

plot illustrated a clear separation of among three groups 

(Figure 7C). ESTIMATE algorithm results suggested 

that Cluster B patients had higher tumor purity than  

the other two groups; however, the immune and 

ESITMATE score were lower (Figure 7D–7F).  

 

In addition, more efforts were made to estimate the 

component of immune cells in the different subtypes. 

The result of CIBERSORT showed that Cluster C 

patients had higher infiltration level of plasma cells, 

CD8+ T cells, follicular helper T cells, regulatory T cells 

(Tregs) and M0 macrophages, whereas the infiltration 

level of resting CD4+ memory T cells, monocytes, 

resting NK cells, and M2 macrophages were lower 

(Figure 7G). ssGSEA algorithm result suggested Cluster 

C had significantly higher portions of immune cells  

in comparison to those in Cluster A and B (Figure  

7H). These findings demonstrate that different ccRCC 

molecular subtypes were closely related to patient 

prognosis as well as immune infiltration.  

 

Association of ARLs risk model and immune 

microenvironment landscape  

 

The immune microenvironment landscape of patients by 

risk stratification was further evaluated. High-risk score 

 

 
 

Figure 4. Prognostic analysis of ARLs score in different clinical features. The prognostic KM curve of ccRCC samples among the (A) 

Grade I-II; (B) Grade III-IV; (C) Male; (D) Female; (E) Age < 65; (F) Age ≥ 65; (G) Stage I-II; (H) Stage III-IV; (I) N0; (J) N1; (K) M0; (L) M1; (M) T I-II; 
(N) T III-IV.  
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patients had higher ESTIMATE level, immune score 

level and lower tumor purity level (Figure 8A–8C). 

Subsequent result showed lower TIDE scores could be 

observed in the low-risk score patients, indicating better 

outcomes of immunotherapy response for ccRCC (Figure 

8D). CIBERSORT result indicated that the proportion of 

naïve B cells, monocytes, resting CD4+ memory T cells, 

resting NK cells, M2 macrophages, resting and activated 

dendritic cells were significantly higher for low-risk 

patients, while memory B cells, plasma cells, CD8+ T 

cells, TfH cells, M0 and M1 macrophages, Tregs and 

activated NK cells, were higher for high-risk score 

patients (Figure 8E). ssGSEA algorithm result indicated 

that the proportion of eosinophil, mast cell, immature 

dendritic cell and neutrophil were higher in the low-risk 

group, whereas the fraction of activated B, CD4+ T, 

CD8+ T and dendritic cells, as well as MDSC and TfH 

cell were higher in the high-risk group (Figure 8F).  

 

 
 

Figure 5. Independence evaluation of ARLs risk model. (A) Univariate and (B) multivariate analysis reveals the independence of ARLs 
score and clinical features of ccRCC. (C) Nomogram model constructed based on the ARLs risk model and clinicopathological characteristics. 
(D) Calibration curve shows the consistence of the OS rate predicted by nomogram. (E) Time-dependent ROC curve. 
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Considering the remarkable difference in immune 

microenvironment by risk stratification, the response  

of immunotherapy was further evaluated. IPS results 

illustrated that high-risk score might lead to better 

response to immune checkpoint inhibitor-related 

therapy (Figure 8G, 8H). Immune function result 

showed that most of immune score were higher in 

patients with high-risk, whereas the type II IFN 

response level was lower (Figure 8I). The above  

result showed the ARLs risk model was closely 

associated with immune infiltration, and there may be 

differences in immunotherapy response in the ARL risk 

stratification. 

 

Drug sensitivity analysis of different risk groups 

 

Targeted drug therapy and chemotherapy has been 

considered as vital strategies in ccRCC clinical 

management. Thereafter, the sensitivity differences to 

several potential antineoplastic drugs by risk scoring 

stratification were evaluated. As shown in Figure  

9A–9H, Sorafenib and Erlotinib had higher IC50 in  

the low-risk group; while high risk score patients  

had significantly higher IC50 of Sunitinib, Saracatinib, 

Paclitaxel, Dasatinib, Imatinib, and Rapamycin. 

Correlation analysis suggested that the risk score was 

negatively associated with IC50 of Sorafenib and 

Erlotinib, whereas positively associated with IC50 of 

Sunitinib, Dasatinib, Saracatinib, Imatinib, Paclitaxel 

and Rapamycin (Figure 9I–9P).  
 

DISCUSSION 
 

In this study, a ARLs prognostic model of for ccRCC 

patients was established and its effectiveness was 

successfully verified. Among the five lncRNAs we 

screened, AC092611.2 and AC027601.2 were reported 

as prognostic markers in ccRCC [27, 28]. AL162586.1, 

ac103809.1 and AL133215.2 have not been reported. In 

RCC, many carcinogenic lncRNAs were overexpressed, 

while many tumors suppressor lncRNAs were down-

regulated [29, 30]. A variety of lncRNAs have been 

screened to be critical for the progression of RCC  

and serve as markers of poor prognosis in patients [20, 

31, 32]. In addition, the impact of some lncRNAs on  

the immune response of RCC has been suggested in  

the literature. LINC00973 was reported to increase the 

expression of siglec-15, which is a cancer cell surface 

antigen [33]. In terms of molecular mechanisms,  

the activation of multiple signaling pathways in RCC, 

 

 
 

Figure 6. Molecular functional analysis of ARLs score subgroups. (A) Generation of the DEGs of ARLs score subgroups. (B) Enrichment 
analysis of DEGs. (C) KEGG and (D) GO enrichment analysis of ARLs score subgroups. 
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Figure 7. Molecular subtypes analysis and immune microenvironment landscape characterization. (A) Identification of the 

molecular subtypes for ccRCC. (B) Clinical prognostic analysis of Cluster A, Cluster B and Cluster C. (C) PCA score plot shows a significant 
distribution pattern of patients in Cluster A, Cluster B and Cluster C. (D–F) Tumor purity, immune and ESTIMATE scores. The proportion of 
immune cells calculated by (G) CIBERSORT and (H) ssGSEA.  
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Figure 8. Immune infiltration characterization of ARLs scores subgroups. (A–C) ESTIMATE, immune scores and tumor purity.  
(D) TIDE score. (E, F) CIBERSORT and ssGSEA algorithm to estimate the immune cells fraction of ARLs score subgroups. (G, H) IPS score.  
(I) Immune function score. 
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including epithelial-mesenchymal transition process, 

hedgehog, PI3K/AKT and the VEGF signaling have 

been shown to be associated with lncRNA [34]. 

LncRNA has been reported to affect tumor development 

through anoikis process [35]. Our results further 

illustrate the role of lncRNAs in RCC and provide new 

research targets. 

Our results of pathway enrichment analysis illustrated 

that our prognostic typing was closely correlated with 

immune-related pathways including adaptive immune 

response and phagocytosis. As an important part of 

anoikis process, ECM is associated with immunity in 

tumor development [36]. Traditionally, the ECM was 

thought to serve only as a scaffolding, but recently, its 

 

 
 

Figure 9. Drug sensitivity exploration. The distribution of IC50 in (A) Sorafenib. (B) Sunitinib. (C) Saracatinib. (D) Paclitaxel. (E) Dasatinib. 

(F) Imatinib. (G) Rapamycin. (H) Erlotinib. (I–P) Correlation analysis of ARLs prognostic signature and drug sensitivity (IC50).  
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role in carcinogenesis has become increasingly clear. 

The ECM physical properties, such as ECM porosity, 

rigidity and insolubility can affect the biological 

functions of resident cells including the formation of 

immune microenvironment [36, 37]. There is already 

evidence that ECM rigidity strongly affects T-cell 

biological functions including activation, proliferation 

and differentiation [38]. In the tumor microenvironment, 

elevated hypoxia and metabolic stress could lead by poor 

diffusion of tumor ECM, leading to upregulation of 

TGF-β and VEGFA, which are commonly considered  

as immunosuppressive factors [39, 40]. ECM is also 

involved in tumor-related inflammatory responses, such 

as the polarization of tumor-associated macrophages 

(TAM), which makes macrophages biased toward  

M1 polarization and enhances the cytotoxic activity of 

macrophages against tumor cells [41]. Our data also 

showed a strong correlation between ECM-associated 

anoikis and immunity. The specific functions and 

underlying mechanisms of ECM-associated anoikis in 

tumor-related immunity need to be further explored. 

 

Our results suggest a correlation between anoikis and 

response to immunotherapy. Although no association  

of anoikis with tumor immunotherapy has been reported 

so far, ECM has been reported to be involved  

in the antitumor immunotherapy process. During 

carcinogenesis process, the structure, physical properties 

and metabolism of ECM are highly dysregulated [42]. 

The ECM in tumoral cells is at least 1.5 times more rigid 

than the extracellular matrix in normal tissues [43].  

On this basis, cell-ECM adhesion in tumor tissues  

is enhanced and cell-cell contact is disrupted, leading  

to tumor growth and metastasis [44]. The expression of 

PD-L1 is crucial to the immune escape process of tumor 

cells [45]. PD-L1 expression can be elevated through the 

regulatory mechanism of rigid ECM on actin, leading to 

immune system escape and tumor growth [46, 47]. Rigid 

ECM may also act as a physical barrier to T cell 

infiltration and localization; therefore, the anti-tumor 

immune behavior is disturbed [48]. In contrast, loose 

regions of glycoproteins and collagen in the ECM  

tend to promote T cell motility [49]. In addition, during 

T cell activation, an increase in HA binding capacity 

enhances T cells to roll on HA substrates, leading to 

better T cell migration and extravasation [50]. In 

addition, ECM can regulate DC maturation. Exposure to 

HA fragments can regulate the level of DC activation, 

thereby regulating the process of cancer antigen 

presentation [51]. At the same time, the density of tumor 

ECM can regulate the distribution of drugs and immune 

cell infiltration in tumors [52]. Based on the above 

findings, ECM has become one of the popular anticancer 
targets [53]. Targeting both collagen and hyaluronic acid 

in ECM has been reported [54]. Highly expressed 

collagen is associated with poor overall survival and 

affects response to chemotherapy, radiotherapy, and 

immunotherapy [55]. Drugs coupled with collagen-

binding antibody fragments targeted to tumors with 

collagen-rich ECM resulted in a more durable antitumor 

effect in tumors [56]. A kind of hyaluronidase named 

PEGPH20, has been shown to successfully degrade HA 

in tumors and reshape tumor stroma through modulation 

of ECM components, thereby improving perfusion and 

drug delivery [57]. Further studies of ECM and anoikis 

have potential clinical applications. 

 

Our study for sure has shortcomings. The analysis in this 

paper is correlation analysis without causal analysis, so 

the value of anoikis cannot be further analyzed. This 

paper lacks experimental data support, and further  

in vitro or in vivo experiments will better verify the 

conclusions of this paper. In addition, our results showed 

high-risk patients benefit more from immune-related 

therapy. However, we did not find any evidence of 

patients receiving immunotherapy in the public database. 

Stratified correlation analysis of real-world ccRCC 

immunotherapy response and risk stratification will have 

positive clinical significance. In conclusion, our data 

demonstrate the predictive value of anoikis-associated 

lncRNA prognostic models for patients with ccRCC. 
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SUPPLEMENTARY MATERIALS 
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Supplementary Figure 1. The expression profiler of anoikis-related genes in normal and ccRCC samples.  
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Supplementary Tables 
 

Supplementary Table 
1. The gene list of 
anoikis-related gene 
signature. 

CEACAM5 

MYBBP1A 

CHEK2 

CRYBA1 

SIK1 

TLE5 

E2F1 

AKT1 

DAPK2 

MTOR 

BRMS1 

ITGA5 

ITGB1 

MCL1 

CEACAM6 

NOTCH1 

NTRK2 

PTRH2 

PDK4 

PIK3CA 

ZNF304 

PTK2 

BCL2 

SNAI2 

SRC 

STK11 

MAP3K7 

TFDP1 

TLE1 

TSC2 

ANKRD13C 

IKBKG 

CAV1 

BMF 
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Supplementary Table 
2. Identification of 
anoikis-related 
lncRNAs. 

AL356599.1 

AC012615.6 

AL031714.1 

AL139287.1 

AC005034.5 

AC124312.2 

AL121832.2 

AL731577.2 

AL162586.1 

LINC01023 

AP001505.1 

AL136084.3 

AC138028.4 

AC114730.3 

AC011472.1 

AC027601.2 

NORAD 

RUSC1-AS1 

AC108449.2 

AL022328.2 

AC022150.2 

AP001486.2 

PAXIP1-AS2 

OIP5-AS1 

AC103809.1 

Z68871.1 

AC093278.2 

RAP2C-AS1 

AC023509.4 

AC084018.1 

AL022322.1 

AC008735.2 

AC107375.1 

AL133215.2 

AC108693.2 

AC040169.1 

HID1-AS1 

AC073073.2 

AL022328.1 

AC109460.2 

ZSCAN16-AS1 

AL355803.1 

CACTIN-AS1 

AC092611.2 
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