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INTRODUCTION 
 

Heart failure (HF) refers to the dysfunction of the cardiac 

function caused by many factors, which makes the stroke 

volume unable to meet the body’s metabolic demands. Its 

clinical manifestations are mainly dyspnea, angina, and 

vertigo [1, 2]. The onset and progression of HF are 

accompanied by structural changes in cardiomyocytes 

and disrupted energy metabolism [3]. Advanced HF often 

occurs in the elderly and is challenging to diagnose. 

Therefore, it is urgent to develop biomarkers related to 

HF diagnosis, risk assessment, and therapeutic target 

identification [4, 5]. 

Immunogenic cell death (ICD) is a regulatory cell death 

mode that can trigger a variety of adaptive immune 

responses [6]. This reaction can present antigens to 

cytotoxic T cells through dendritic cells and then trigger 

an immune response [7]. For tumor diseases, 

chemotherapy drugs are inducers that can trigger ICD, 

promoting the presentation of tumor-related antigens 

and further eliminating the remaining tumor cells [8]. 

However, the role of ICD-related genes (ICDRGs) in 

HF is unclear. 

 

Therefore, this paper systematically explored the role  

of ICDRGs in HF. Specifically, the gene expression 

www.aging-us.com AGING 2024, Vol. 16, Advance 

Research Paper 

Classification patterns identification of immunogenic cell death-
related genes in heart failure based on deep learning 
 

Zhihui Ma1, Shixin Ma1, Bin Chen1, Yongjun Zhang1, Jinmei Zeng1, Jianping Tao1, Yu Hu1 
 
1Department of Cardiology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of 
Medicine, Shanghai 200233, People’s Republic of China 
 
Correspondence to: Shixin Ma; email: shxma@sina.com 
Keywords: heart failure, subtype identification, encoder, biomarkers, diagnosis 
Received: June 21, 2023 Accepted: December 26, 2023  Published:  

 
Copyright: © 2024 Ma et al. This is an open access article distributed under the terms of the Creative Commons Attribution 
License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original 
author and source are credited. 
 

ABSTRACT 
 

Heart failure (HF) is a complex and prevalent disease, especially among the elderly population, characterized by 
symptoms like chest tightness, shortness of breath, and dyspnea. To address the need for improved 
classification and drug target identification in HF, we explored the potential role of Immunogenic Cell Death 
(ICD), a mode of cell death known for its significance in the tumor immune response but relatively uncharted in 
HF research. In recent years, deep learning models have exhibited remarkable performance in tasks such as 
classification, clustering, and regression. In this paper, we harnessed the power of deep learning by employing 
various encoder models to evaluate their effectiveness in clustering based on ICD-related genes. This novel 
approach allowed us to identify distinct subtypes within HF. Subsequently, we refined these subtypes by 
employing differentially expressed genes, leading to the discovery of significant variations in immune 
infiltration and functional enrichment across these subtypes. Moreover, we leveraged advanced machine 
learning techniques to identify diagnosis-related genes in HF. The AUC of the diagnostic model in the internal 
and external test sets could reach more than 0.99. These genes served as the foundation for constructing 
nomogram models and further exploration of their interactions with miRNA and transcription factors. In 
summary, our study uniquely combines the exploration of ICD in HF, the application of deep learning models, 
and the identification of diagnosis-related genes to provide a multifaceted understanding of HF subtypes and 
potential therapeutic targets. 
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data of HF and its control group were downloaded  

from the Gene Expression Omnibus (GEO) database 

(https://www.ncbi.nlm.nih.gov/geo/), and the differentially 

expressed genes were analyzed. Intersect the 

intersection gene with ICDRGs and extract the 

expression of the intersection gene. Based on three 

clustering methods, the HF subtypes were identified 

using DEICDRGs, and the differences in pathway 

enrichment and immune system among subtypes were 

explored. DEGs among clusters were used to identify 

further subtypes of HF, and immune cell infiltration and 

functional enrichment analysis were analyzed. In 

addition, we used two machine learning algorithms to 

screen some genes related to the diagnosis of HF and 

built a diagnostic nomogram model. Finally, the 

correlation between genes associated with diagnosis and 

immune cell types was discussed, and the miRNA-

mRNA interaction network of genes related to diagnosis 

and the mRNA-transcription factor interaction network 

of genes associated with diagnosis were constructed. 

The subtypes and genes associated with diagnosis 

identified in this paper can provide a reference for 

individualized treatment and clinical diagnosis of HF. 

 

RESULTS 
 

ICD-related gene expression landscape 

 

The overall flow chart of this paper is given in Figure 1. 

Firstly, the transcriptome data of the GSE141910 data 

set were analyzed for differential expression, and 8885 

DEGs were obtained with adj.P.Val<0.05 as the 

standard. In addition, we obtained 20 ICDRGs from the 

previous literature. Fourteen DEICDRGs were obtained 

by crossing them (Figure 2A). Figure 2B, 2C show the 

differential expression thermogram and differential 

expression box diagram of 14 DEICDRGs in the sick 

and control groups, respectively. Figure 2D displays the 

chromosome position information of 14 DEICDRGs. 

Figure 2E shows the correlation thermogram among 14 

DEICDRGs. It was obvious that most genes had a 

significant correlation. The details of DEGs, ICDRGs, 

and DEICDRGs can be found in Supplementary Table 1. 

 

Identification of subtypes of HF based on DEICDRGs 

 

The expression levels of 14 DEICDRGs in diseased 

samples were extracted in the study. We set the number 

of clusters to 2-5, respectively. Figure 3 displays the tsne 

dimensionality reduction graphs of AE, DAE, and K-

means under different cluster numbers. Each point in the 

graph represented a sample. In order to evaluate the 

clustering performance of the three algorithms under 

different cluster numbers, this paper used three index 

columns: sample contour coefficient, Calinski-Harabasz 

Index, and Davies-Bouldin Index. We can observe the 

histograms of the three algorithms in four clustering 

situations in Figure 4A–4C. From the figure, we found 

that DAE had the best comprehensive performance of the 

three indicators when the number of clusters was 2. 

Therefore, this paper would interpret it as the result of 

subtype identification in the future. Figure 4D, 4E are 

box graphs indicating the differences in infiltration 

abundance and immune function of immune cells 

between the two types. We also obtained the difference in 

gene expression related to immune inspection sites 

between the two subtypes (Figure 4F). According to 

Figure 4F, there were significant differences in the 

infiltration abundance of most immune cells, immune 

function, and expression of genes related to immune 

inspection sites between the two typing samples, which 

confirmed the typing ability of the DAE algorithm. In 

addition, this paper also analyzed the GSVA results for 

two types (Figure 4G). We would analyze the biological 

significance of these pathways in detail in the discussion 

section. 

 

The expression levels of 14 DEICDRGs in diseased 

samples were extracted in the study. We set the number 

of clusters to range from 2 to 5. Figure 3 displays the t-

distributed stochastic neighbor embedding (t-SNE) 

dimensionality reduction graphs of AE, DAE, and K-

means clustering under different cluster numbers. Each 

point in the figure represented a sample. This paper 

used three index columns to evaluate the clustering 

performance of the three algorithms under other cluster 

numbers: sample silhouette coefficient, Calinski-

Harabasz Index, and Davies-Bouldin Index. We can 

observe the histograms of the three algorithms in four 

clustering situations in Figure 4A–4C. From the figure, 

we found that DAE had the best overall performance of 

the three indicators when the number of clusters was 2. 

Therefore, this paper would interpret it as the outcome 

of subtype identification in the future. Figure 4D, 4E are 

box plots indicating the differences in infiltration 

abundance and immune function of immune cells 

between the two types. We also obtained the difference 

in gene expression related to immune inspection sites 

between the two subtypes (Figure 4F). According to 

Figure 4F, there were significant differences in the 

infiltration abundance of most immune cells, immune 

function, and expression of genes related to immune 

inspection sites between the two subtypes, which 

confirmed the classification ability of the DAE 

algorithm. This article introduces non-negative matrix 

factorization (NMF) and consensus clustering method 

(CC) to confirm the algorithm’s performance further. 

Three clustering performance indicators were calculated 

when the number of clusters was 2. The dimensionality 

reduction results of these two algorithms and the 

performance comparison results with the research 

algorithms included in this article are shown in 

https://www.ncbi.nlm.nih.gov/geo/
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Figure 1. The technical roadmap of the article. 
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Supplementary Figures 1, 2 in the Supplementary  

Table 2. 

 

In addition, this paper also analyzed the GSVA results for 

two types (Figure 4G). Through the GSVA analysis of 

the two subtypes, we found that there were significant 

differences in several biological processes between the 

two subtypes (Figure 4G). Almost all of these pathways 

are associated with heart failure—for example, 

melanoma, apoptosis, and the JAK-STAT signal 

pathway. Early scholars reported a case where metastatic 

malignant melanoma could result in rapid occlusion of 

the right ventricle, thus leading to congestive HF [9]. 

Melanoma often involves the heart, resulting in cardiac 

issues such as HF and myocardial infarction [10, 11]. HF 

is also intricately linked to the complex pathophysiology 

of apoptosis [12, 13]. Researchers have confirmed that 

isoproterenol (ISO) can induce apoptosis, improve heart 

function, and relieve and treat ISO-induced HF models 

and cellular HF in rats [14]. The JAK-STAT signaling 

pathway has been proven to play an essential role in the 

pathophysiology of HF [15, 16]. 

Verification of subtypes of HF based on DEGs 

cluster 

 

To further validate the rationality of the subtype 

identification mentioned above, we conducted 

differential expression analysis on the two subtypes, 

identifying 43 DEGs with p < 0.05. Utilizing these 

DEGs, this study employed three algorithms to 

generate t-SNE dimensionality reduction plots under 

four clustering numbers (Figure 5). The evaluation 

results of three metrics in Figure 6A–6C are presented. 

It can be observed that compared to Figure 5, the 

clustering effect has been significantly improved. This 

confirms the rationality of using DAE to classify 

patients into two subtypes. Similarly, we provided 

identification results of the immune microenvironment 

and functional biological characteristics of different 

gene clusters in Figure 6D–6G. There were significant 

differences between the two subtypes in terms of 

immune cell infiltration abundance, immune functions, 

immune checkpoint-related gene expression, GSVA 

analysis pathways, and others. 

 

 
 

Figure 2. The expression landscape of DEICDRGs. (A) The intersection Wayne diagram of DEGs and ICDRGs (p=3.409506e-52). (B) The 

expression heat map of DEICDRGs obtained by differential expression analysis. (C) The box diagram of the differential expression of DEICDRGs 
in HF and its control group. (D) The chromosome map of DEICDRGs. (E) The correlation analysis heat map of DEICDRGs. 
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Construction and verification of lasso model and 

SVM model 

 

This paper extracted diagnosis-related genes from 14 

DEICDRGs using the LASSO and SVM-RFE algorithms 

to identify genes relevant to HF diagnosis. Figure 7A, 7B 

display the curves depicting the relationship and cross-

validation results of the L1 norm and coefficients 

obtained by applying the LASSO algorithm. Figure 7C is 

the result of feature selection using SVM regression. 

When the number of DEICDRGs was 12, the AUC of 

10-fold cross-validation was 0.978. Figure 7D is the 

Venn diagram of the gene intersection screened by 

LASSO and SVM. We identified 11 genes in the 

intersection. In the Supplementary Table 2, we provide 

detailed information on diagnosis-related genes selected 

by the LASSO algorithm, the SVM-RFE algorithm, and 

their intersection genes. Figure 7E, 7F are ROC curves of 

the diagnostic model constructed using a set of 12 genes 

in both the training and test sets. Among them, the AUC 

in the training set reached 0.995 (CI: 0.986-0.999). The 

AUC in the test set reached 0.95 (CI: 0.841-1), indicating 

a high level of diagnostic accuracy. In addition, we also 

evaluated the AUC for each diagnosis-related gene. 

 

 
 

Figure 3. Identification process of HF subtypes. (A–C) are the tsne dimensionality reduction scatter plot obtained by AE, DAE, and K-

means algorithms when the number of clusters is set to two categories, respectively. (D–F) are the tsne dimension reduction scatter plot 
obtained by three algorithms when the number of clusters is set to three categories, respectively. (G–I) are the tsne dimension reduction 
scatter plot obtained by three algorithms when the number of clusters is set to four categories, respectively. (J–L) are the tsne dimension 
reduction scatter plot obtained by three algorithms when the number of clusters is set to five categories, respectively. 
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Most of the diagnosis-related genes have been shown to 

play key roles in the development of HF. ATG5 is 

involved in the formation of autophagic vesicles, which 

may play an important role in the process of apoptosis. 

Autophagy is associated with HF, and autophagy activity 

has been detected in both patients with HF and animal 

models. The balance between myocardial apoptosis and 

autophagy in chronic HF can also be treated with drugs 

[17, 18]. The role of apoptosis in HF has also been 

determined [12–14]. CASP1 encodes a protein that is a 

member of the cysteine-aspartic acid protease (caspase) 

family. Caspases are involved in the signaling pathways 

of apoptosis, necrosis, and inflammation. IL1R1 is 

related to immune and inflammatory reactions induced 

 

 
 

Figure 4. The performance of algorithm and the analysis of subtypes in the immune microenvironment and functional 
biological characteristics. (A–C) are the histogram of the sample contour coefficient, Calinski-Harabasz Index, and Davies-Bouldin Index of 

three algorithms under four clustering numbers, respectively. (D, E) are the difference box diagram of infiltration abundance and immune 
function of immune cells among different types, respectively. (F) The box diagram of the difference in immune examination sites between 
different subtypes. (G) The GSVA analysis between subtypes. 
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by many cytokines. For a long time, we have been 

concerned that HF is related to systemic inflammation. 

Essentially, the progress of HF is attributed to the 

continuous signal transduction of pro-inflammatory 

cytokines, and the early stage of HF also shows an 

inflammatory state 345 [19–21]. The protein encoded by 

IL-10 gene is a cytokine that plays a pleiotropic role in 

immune regulation and inflammation and participates in 

the regulation of JAK-STAT signaling pathway. TNF 

encodes a multifunctional pro-inflammatory cytokine 

belonging to then TNF superfamily that is involved in 

regulating apoptosis. The relationship between HF and 

TNF was recognized as early as 1990 [22]. The mortality 

of patients with HF increases with the increase in TNF-α 

level [23]. TNF family members may represent a new 

target for HF treatment [24]. 

 

 
 

Figure 5. Re-identification of HF subtypes based on DEGs. (A–C) are the tsne dimensionality reduction scatter plot obtained by AE, 

DAE, and K-means algorithms when the number of clusters is set to two categories, respectively. (D–F) are the tsne dimension reduction 
scatter plot obtained by three algorithms when the number of clusters is set to three categories. (G–I) are the tsne dimension reduction 
scatter plot obtained by three algorithms when the number of clusters is set to four categories, respectively. (J–L) are tsne dimension 
reduction scatter plot obtained by three algorithms when the number of clusters is set to five categories, respectively. 
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Figure 8A–8K show the ROC curves of the following 

genes (ATG5 (AUC:0.723,CI:0.67-0.775), CASP1 

(AUC:0.883,CI:0.848-0.917), CD8A(AUC:0.703,CI: 

0.644-0.755), ENTPD1(AUC:0.663,CI:0.610-0.713), 

IL1R1(AUC:0.748,CI:0.697-0.798), IL10(AUC:0.922, 

CI:0.893-0.949), IL17RA(AUC:0.842,CI:0.800-0.880), 

MYD88(AUC:0.690,CI:0.635-0.742), NT5E(AUC:0.913, 

CI:0.829-0.942), PRF1 AUC:0.869,CI:0.829-0.903, 

and TNF (AUC:0.677, CI:0.619-0.729)) in the training 

set. Figure 9A–9K display the ROC curves of the 

following genes (ATG5(AUC:0.723,CI:0.670-0.775), 

ASP1(AUC:0.883,CI:0.848-0.917), D8A(AUC:0.703, 

CI:-.644-0.755), NTPD1(AUC:0.663,CI:0.610-0.713), 

L1R1(AUC:0.748,CI:0.697-0.798), L10(AUC:0.922, 

CI:0.893-0.949), L17RA(AUC:0.842,CI:0.800-0.880), 

YD88(AUC:0.690,CI:0.635-0.742), T5E(AUC:0.913, 

CI:0.879-0.942), RF1(AUC:0.869,CI:0.829-0.903), 

and TNF(AUC:0.677,CI:0.619-0.729)) in the test set. 

All the genes had diagnostic significance for HF. 

 

Construction of nomogram model 

 

We developed a nomogram model by using diagnosis-

associated genes (Figure 10A). The calibration curve in 

 

 
 

Figure 6. The performance of algorithm and the analysis of subtypes based on DEGs identification in the immune 
microenvironment and biological function characteristics. (A–C) are the histogram of the sample contour coefficient, Calinski-

Harabasz Index, and Davies-Bouldin Index of three algorithms under four clustering numbers, respectively. (D, E) are the difference box 
diagram of infiltration abundance and immune function of immune cells among different types, respectively. (F) The box diagram of the 
difference in immune examination sites between different subtypes. (G) The GSVA analysis between subtypes. 
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Figure 7. The diagnosis model and ROC analysis of the model based on LASSO and SVM. (A) The relationship curve between l1 

norm and coefficient in the Lasso regression of DEICDRGs. (B) The cross-validation result of Lasso regression. (C) The result of using SVM 
regression to filter features. (D) The Wayne diagram of the intersection of characteristic genes screened by Lasso and SVM. (E, F) are ROC 
analysis of the diagnosis model in the training set and test set, respectively. 
 

 
 

Figure 8. Diagnostic performance verification of diagnostic genes and diagnostic models in the training set. (A–K) are ROC 

curves of ATG5, CASP1, CD8A, ENTPD1, IL1R1, IL10, IL17RA, MYD88, NT5e, PRF1 and TNF in the training set, respectively. 
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Figure 10B illustrated that the nomogram model had 

excellent diagnostic ability. The DCA of Figure 10C 

proved that the nomogram model has more excellent 

clinical utility than a single diagnosis-related gene. The 

clinical influence curve of Figure 10D demonstrated that 

the nomogram model had outstanding diagnostic ability. 

 

Correlation analysis of immune infiltration and 

construction of the regulatory network 

 

We developed a nomogram model utilizing diagnosis-

related genes (Figure 10A). The calibration curve in 

Figure 10B demonstrated that the nomogram model had 

excellent diagnostic ability. The DCA in Figure 10C 

indicated that the Nomogram model exhibited higher 

clinical utility than a single diagnosis-related gene. The 

clinical influence curve in Figure 10D showed that the 

nomogram model had remarkable diagnostic ability. We 

present a scatter plot of the correlation between immune 

cells/functions and diagnostic genes in Figure 11A–11V. 

For the miRNA-mRNA interaction network  

(Figure 12), we confirmed that some miRNAs are 

related to the pathogenesis of HF by consulting the 

literature. MiR-423-5p was initially identified as a 

circulating biomarker of heart disease. Tijsen et al. 

proved that the circulating level of miR-423-5p in 

patients with clinical HF increased [25]. Deng et al. also 

studied and determined that miR-423-5p is a potential 

target for the diagnosis and treatment of HF [26]. The 

protein coding gene regulated by miR-107 and the gene 

regulated by miR-139-5p were identified as genes that 

play a role in HF [27]. For the miRNA-TF interaction 

network, we know that CREB3 can promote the 

expression of inflammatory genes. RELA, also known 

as NF-kappa-B, is a pleiotropic transcription factor, 

exists in almost all cell types and is the endpoint of a 

series of signal transduction events, which are  

triggered by a large number of stimuli related to  

many biological processes, such as inflammation,  

immunity, differentiation, cell growth, tumorigenesis, 

 

 
 

Figure 9. Diagnostic performance verification of diagnostic genes and diagnostic models in the test set. (A–K) are ROC curves of 

ATG5, CASP1, CD8A, ENTPD1, IL1R1, IL10, IL17RA, MYD88, NT5e, PRF1, and TNF in the test set, respectively. 
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and apoptosis. ATF1 can regulate the expression of 

downstream target genes to affect cell physiological 

processes, which is related to soft tissue melanoma, and 

the relationship between melanoma and HF has been 

confirmed in previous literature [9–11]. 

 

Results qRT-PCR experimental verification 

 

As shown in Figure 13, the expression levels of 

diagnosis-related genes MYD8, TNF, ATG5, CD8A, 

ENTPD1, IL17RA, NT5E, IL1R1, PRF1, IL-10 and 

CASP1 in the HF-cell model and control cell model. 

Among them, the p-value of MYD8, ATG5, ENTPD1, 

and IL1R1 expression in both groups was less than 

0.05. MCAD, CD8A, IL17RA, NT5E, and CASP1 had 

p-value less than 0.01 in both groups. PRF1 and IL-10 

had p-value less than 0.001 in both groups. The 

expression trends of these genes through qRT-PCR 

experiments were consistent with the results of 

differential expression analysis. 

DISCUSSION 
 

Heart failure is a deterioration in heart function 

resulting from various heart diseases, and patients will 

show symptoms such as shortness of breath, fatigue, 

and palpitation. Complex HF often occurs in the elderly 

and is challenging to diagnose. ICD can elicit various 

immune reactions, but the function of ICDRGs in HF is 

still unclear. Therefore, this paper uses three clustering 

algorithms to identify the subtypes of HF based on 

ICDRGs. The DAE model is divided into two clusters 

by three clustering indexes for the optimal result. 

Significant differences exist between the two subtypes 

in the infiltration levels of immune cells, immune 

function, and the expression of genes related to immune 

surveillance sites. 

 

We also cluster again according to DEGs between 

subtypes to verify the reliability of the above clustering 

results. We found that there were significant differences 

 

 
 

Figure 10. Construction of column diagram model. (A) is a nomogram model constructed on selected diagnostically-relevant genes 

(ATG5, CASP1, CD8A, ENTPD1, IL1R1, IL10, IL17RA, MYD88, NT5E, PRF1, and TNF). (B) is the calibration curve used to evaluate the diagnostic 
capability of the nomogram model. (C) is based on DCA, and the Nomogram model had higher clinical utility than a single diagnostically-
relevant gene. (D) is the clinical impact curve. 
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in the immune microenvironment and functional 

enrichment among different subtypes of samples 

obtained by re-clustering. Furthermore, we used the 

LASSO algorithm and the SVM algorithm to select 

genes related to the diagnosis of HF (ATG5, CASP1, 

CD8A, ENTPD1, IL1R1, IL10, IL17RA, MYD88, 

NT5E, PRF1, and TNF) and constructed the diagnosis 

model of HF. 

 

Finally, based on the diagnosis-related genes, we 

constructed the miRNA-mRNA interaction network and 

the mRNA-TF interaction network, respectively. 

MiRNA is a small noncoding RNA molecule with a 

length of about 22 nucleotides that regulates gene 

translation by silencing or degrading the target mRNA. 

They are involved in many biological processes, 

including differentiation and proliferation, metabolism, 

hemostasis, apoptosis or inflammation, and the 

pathophysiology of many diseases. 

 

CONCLUSIONS 
 

This is a study to identify HF subtypes based on 

immunogenic cell death related genes and through 

multiple advanced deep-learning techniques. The two 

subtypes have significant differences in immunological 

 

 
 

Figure 11. (A–V) are scatter plots of immune cell/function and diagnostic gene correlations, respectively. 
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Figure 12. Exploration of the interaction between diagnosis-related genes and miRNA and TF. (A) The miRNA-mRNA interaction 

network of diagnosis-related genes. (B) The mRNA-TF interaction network of diagnosis-related genes. 
 

 
 

Figure 13. (A–K) are the mRNA expression levesl of MYD8, TNF, ATG5, CD8A, ENTPD1, IL17RA, NT5E, IL1R1, PRF1, IL-10 and CASP1 by qRT-

PCR. *p<0.05, **p<0.01, ***p<0.001. 
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characteristics and physiological functions. In addition, 

a robust heart failure diagnosis model was constructed 

based on machine learning models. Biomarker genes 

including ATG5, CASP1, CD8A, ENTPD1, IL1R1, 

IL10, IL17RA, MYD88, NT5E, PRF1, and TNF were 

identified. Finally, the interplay between biomarker 

genes, miRNAs, and transcription factors was explored 

by constructing a nomogram model. In conclusion, this 

article demonstrates the potential diagnostic utility of 

genes associated with immunogenic cell death in HF 

and hopes to help improve the risk stratification of HF 

and provide potential therapeutic targets. 

 

MATERIALS AND METHODS 
 

Clustering algorithm 

 

Autoencoders 

Autoencoders (AE) is a deep neural network that 

consists of an encoder and a decoder. Both the encoder 

and decoder are composed of multilayer feedforward 

neural networks. They are connected by the bottleneck 

layer. The encoder and decoder are represented by 

Formula (2) and Formula (3), respectively. 

 

encoder ( )z f x=      (1) 

 

decoder ( )x f z =      (2) 

 

Where z is the output of the encoder, which can be 

regarded as a reduced-dimension representation of data. 

x' is the output of the decoder. fencoder and fdecoder are 

multilayer neural networks. In this paper, all encoder-

based models are implemented using PyTorch. Among 

them, the loss function used by AE is MSE loss 

functions. For all encoder parts, the number of network 

layers was set to [10, 5, cluster_num]. Cluster_num 

represents the number of clusters. For all decoder parts, 

the network layer number was set to [10, 5, 

cluster_num]. For all models based on the self-encoder, 

epoch was set to 100 during training. 

 

Denoising autoencoders 

Different from AE, denoising autoencoders (DAE) 

construct partially damaged data by adding noise to the 

input data, and then restores it to the original input data 

by encoding and decoding. The newly generated x  can 

be expressed by the following formula. 

 

( | )Dx q x x=       (3) 

 

Where qD represents random mapping and obeys the 

unit normal distribution (0,1)N . Its encoder and 

decoder can be represented by Formula (4) and Formula 

(5), respectively. 

encoder ( )z f x=      (4) 

 

decoder ( )x f z =      (5) 

 

K-means clustering algorithm 

K-means clustering is a classical clustering algorithm, 

and its implementation steps are as follows: Firstly,  

k clustering centers are randomly selected. Then the 

distance from each sample point is calculated, and  

the cluster center will divide it into the nearest  

cluster, forming k clusters. Next, the centroid (mean) 

of each cluster is recalculated. Repeat the above 

process until the position of the center of mass no 

longer changes or reaches the set number of iterations. 

In this paper, the algorithm was implemented with 

default parameters based on the scikit-learn package of 

Python. 

 

Algorithm evaluation index 

In this paper, three evaluation indexes of clustering 

performance were introduced, including the sample 

contour coefficient (the value was between -1 and 1, the 

closer to 1, the better the clustering effect), the Calinski-

Harabasz Index (the value was greater than 0, the better 

the clustering effect), and the Davies-Bouldin Index (the 

value was greater than 0, the closer to 0, the better the 

clustering effect). All of them were implemented by 

Python’s scikit-learn package. 

 

Data acquisition 

 

All the data in this paper came from the GEO database 

(https://www.ncbi.nlm.nih.gov/geo/). Specifically, we 

used GSE141910 data set (126 diseased samples and 

240 control samples) as the training set, and the 

GSE116250 data set (50 diseased samples and 14 

control samples) as the test set. The GSE141910 data 

set is derived from left ventricular free wall tissue 

harvested during cardiac surgery from HF subjects 

undergoing transplantation and from unused donor 

hearts with apparently normal function. Cold 

myocardial paralysis was perfused before cardiac 

resection to block contraction and prevent ischemic 

damage, and tissue specimens were frozen in liquid 

nitrogen. The GSE141910 data set comes from 64 

samples of human left ventricular tissue. 

 

The expression of ICDRGs before and after renal 

ischemia-reperfusion 

 

The differential expression analysis of the GSE141910 

data set was carried out using the “limma” package, and 

8885 differentially expressed genes were obtained. We 

set Adj.P.Val<0.05 as the threshold for screening 

differentially expressed genes. Then, this paper 

collected 20 ICDRGs from the previous work and 

https://www.ncbi.nlm.nih.gov/geo/
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Table 1. The primer sequences. 

Primers Sequence (5’→3’) 

MYD88 
Forward AGTGGGATGGGGAGAACAGA 

Reverse TGTAGTCCAGCAACAGCCAG 

TNF 
Forward CCGTGAACTGCTACAGCGTG 

Reverse GACACATCACCCTTCCCGAT 

ATG5 
Forward GGACAGTTGCACACACTAGGA 

Reverse CCGGGTAGCTCAGATGTTCA 

CD8A 
Forward AAATCGGGAGACAAGCCCAG 

Reverse ACACAGGGAGGAAGACTGGA 

ENTPD1 
Forward AGTTCTGTGCTCAGCCTTGG 

Reverse TAGCCTTGCAGAAGGAGGGA 

IL17RA 
Forward GCCCAGACCAGAAGAGTTCC 

Reverse AAGAAGGGCTGGATCTGCAC 

PRF1 
Forward GACAACGAGGTGGAGGACTG 

Reverse AAGGAGGCCGTCATCTTGTG 

IL-10 
Forward CCGTGGAGCAGGTGAAGAAT 

Reverse GCCACCCTGATGTCTCAGTT 

CASP1 
Forward ATCCCACAATGGGCTCTGTTT 

Reverse CTCTTTCAGTGGTGGGCATCT 

 

intersected them with differentially expressed genes to 

obtain intersection genes (DEICDRGs). The expression 

of ICDRGs in the diseased group and the control group 

in the GSE141910 data set was displayed as a box 

graph. In order to evaluate the correlation between 

ICDRGs, the Pearson correlation coefficient of 

DEICDRGs in the sample is calculated and visualized 

by “corrplot” in R software. 

 

Enrichment analysis of different clusters 

 

In this paper, the enrichment analysis of gene ontology 

(GO) and genome encyclopedia (KEGG) was realized 

by using the R package “clusterProfile.” And the 

analysis of gene set variation (GSVA) was realized  

by using R-packet “GSVA.” Among them, 

c2.cp.kegg.v7.4.symbols.gmt was downloaded from the 

MSigDB database and used to study the changes in 

biological signal pathways. The R package “ggplot2” 

was used to visualize the enrichment results. 

 

Immunoassay 

 

The ssGSEA algorithm was used to estimate the 

infiltration abundance of immune cells and the score of 

immune function in the sick group and the control 

group. Then, we also collected the genes related  

to immune inspection sites and explored the difference 

in expression levels of genes related to immune 

inspection sites between the two groups by box chart. 

Construction and verification of HF-related diagnosis 

model 

 

For the purpose of screening the diagnosis-related genes 

of HF, we adopt a small absolute contraction and 

selection operator (LASSO) and support vector machine 

recursive feature elimination (SVM-RFE). The R-

packet “glmnet” was used to implement the LASSO 

algorithm in the case of ten times cross-validation. 

SVM-RFE was also implemented by R script under the 

condition of ten times cross-validation. Finally, we 

draw ROC curves of diagnostic genes and diagnostic 

models by using the R-package “pROC.” 

 

Construction of nomogram 

 

The study constructed the nomogram model based on 

diagnosis-related genes using the R package “rms”. 

Then the validity of the nomogram model was evaluated 

by the calibration curve. The clinical practicability of 

the nomogram model was evaluated by a decision 

curve. Finally, the high-risk probability stratification 

was predicted by the clinical impact curve when the 

population size was 1000. 

 

Construction of interaction network 

 

We conducted online analysis of hub genes using the 

NetworkAnalyst database (https://www.networkanalyst.ca/ 

NetworkAnalyst/) to construct a transcription factor  

https://www.networkanalyst.ca/NetworkAnalyst/
https://www.networkanalyst.ca/NetworkAnalyst/
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(TF) hub gene network and a miRNA hub gene 

interaction network. In this research, miRNA and  

TF interacting with diagnosis-related genes were  

queried by using the miRTarBase database 

(http://mirtarbase.cuhk.edu.cn/php/index.php) and 

TargetScan database (http://www.targetscan.org/vert_72/) 

respectively. Then, an interaction network  

between diagnostic-related genes and miRNA was 

constructed, the same between diagnostic-related 

genes and TF. 

 

Experimental validation of diagnosis related genes 

 

In this paper, the mRNA expression of diagnosis 

related genes was detected by qRT-PCR. Total RNA 

was isolated from the cell culture of H9C2 cells for HF 

and HL-1cells for normal using the TRI Reagent. Five 

samples were in the HF group and five in the normal 

group. The mRNA expression level was calculated 

with the 2-ΔΔCt. All data were expressed by means ± 

SD, and the statistical differences between groups 

were tested by T-Test, and p < 0.05 indicated a 

significant difference. The primer sequences are 

shown in Table 1. 

 

Data availability 

 

The data used in the paper was downloaded  

from the GEO database (https://www.ncbi.nlm.nih.gov/ 

geo/). 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 

 
 

Supplementary Figure 1. t-sne results for AE, DAE, VAE, NMF, and CC when the number of clusters is 2. (A–C) are silhouette, 

harabasz, and bouldin scores of these algorithms, respectively. 
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Supplementary Figure 2. t-sne results of NMF and CC when the number of clusters is 2. (A, B) are t-sne scatter plots of NMF and 

CC, respectively. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Table 1. 

 

Supplementary Table 1. Intersection_case. 

 

Supplementary Table 2. Intersection_of_related_diagnosis_genes. 
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