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INTRODUCTION 
 

The latest global statistical survey on 36 cancers in 185 

countries revealed that the liver cancer is the third most 

common malignant tumour with the highest mortality rate 

worldwide [1]. Among them, hepatocellular carcinoma 

(HCC) is the most prevalent type of liver cancer, 

accounting for about 75% to 85% of liver cancer cases 
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ABSTRACT 
 

Introduction: Regulatory T cells (Tregs) play important roles in tumor immunosuppression and immune escape. 
The aim of the present study was to construct a novel Tregs-associated biomarker for the prediction of tumour 
immune microenvironment (TIME), clinical outcomes, and individualised treatment in hepatocellular carcinoma 
(HCC). 
Methods: Single-cell sequencing data were obtained from the three independent cohorts. Cox and LASSO 
regression were utilised to develop the Tregs Related Scoring System (TRSSys). GSE140520, ICGC-LIRI and CHCC 
cohorts were used for the validation of TRSSys. Kaplan-Meier, ROC, and Cox regression were utilised for  
the evaluation of TRSSys. The ESTIMATE, TIMER 2.0, and ssGSEA algorithm were utilised to determine the 
value of TRSSys in predicting the TIME. GSVA, GO, KEGG, and TMB analyses were used for mechanistic 
exploration. Finally, the value of TRSSys in predicting drug sensitivity was evaluated based on the oncoPredict 
algorithm. 
Results: Comprehensive validation showed that TRSSys had good prognostic predictive efficacy and 
applicability. Additionally, ssGSEA, TIMER and ESTIMATE algorithm suggested that TRSSys could help to 
distinguish different TIME subtypes and determine the beneficiary population of immunotherapy. Finally, the 
oncoPredict algorithm suggests that TRSSys provides a basis for individualised treatment. 
Conclusions: TRSSys constructed in the current study is a novel HCC prognostic prediction biomarker with good 
predictive efficacy and stability. Additionally, risk stratification based on TRSSys can help to identify the TIME 
landscape subtypes and provide a basis for individualized treatment options. 
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[2, 3]. Radical surgery is the optimal treatment for 

early-stage HCC; however, postoperative metastases 

occur frequently and affect patient prognosis [4]. 

Furthermore, most individuals with HCC are usually 

diagnosed at an advanced stage due to the lack of 

effective biomarkers and obvious early symptoms [5]. 

With the exploration of the molecular mechanism of 

HCC and the development and use of targeted drugs in 

recent decades, the situation of patients has improved, 

but the 5-year survival rate is still not optimistic [6]. 

Additionally, the remarkable heterogeneity of HCC 

greatly affects the clinical outcomes, as well as the 

clinical efficacy of antitumor drugs [7, 8]. Therefore, 

exploring prognostically relevant molecular biomarkers 

in patients with HCC is essential to improve the  

quality of life and enhance the efficacy of antitumor 

therapy [9]. 

 

Tumour microenvironment (TME) is a system in which 

cancer and non-cancer cells come together and interact 

[10]. In addition to cancer cells, various immune cells 

and stromal cells and their released substances are  

also abundant in the TME and control the TME’s 

immune status to influence the immunotherapy efficacy. 

Among them, regulatory T cells (Tregs), as important 

immunosuppressive regulatory cells, play an important 

role in tumor immunosuppression and immune escape 

[11, 12], and are closely related to the prognosis of 

individuals with tumour [13, 14]. Additionally, tumor-

infiltrating Tregs in tumor immune microenvironment 

(TIME) are also considered as potential targets for 

immunotherapy and may be used as monotherapy and/ 

or in combination with immune checkpoint blockers 

(ICBs) [15, 16]. Furthermore, blocking the binding of the 

immune checkpoints PD-L1/PD-1 selectively interferes 

with the inhibitory effects of Tregs on T effector cells in 

HCC patients, thereby suppressing tumor activity [17]. 

Therefore, exploring biomarkers associated with Tregs 

can better understand the role of Tregs in HCC and 

provide a basis for prognostic assessment and selection 

of individualized treatment options for HCC. 

 

In this study, a Tregs-related scoring system (TRSSys) 

was developed. Comprehensive validation and evaluation 

of the system confirmed that TRSSys has high stability 

and adaptability and is an excellent biomarker for 

predicting clinical outcomes in individuals with HCC. 

Furthermore, population stratification based on TRSSys 

can identify HCC patients with different immune 

landscapes, determine the immune cell infiltration status 

of different populations, and thus relatively differentiate 

between immune “hot tumors” and “cold tumors”. 

Furthermore, TRSSys also helps to determine the relative 
advantageous population for immunotherapy, which 

provides a basis for the scheduling of individualized 

treatment regimen. 

MATERIALS AND METHODS 
 

Data sources 

 

The scRNA-seq data for the GSE98638 (n=6), 

GSE140228 (n=5), and GSE166635 (n=2) cohorts 

were downloaded from the Tumor Immune Single- 

Cell Hub 2 (TISCH 2) platform (http://tisch.comp-

genomics.org/) [18]. Transcriptome matrices of the 

TCGA-LIHC cohort were obtained from the TCGA 

(https://portal.gdc.cancer.gov/repository) repository, 

which contains transcriptome data for 374 HCC 

tumour samples and 50 normal samples. Perl 

programming language was utilised for the 

transformation of simple nucleotide variation (SNV) 

data to further obtain the tumor mutation burden 

(TMB) values for each case in the TCGA-LIHC 

cohort. Transcriptomic and clinical information for 

GSE14520 (n=221) cohort was downloaded from the 

GEO (https://www.ncbi.nlm.nih.gov/) database, and 

case inclusion criteria were the presence of both 

transcriptomic and survival information. Clinical 

information and transcriptomic data for the CHCC 

validation cohort (n=159) were obtained from  

previous studies and the National Omics Data 

Encyclopedia database (https://www.biosino.org/node) 

[19]. Additionally, the data of ICGC-LIRI (n=232) 

were downloaded from the International Cancer 

Genome Consortium Data (ICGC; https://dcc.icgc.org/) 

portal. The Human Protein Atlas (HPA) was performed 

to obtain immunohistochemical staining images [20] 

(V.22.0, https://www.proteinatlas.org) (Supplementary 

Table 1). Tregs-related genes (TRGs) were down- 

loaded from the Genecards (https://www.genecards.org/) 

(Supplementary Table 2) [21]. 

 

Identification of differentially expressed genes (DEGs) 

between Tregs and other cells 

 

R software (version R 4.1.2) was utilized to  

process scRNA-seq data (GSE98638, GSE140228  

and GSE166635) to obtain DEGs between Tregs and 

other cells in each cohort (|fold change (FC)| > 1.5, 

False discovery rate (FDR) < 0.05). DEGs from the 

three cohorts were combined and defined as Tregs-

related DEGs for subsequent analysis. The package 

“VennDiagram” was utilized to further plot Venn 

diagrams of Tregs-associated DEGs and TRGs to obtain 

differentially expressed TRGs (DETGs) for subsequent 

analysis. 

 

Identification of differentially expressed GETGs 

between HCC tumor and normal tissues 

 

The R package “limma” was utilised to obtain 

differentially expressed GETGs (|FC| > 1.5, FDR<0.05) 

5289

http://tisch.comp-genomics.org/
http://tisch.comp-genomics.org/
https://portal.gdc.cancer.gov/repository
https://www.ncbi.nlm.nih.gov/
https://www.biosino.org/node
https://dcc.icgc.org/
https://www.proteinatlas.org/
https://www.genecards.org/


www.aging-us.com 3 AGING 

between tumor and normal tissues. Subsequently,  

the “pheatmap” was employed to draw differential 

expression heatmaps and volcano maps. The “sva” 

package was employed to eliminate batch effects  

and obtain expression data of differentially expressed 

GETGs in the TCGA and the GSE14520 cohorts. 

 

Construction of a TRSSys for HCC 

 

Cox regression was used to obtain prognosis- 

associated GETGs in the TCGA-LIHC cohort, a process 

performed by the packages “survival” and “survminer”. 

Subsequently, the LASSO regression was used to screen 

the optimal TRGs for the establishment of TRSSys.  

The risk formula for TRSSys is as follows: 

 
n

i 1

TRSSys Coef(i) Exp(i)

=

=   

 
where Coef represents the regression coefficient of  

each TRGs in TRSSys. According to the regression 

coefficients, a higher TRSSys score represents a worse 

prognosis. Based on the TRSSys formula, the risk 

scores were calculated for each individual in the TCGA 

and the GEO testing cohorts, and all individuals were 

risk stratified according to the median risk score of the 

TCGA cohort. 

 
Validation and evaluation of TRSSys 

 
First, the Kaplan-Meier (K-M) curves were utilised to 

determine the effect of the expression of TRSSys-

related genes on the survival of individuals with  

HCC. The procedure was performed through the 

“survivor” and “survminer” packages. Additionally, the 

K-M method was also utilised to analyze the survival 

differences between patients in the high- and low- 

risk subgroups in the TCGA and GEO cohorts. Then,  

the “pheatmap” was performed to map the expression 

status of TRSSys-related genes. Furthermore, the  

K-M method was also used to assess the validity of 

TRSSys in the CHCC and ICGC-LIRI validation 

cohorts. 

 
To further assess the effectiveness of TRSSys, we further 

conducted univariate (uni) and multivariate (multi) Cox 

analyses of TRSSys and selected clinicopathologic 

parameters to identify independent prognostic factors  

in the TCGA and GEO cohorts. Additionally, the ROC 

curves were employed to further assess the predictive 

efficacy of TRSSys in HCC. Finally, to assess the 

stability of TRSSys, we used the K-M method to 

determine whether TRSSys could discriminate between 

populations with different prognoses in different clinical 

subgroups. 

Development of TRSSys-based nomogram 

 

TRSSys and tumor stage are independent prognostic 

factors for HCC. We developed a nomogram based  

on TRSSys and tumor stage for better determining  

the survival of individuals with HCC. The process 

was constructed utilizing the “regplot”, “survival” and 

“rms”. Moreover, Hosmer-Lemeshow calibration curves 

were utilised to assess whether the expected and 

actual probabilities calculated from the nomogram  

fit. 

 

TRSSys-based enrichment analysis 

 

To analyze the differences in TRSSys-based risk 

stratification in pathway enrichment, we performed 

Gene Set Variation Analysis (GSVA) [22]. The 

“GSVA”, “GSEABase”, “pheatmap”, “ggplot2”, 

“reshape2” and “limma” were used to perform GSVA 

and to map the enrichment heatmap in the two  

risk subgroups. Further, the correlation between the 

expression of TRSSys-associated TRGs and different 

signaling pathways was also analyzed. To further 

explore the molecular differences between different  

risk subgroups, the “limma” was performed to obtain 

DEGs between the two risk subgroups (FC >2,  

FDR < 0.05). Gene Ontology (GO) and KEGG (Kyoto 

Encyclopedia of Genes and Genomes) were further 

utilised to analyze the enrichment of DEGs in functions 

and pathways and to visualize the outcome. 

 

TRSSys-based tumour mutation burden (TMB) 

analysis 

 

To analyze the differences in mutation frequencies of 

genes in the different risk subgroups, the “maftools” 

package was utilised to map the waterfall of mutations 

in different subgroups. Additionally, “limma” was 

used to compare TMB between the two risk subgroups. 

Furthermore, the patients were categorized into four 

subgroups by two-by-two combinations of TMB sub-

groups and risk subgroups in the TCGA cohort, and 

the K-M curves were used to determine the differences 

in survival among the four subgroups of patients. 

 

TRSSys-based TIME analysis 

 

TIMER is a platform for comprehensive assessment  

of immune infiltrates across different cancer types  

[23, 24]. To determine the correlation between TRSSys 

and various immune cell infiltrations, we acquired the 

immune cell data matrix of the TCGA cohort on the 

TIMER repository (http://timer.comp-genomics.org/) 
and performed Spearman’s analysis. The packages 

“scales”, “tidyverse”, “ggtext”, “ggpubr” and “ggplot2” 

were utilised to plot Spearman correlation bubble plots. 
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To compare TIME differences between the two risk 

subgroups, we first performed ssGSEA on the TCGA-

LIHC cohort to quantify the degree of immune cell 

infiltration in each sample, which in turn determines  

the corresponding immune-related function scores  

and immune-related cell scores. R packages “ggpubr” 

and “reshape2” were utilised to visualize differences  

in ssGSEA between risk subgroups. Activation of  

the immune checkpoint pathway was done as a  

key mechanism of tumor immune evasion [25].  

We likewise analyzed the expression of major ICs  

in high- and low-risk subgroups and visualized the 

outcomes. 

 

TRSSys-based drug sensitivity analysis 

 

OncoPredict is an algorithm that predicts drug sensitivity 

levels based on transcriptome expression levels [26].  

The “limma”, “oncoPredict” and “parallel” packages 

were utilised to obtain a matrix of drug sensitivity data 

for the TCGA-LIHC cohort. Subsequently, the half-

maximal inhibitory concentrations (IC50) of various 

agents in the two risk subgroups were analyzed to 

evaluate the value of TRSSys in guiding clinically 

individualized treatment. 

Statistical analysis 

 

The statistical analyses involved in this study were done 

through R software (Vision 4.2.2) and its corresponding 

R packages. Survival analyses were performed using  

the K-M method. P-value < 0.05 indicates statistical 

significance. 

 

RESULTS 
 

Identification of Tregs in HCC 

 

Tregs of the GSE98638, GSE140228 and GSE166635 

cohorts were identified and annotated according to  

the TISCH cell marker annotations (Figure 1A–1C). 

Subsequently, differential analysis extracted DEGs 

between Tregs and other cell types in these three  

HCC cohorts and merged them to obtain 561 Tregs-

associated DEGs for subsequent analysis (Figure 1D). 

 

Identification of DETGs in HCC 

 

We obtained 5846 TRGs on Genecards (relevance score 

>10), and intersected these TRGs with the 561 DEGs 

above to obtain 388 DETGs for subsequent analysis 

 

 
 

Figure 1. The scRNA-seq analysis identifies Tregs in HCC. (A–C) Annotation of cell clusters in the GSE98638, GSE140228 and 

GSE166635 cohorts. (D) DEGs between Tregs and other cell types in these three cohorts. 

5291



www.aging-us.com 5 AGING 

(Figure 2A). The volcano plot demonstrated 388 

differentially expressed DETGs in HCC tumour tissues 

and normal tissues, which contained 36 DETGs that were 

lowly expressed in tumour tissues and 171 DETGs that 

were highly expressed in tumour tissues (Figure 2B). 

Additionally, the heatmap demonstrated the expression of 

100 differentially expressed DETGs in HCC tumour and 

normal tissues (Figure 2C). 

 

Identification of TRSSys in HCC 

 

Cox regression was performed on the differentially 

expressed DETGs to identify 69 TRGs associated with 

HCC prognosis (Figure 3A). LASSO regression finally 

screened 8 of these TRGs for TRSSys construction 

(Figure 3C, 3D) (Table 1). All of these TRGs were 

highly expressed in HCC tumour tissues (Figure  

4A, 4B). In addition, the K-M curves revealed that the 

high expression of all these 8 TRGs was a poor 

prognostic factor (Figure 5A–5H). Furthermore, Figure 

5I demonstrated the expression of TRSSys-associated 

TRGs in Tregs of GSE98638 cohort. Subsequently, 

according to the risk formula for TRSSys, the risk  

score = Exp (PTTG1) * (0.10034) + Exp (LAPTM4B)  

* (0.02591) + Exp (ENO1) * (0.13373) + Exp (RPS8) * 

(0.00719) + Exp (TPP1) * (0.19610) + Exp (SPP1) * 

(0.04681) + Exp (STMN1) * (0.01250) + Exp 

(LGALS3) * (0.01890). The risk score for each 

individual was calculated from the above equation. 

 

Verification of TRSSys in HCC 

 

We first assessed the predictive ability of TRSSys  

in the TCGA cohort. K-M curves (Figure 6A) 

suggested that the survival of low-risk patients  

was superior to that of the high one (P<0.001). The 

expression heat map suggested that TRSSys-related 

TRGs were expressed at higher levels in the high- 

risk group (Figure 6B). Risk curves and risk status 

plots suggested that the number of patients with 

mortality increased as the risk score increased (Figure 

6C, 6D). To further validate TRSSys, we analyzed  

the predictive value of TRSSys in an independent 

validation cohort, GSE14520. The K-M curves also 

suggested that the survival of low-risk patients was 

superior to that of the high one (P=0.028) (Figure  

6E). The expression heat map also suggested that 

TRSSys-associated TRGs had higher expression levels 

in the high-risk group (Figure 6F). Risk curves and  

risk status plots suggested that the proportion of 

patients with mortality status increased as the risk 

score increased (Figure 6G, 6H). Moreover, the  

K-M curves of the CHCC (Supplementary Figure  
1A) and ICGC-LIRI (Supplementary Figure 1B)  

cohorts further validated the effectiveness of TRSSys 

in HCC. 

Evaluation of the TRSSys in HCC 

 

Both uni- and multi-Cox regression suggested that 

TRSSys could independently predict the clinical 

outcomes of individuals with HCC, with hazard ratios  

of 5.116 and 4.324 (P < 0.001) (Figure 7A, 7B). 

Furthermore, TNM stage was another independent 

prognostic indicator. Moreover, the ROC curves showed 

that the AUC values of TRSSys in predicting 1-, 3-, and 

5-year OS were 0.784, 0.677, and 0.698 (Figure 7C). 

Comparisons of AUC values of TRSSys with age, 

gender, grading, and staging in the ROC curves also 

suggested the good predictive efficacy of TRSSys 

(Figure 7D). Additionally, in the GSE14520 cohort, Cox 

regression also showed that TRSSys was an independent 

prognostic factor in patients with HCC (Supplementary 

Figure 2A, 2B). The ROC curves in the GSE14520 

showed that the AUC values of TRSSys predicting 1-, 3- 

and 5-year OS were 0.596, 0.624 and 0.662, respectively 

(Supplementary Figure 2C, 2D). 

 

TRSSys-based nomogram 

 

Cox regression indicated that both TRSSys and stage 

were prognostic variables for HCC. To better predict 

the survival of clinical individuals, we incorporated 

TRSSys-based risk stratification and stage into the 

construction of the nomogram (Figure 7E). The 1-,  

3-, and 5-year OS rates for a stage II and high-risk 

individual were estimated to be 0.783, 0.546, and 0.365, 

respectively, based on the nomogram. The calibration 

curves revealed that the expected probabilities and the 

actual probabilities were in high agreement (Figure 7F). 

 

TRSSys-based clinical parameter stratification 

 

Circle plots demonstrate the status of clinicopathological 

parameters in the two risk groups (Figure 8A). 

Furthermore, K-M curves showed that patients with 

different age, stage and grade had a worse prognosis  

in the high-risk group (Figure 8B–8E). Although  

there was no significant difference in survival among 

females in the two risk subgroups (P = 0.059), a trend 

toward separate survival curves could still be seen. 

Together, these results suggest the general applicability 

of TRSSys in HCC. 

 

GSVA, GO and KEGG 

 

GSVA results showed that the functions enriched in the 

high-risk subgroup included cell cycle, homologous 

recombination, DNA replication, basic excision repair, 

mismatch repair, nucleotide excision repair, purine 
metabolism, RNA polymerase, RNA degradation, 

lysosome, P53 signalling pathway and NOD-like 

receptor signalling pathway (Figure 9A). Additionally, 
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Figure 2. Identification of DETGs. (A) Intersected 5846 TRGs with the 561 DEGs to obtain 388 DETGs. (B) The volcano plot demonstrated 

388 differentially expressed DETGs in HCC tumour and normal tissues. (C) The heatmap demonstrated the expression of 100 differentially 
expressed DETGs in HCC tumour and normal tissues. 
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correlation heatmaps showed that the expression of 

TRSSys-associated TRGs was closely related to the 

signalling pathway (Figure 9B). 

 

DEGs were identified between the high- and low- 

risk subgroups and further explored the enrichment of 

DEGs in biological functions. GO analysis revealed  

that in terms of biological processes, DEGs were  

mainly enriched in positive regulation of cell activation, 

leukocyte mediated immunity, positive regulation of 

leukocyte and lymphocyte activation, phagocytosis and 

immune response-activating signal transduction. 

Regarding cellular component, DEGs are mainly 

enriched in external side of plasma membrane, 

immunoglobulin complex, chromosomal region, and 

condensed chromosomes. Regarding molecular function, 

DEGs are enriched in functions such as antigen binding, 

cycline activity, immunoglobulin receptor binding,  

and integrin binding (Figure 10A, 10B). Finally, KEGG 

analysis showed that DEGs were enriched in cell cycle, 

cyclokine-cyclokine receptor interaction, phagosome, 

and proteoglycans in cancer (Figure 10C, 10D). 

 

 
 

Figure 3. Establishment of TRSSys for HCC. (A) The 69 TRGs associated with HCC prognosis. (B, C) The variable selection and cross-

validation plots based on the LASSO. 
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Table 1. Treg-associated scoring system. 

Gene Coef HR HR.95L HR.95H p-value 

PTTG1 0.10034  1.38733  1.21038  1.59015  < 0.001  

LAPTM4B 0.02591  1.31142  1.15503  1.48898  < 0.001  

ENO1 0.13373  1.63610  1.37292  1.94972  < 0.001 

RPS8 0.00719  1.55416  1.22662  1.96917  < 0.001 

TPP1 0.19610  1.88674  1.37227  2.59409  < 0.001 

SPP1 0.04681  1.15773  1.08954  1.23019  < 0.001  

STMN1 0.01250  1.55761  1.29281  1.87664  < 0.001  

LGALS3 0.01890  1.21621  1.08423  1.36427  < 0.001  

HR, hazard ratio; Coef, coefficient. 

 

 
 

Figure 4. TRSSys-related genes in HCC. (A) Differential expression of TRSSys-related TRGs in tumor and normal tissues.  

(B) Immunohistochemical images of TRSSys-related TRGs in the HPA. 
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TRSSys-based TMB analysis 

 

The mutation waterfall plot showed the mutational 

differences in the 20 genes with the highest mutation 

frequencies in HCC across risk groups (Supplementary 

Figure 3A, 3B). Additionally, TMB levels were not 

significantly different in the high- and low-risk groups 

(Supplementary Figure 3C). However, there was a 

difference in survival between TMB subgroups and 

risk subgroup combinations, with the best prognosis 

for low-TMB and low-risk combinations (P < 0.001) 

(Supplementary Figure 3D). The above results suggest 

that the combination of TRSSys and TMB in HCC 

may be able to better determine the prognosis of 

patients. 

TRSSys predicts TIME in HCC 

 

The correlation between TRSSys and TIME of HCC 

was further analyzed considering the regulatory role  

of Tregs on TIME. The immune correlation bubble 

plots suggested a positive correlation between risk 

score and immune score in the XCELL algorithm;  

a positive correlation between risk score and CD4+  

T cells, CD8+ T cells, macrophages, and neutrophils  

in the TIMER algorithm; and a positive correlation 

between macrophages, Treg cells, and immune score 

in QUANTISEQ. In addition, most immune cells were 

positively correlated with the risk score in the EPIC, 

and CIBERSORT-ABS algorithms (Figure 11A). The 

ssGSEA results revealed that patients in the high-risk 

 

 
 

Figure 5. Assessment of TRSSys-related genes in HCC. (A–H) K-M curves of the 8 TRSSys-related for OS in the TCGA cohort. (I) The 

expression of TRSSys-associated TRGs in Tregs of GSE98638 cohort. 
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group had significantly higher levels of infiltration of 

activated dendritic cells, dendritic cells, macrophages, 

follicular helper T cells, helper T cells and Tregs 

(Figure 11B). Notably, in terms of immune function, 

immune checkpoints also had higher expression levels 

in the high-risk subgroup (Figure 11C). Further immune 

checkpoint-associated gene analysis revealed that  

most checkpoints were significantly elevated in the 

high-risk group (Figure 11D), suggesting a highly 

immunosuppressive state in the high-risk group. 

 

 
 

Figure 6. Verification of TRSSys in HCC. (A) Kaplan-Meier curves in the TCGA-LIHC. (B) Expression heat map of TRSSys-related TRGs in the 

TCGA cohort. (C, D) The distribution of survival conditions in the TCGA-LIHC. (E) Kaplan-Meier curves in the GSE14520. (F) Expression heat 
map of TRSSys-related TRGs in the GSE14520 cohort. (G, H) The distribution of survival conditions in the GSE14520. 
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TRSSys predicts drug sensitivity in HCC 

 

TRSSys-based drug sensitivity analysis revealed that the 

IC50 of multiple chemotherapeutic and targeted drugs 

differed between risk subgroups (P < 0.001) (Figure 

12A–12P). Among them, 5-fluorouracil, vinorelbine, 

paclitaxel, lapatinib, gefitinib, erlotinib, dasatinib, 

crizotinib, and afatinib showed significantly lower  

IC50 in the low-risk group. Additionally, sorafenib, 

oxaliplatin, irinotecan, niraparib, olaparib, gemcitabine, 

and axitinib had significantly higher IC50s in the  

low-risk group. 

 

 
 

Figure 7. Assessment of TRSSys in HCC. (A, B) Forest plots for univariate (A) and multivariate Cox (B) regression analysis in the TCGA 
cohort. (C) ROC curves for the TRSSys in the TCGA cohort. (D) Comparison of the TRSSys with clinicopathological parameters in the TCGA 
cohort. (E) Nomogram for predicting OS in HCC. (F) Calibration curves for nomogram. *P < 0.05, **P < 0.01, and ***P < 0.001. 
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DISCUSSION 
 

Malignant tumours are currently one of the major 

causes of death worldwide and have become a  

major category of diseases that seriously jeopardize 

human life and health and constrain socio-economic 

development. The occurrence and development of 

malignant tumours not only depend on the continuous 

growth signals and unlimited replication and pro-

liferation capabilities possessed by the tumor cells 

themselves, but are also closely related to the inhibitory 

TIME shaped by the tumour cells, which allows them  

to evade the surveillance and killing by the body’s 

immune system [27]. Tregs are important immune-

negative regulatory cells in TIME, which reduce 

sensitivity to antigen recognition by affecting antigen-

presenting cells and dendritic cells [28]. Additionally, 

Tregs persistently express glucocorticoid-induced 

tumour necrosis factor receptor family-associated 

protein (GITR) and cytotoxic T-lymphocyte-associated 

protein 4 (CTLA-4), which inhibit effector T-cell 

activity [29, 30] and bind to IL-2 with high affinity, 

depleting IL-2 in the microenvironment and impeding 

the maintenance of function and maturation of  

Tconv cells [31]. Furthermore, elevated Treg ratios in 

tumour-infiltrating immune cells (TICs) have been 

shown to correlate with a poorer prognosis in some 

tumours [32, 33]. Moreover, tumor-infiltrating Tregs 

are considered key targets for cancer immunotherapy, 

either as monotherapy and/or in combination with  

ICIs antibodies [15]. Therefore, it is of great importance 

to explore the potential value of Tregs in assessing 

prognosis, TIME and immunotherapy efficacy in 

individuals with cancer. 

 

 

 

Figure 8. Association of TRSSys with clinical parameters in HCC. (A) Distribution status of different clinicopathologic parameters in 

two risk subgroups. (B–E) Kaplan-Meier curves revealed the survival between individuals in the two risk groups for age (B), gender (C), stage 
(D) and grade (E) subgroups. 
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In the current study, a novel TRSSys was  

developed based on Tregs for the first time to  

predict prognosis in individuals with HCC. The results 

revealed that TRSSys-based risk stratification could  

well distinguish patients with different prognoses and 

was an independent prognostic factor for HCC. The 

ROC curves confirmed the superior predictive power  

of TRSSys over clinicopathologic parameters alone. 

Stratified analysis of clinical parameters suggested broad 

applicability of TRSSys. Furthermore, the prognostic 

predictive value of TRSSys was further validated in the 

independent validation cohort GSE17538. Together, 

these results suggest that TRSSys has favorable 

prognostic predictive efficacy in HCC. 

 

Among the TRSSys, TPP1 was the TRGs with the 

highest regression coefficients. Previous studies have 

shown that TPP1 is associated with macrophages in HCC 

[34], suggesting that there may be a crosstalk of TPP1 

between different immune cells. ENO1, which is second 

only to TPP1 in terms of coefficient in the scoring 

system, has been shown to promote hepatocarcinogenesis 

 

 
 

Figure 9. TRSSys-based GSVA. (A) KEGG enriched in the high- and low-risk groups. (B) The correlation between the expression of TRSSys-
related TRGs and tumour-related pathways. 
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through YAP1-dependent arachidonic acid metabolism 

and has been implicated in HCC in relation to oxidative 

stress [35, 36]. Additionally, PTTG1 can promote  

HCC evolution through reprogramming of asparagine 

metabolism and is a potential therapeutic and diagnostic 

target for HCC [37]. LAPTM4B as a risk factor in  

a scoring system which has been shown to induce 

autophagy and promote tumour growth in HCC [38]. 

LGALS3 has been shown to be used as a potential 

biomarker for the malignant progression of HBV 

infection to HCC and is thought to be associated  

with necroptosis in HCC [39]. Notably, the role of 

RPS8 in HCC has not been elucidated, and given  

the prognostic predictive value of TRSSys for HCC,  

its regulatory mechanism in HCC warrants further 

subsequent exploration. 

Over the past decade, immunotherapy has become  

an important therapeutic tool in antitumor therapy  

after surgery, chemotherapy, radiotherapy and targeted 

therapy, bringing new hope to patients with cancer  

[40, 41]. In 2011, ipilimumab became the first  

Food and Drug Administration (FDA)-approved ICB 

therapy targeting the immune checkpoint CTLA-4 [42]. 

Since then, a variety of ICB drugs targeting immune 

checkpoint programmed cell death 1 (PD-1) and its 

ligand PD-L1 have been approved [43, 44]. Currently, 

ICB agents as monotherapy or in combination with 

chemotherapy or targeted therapies have become the 

standard of care for a wide range of tumors, including 

metastatic melanoma, lung, kidney, and liver [40, 45]. 

Nevertheless, the clinical application of ICB drugs still 

faces the bottleneck problem of low overall efficacy. 

 

 

 

Figure 10. TRSSys-based GO and KEGG analysis. (A, B) GO analysis of the DEGs between the risk subgroups. (C, D) KEGG analysis of the 

DEGs between the risk subgroups. 
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Therefore, it is meaningful to explore reliable efficacy 

prediction biomarkers to identify the beneficiary 

population of ICB therapy. 

 

There is growing evidence that ‘immune hot tumours’ 

are more effective for ICB immunotherapy [46, 47]. 

One of the most important features of ‘immune hot 

tumours’ is the activation of immune checkpoints 

including PD-1, CTLA-4, and lymphocyte activation 

gene 3 (LAG3) [46]. In this study, checkpoints PD-1, 

LAG3, PD-L1 and CTLA-4 showed lower levels of 

expression in the low-risk population identified based 

on TRSSys, indicating a high degree of suppression of 

TIME in high-risk populations, which partly explains 

the poorer prognosis of the high-risk population. 

Additionally, the results of ssGSEA and immune 

checkpoint analysis together suggest that the high-risk 

group is more consistent with ‘immune hot tumours’ 

and may be a potential beneficiary population for ICB 

immunotherapy. 

 

 
 

Figure 11. TRSSys-based TIME analysis. (A) Correlation bubble plot between the degree of immune cell infiltration and risk score.  
(B, C) Differences in immune cell scores and immune function scores across risk subgroups. (D) Differences in expression of immune 
checkpoints across risk subgroups. 
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Treatment strategies for HCC are limited by the 

underlying condition of the patient. Despite the rapid 

development of surgical and localized treatments in 

recent years, 50% to 60% of patients still require 

systemic therapy [48]. Currently, the commonly used 

systemic therapeutic drugs in the clinic, in addition  

to the ICB drugs mentioned above, are the targeted 

therapeutic drugs represented by tyrosine kinase 

inhibitors (TKIs). Based on SHARP and ORIENTAL 

results, sorafenib was approved for the first time for 

unresectable HCC, with a 2.8-month prolongation of 

median survival time in the targeted therapy group 

compared to the placebo group [49]. The results of 

TRSSys-based IC50 analysis revealed that the low-risk 

subgroup was more sensitive to sorafenib. Currently, 

resistance to TKIs remains one of the challenges in  

the treatment of advanced HCC. The Poly adenosine 

diphosphate ribose polymerase (PARP) inhibitor 

olaparib is thought to overcome sorafenib resistance  

by remodeling the pluripotent transcriptome in HCC 

[50]. Additionally, another PARP inhibitor, niraparib, 

was shown to induce HCC cytotoxicity along with 

significant autophagy formation and autophagic flux 

[51]. In the present study, patients in the low-risk 

subgroup were similarly more sensitive to olaparib and 

niraparib, indicating that the high-risk subgroup may be 

resistant to PARP inhibitors. 

 

The present study evaluated the constructed scoring 

system by Cox, ROC, and other methods and validated 

 

 
 

Figure 12. TRSSys-based IC50 analysis. (A–P) Therapy response of common chemotherapy and targeted drugs for risk groups. 
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it with an independent external cohort, but there are still 

some limitations. First, we currently lack data from our 

own large sample of hepatocellular carcinoma samples 

and prospective studies to validate the scoring system. 

Moreover, the mechanism of the regulatory effects of 

scoring system-related TRGs on Tregs in HCC deserves 

to be further explored in the future. 

 

CONCLUSIONS 
 

In the present study, a novel TRSSys was developed  

for the first time based on Tregs in HCC, which can 

efficiently predict clinical outcomes in patients with 

HCC. Furthermore, risk stratification based on TRSSys 

can identify populations with highly suppressive TIME 

and assist in determining potentially advantageous 

populations for ICB immunotherapy. Finally, TRSSys 

can also provide a basis for clinical individualized 

treatment decisions for patients with advanced HCC. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 

 
 

Supplementary Figure 1. K-M curves for the validation cohorts. (A) K-M curves for the CHCC cohort. (B) K-M curves for the ICGC-LIRI 

cohort. 
 

 
 

Supplementary Figure 2. Assessment of TRSSys in HCC. (A, B) Forest plots for univariate (A) and multivariate Cox (B) regression 
analysis in the GSE14520 cohort. (C) ROC curves for the TRSSys in the GSE14520. (D) Comparison of the TRSSys with clinicopathological 
parameters in the GSE14520. 
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Supplementary Figure 3. TRSSys-based TMB analysis. (A, B) The waterfall plots showing mutation information in each tumor sample of 

different risk groups. (C) TMB level between two risk groups. (D) Kaplan-Meier curves based on the combination of TMB and risk status. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Table 2. 

 

 

Supplementary Table 1. Immunohistochemical staining images of TRSSys-related genes 
in HPA (URL link). 

TRSSys-related genes Human protein atlas (URL link) 

ENO1 

https://www.proteinatlas.org/ENSG00000074800-ENO1/tissue/liver 

https://www.proteinatlas.org/ENSG00000074800-

ENO1/pathology/liver+cancer 

LAPTM4B 

https://www.proteinatlas.org/ENSG00000104341-

LAPTM4B/tissue/liver 

https://www.proteinatlas.org/ENSG00000104341-

LAPTM4B/pathology/liver+cancer  

LGALS3 

https://www.proteinatlas.org/ENSG00000131981-LGALS3/tissue/liver 

https://www.proteinatlas.org/ENSG00000131981-

LGALS3/pathology/liver+cancer  

PTTG1 

https://www.proteinatlas.org/ENSG00000164611-PTTG1/tissue/liver 

https://www.proteinatlas.org/ENSG00000164611-

PTTG1/pathology/liver+cancer  

SPP1 

https://www.proteinatlas.org/ENSG00000118785-SPP1/tissue/liver 

https://www.proteinatlas.org/ENSG00000118785-

SPP1/pathology/liver+cancer  

STMN1 

https://www.proteinatlas.org/ENSG00000117632-STMN1/tissue/liver 

https://www.proteinatlas.org/ENSG00000117632-

STMN1/pathology/liver+cancer  

TPP1 

https://www.proteinatlas.org/ENSG00000166340-TPP1/tissue/liver 

https://www.proteinatlas.org/ENSG00000166340-

TPP1/pathology/liver+cancer  

 

 

Supplementary Table 2. Tregs-related genes in the Genecards database. 
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