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INTRODUCTION 
 
Gastric cancer (GC) is the fifth most common  
cancer worldwide, following lung cancer, breast  
cancer, colorectal cancer, and prostate cancer [1]. It 

imposes a considerable health burden, particularly in 
East Asia. Among the histological types of GC, gastric 
adenocarcinoma (STAD) is the most common type, 
accounting for approximately 90-95% of GC cases [2, 
3]. Currently, curative surgical resection and adjuvant 
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ABSTRACT 
 
Background: Parthanatos is a novel programmatic form of cell death based on DNA damage and PARP-1 
dependency. Nevertheless, its specific role in the context of gastric cancer (GC) remains uncertain. 
Methods: In this study, we integrated multi-omics algorithms to investigate the molecular characteristics of 
parthanatos in GC. A series of bioinformatics algorithms were utilized to explore clinical heterogeneity of GC 
and further predict the clinical outcomes. 
Results: Firstly, we conducted a comprehensive analysis of the omics features of parthanatos in various human 
tumors, including genomic mutations, transcriptome expression, and prognostic relevance. We successfully 
identified 7 cell types within the GC microenvironment: myeloid cell, epithelial cell, T cell, stromal cell, proliferative 
cell, B cell, and NK cell. When compared to adjacent non-tumor tissues, single-cell sequencing results from GC 
tissues revealed elevated scores for the parthanatos pathway across multiple cell types. Spatial transcriptomics, for 
the first time, unveiled the spatial distribution characteristics of parthanatos signaling. GC patients with different 
parthanatos signals often exhibited distinct immune microenvironment and metabolic reprogramming features, 
leading to different clinical outcomes. The integration of parthanatos signaling and clinical indicators enabled the 
creation of novel survival curves that accurately assess patients’ survival times and statuses. 
Conclusions: In this study, the molecular characteristics of parthanatos’ unicellular and spatial transcriptomics 
in GC were revealed for the first time. Our model based on parthanatos signals can be used to distinguish 
individual heterogeneity and predict clinical outcomes in patients with GC. 
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drug therapy are the standard treatment methods for GC. 
According to statistics, with the development of targeted 
drugs, endoscopy and surgery, the global incidence and 
mortality of GC have decreased year by year, but the 
prevalence of GC in East Asia is still very high, 
accounting for more than 70% of the new diagnoses and 
deaths of GC in the world [4, 5], and it’s worth noting that 
the prevalence of GC in people under 50 years old has 
increased year by year globally [4]. This may be linked  
to genetics, obesity and dysregulation of the microbiome 
[6]. Additionally, GC is a highly heterogeneous disease  
in terms of clinical phenotype and molecular patterns.  
The heterogeneity of the tumor microenvironment and 
interaction with the host can potentially influence the 
disease progression, making the prognosis prediction for 
GC patients very challenging [7, 8]. Therefore, it is crucial 
to urgently identify sensitive and effective methods to 
evaluate clinical data in GC patients in order to optimize 
their treatment process and prognosis. 
 
In 2007, Ted Dawson discovered a novel form of 
programmed cell death that is dependent on DNA 
damage and PARP-1 activation, and named it parthanatos 
[9]. Subsequent research has increasingly confirmed  
that the parthanatos pathway is widely involved in  
the occurrence and development of various diseases, 
including Parkinson’s disease, diabetes, heart failure, 
cerebral ischemia-reperfusion injury, and others [10]. 
PARP-1 (Poly (ADP-Ribose) Polymerase 1) is a DNA 
repair enzyme that mainly exists in the nucleus of 
eukaryotic cells, accounting for over 90% of cellular 
PARP. Under normal physiological conditions, PARP-1 
monitors the DNA replication process, identifies and 
approaches DNA damage sites, promotes the recruitment 
of DNA repair effector proteins, and plays a role in 
repairing DNA damage. However, under pathological 
conditions with substantial DNA damage, PARP-1 is 
excessively activated, catalyzing the breakdown of 
intracellular nicotinamide adenine dinucleotide (NAD) 
into nicotinamide and poly ADP-ribose (PAR), resulting 
in significant depletion of NAD and accumulation of 
PAR. PAR then migrates to the mitochondria, leading  
to inhibition of the tricarboxylic acid cycle, impaired 
mitochondrial energy metabolism, release of apoptosis-
inducing factor (AIF) and migration inhibitory factor 
(MIF) to the nucleus, chromatin condensation and 
degradation, ultimately resulting in parthanatos [11, 12]. 
In the development and progression of various cancers, 
parthanatos has demonstrated elevated activity [13]. The 
expression levels of PARP-1 and associated genes are 
generally higher in various cancers, such as breast cancer, 
ovarian cancer, endometrial cancer, lung cancer, and 
prostate cancer, when compared to normal tissues [14]. 
Furthermore, studies have shown that mice with PARP-1 
gene knockout exhibit varying degrees of inhibition  
in tumorigenesis, particularly in pancreatic cancer and 

colorectal cancer [13, 15]. In GC, the upregulation of 
PARP-1 expression has been shown to be associated  
with poor prognosis [16], however, due to the complex 
cascade reactions and involvement of multiple signaling 
factors in parthanatos, the specific mechanism of the 
parthanatos pathway in the occurrence and development 
of GC has not been elucidated. Therefore, our research 
will start from here to explore the potential link between 
parthanatos and GC, aiming to provide scientific 
guidance strategies for the clinical treatment of GC. 
 
In this study, we first selected parthanatos-related genes 
from the GeneCards database. Based on TCGA and GEO 
databases, we collected multi-omics data of parthanatos-
related genes in various human cancers. The analysis  
of integrated single-cell and spatial transcriptome data 
contributes to the understanding of the structure of  
cell type distribution and the cellular communication 
mechanisms that underpin this structure. We introduce 
this section to explore the differences in the expression 
of parthanatos signal between GC tissues and normal 
tissues. Subsequently, we established a GC patient 
classification model based on parthanatos-related gene 
expression patterns based on unsupervised cluster 
analysis. This model can distinguish GC patients  
based on their different parthanatos characteristics. 
Furthermore, we used the differentially expressed genes 
between subtypes to develop a specific parthanatos-
related prognostic model for GC, and co-predicted the 
clinical outcome of patients together with the clinical 
characteristics of patients. In summary, through a  
series of bioinformatics analyses, we not only explored 
the single cell and spatial transcriptomic molecular 
characterization of parthanatos in GC, but also provided 
personalized guidance for the clinic treatment and 
prognosis of GC patients. 
 
MATERIALS AND METHODS 
 
Sample source and parthanatos-related gene source 
 
Based on the TCGA platform, we downloaded and 
curated multi-omics data of pan-cancer in humans, 
including CNV, SNV, and methylation data, as well as 
mRNA expression profiles and corresponding clinical 
information at the transcriptome level. The processing 
methods for these data were similar to previous studies 
[17, 18]. Visualization of the results was achieved  
using the R language and TBtools software. In addition 
to the pan-cancer data, we focused on in-depth analysis 
and exploration of the transcriptome data of GC. 
Specifically, we downloaded the corresponding data 
from the TCGA-STAD cohort, which included a total of 
407 samples, including 32 adjacent non-cancer samples 
and 375 GC samples. After excluding samples with a 
survival time of less than 30 days, we analyzed the 
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remaining 312 GC samples with complete follow-up 
information. Furthermore, to obtain more accurate and 
convincing results, we collected additional publicly 
available GC transcriptomic data (GSE84437). After 
integrating the prognostic information and expression 
profiles, we obtained a total of 431 GC samples with 
complete follow-up information. Since different data 
sources may have batch effects, we performed batch 
correction using the methods from previous studies  
[19, 20]. GeneCards is a comprehensive online gene 
information database that provides detailed information 
about human genes, including gene function, expression, 
disease associations, mutations, protein information, and 
drug association [21]. Users can easily search and browse 
thousands of genes to gain a deeper understanding of 
their important roles in biology, medicine, and drug 
development. All parthanatos-related genes in this study 
were obtained from the GeneCards platform, where we 
retrieved 32 parthanatos-related genes for subsequent in-
depth analysis. 
 
Analysis of single-cell sequencing and spatial 
transcriptome data 
 
The single-cell GC dataset is derived from GSE163558, 
which includes 3 GC tumor samples (GSM5004180, 
GSM5004181, and GSM5004182), 1 tumor-adjacent 
sample (GSM5004183) and 6 metastasis sample (GSM 
5004184, GSM5004185, GSM5004186, GSM5004187, 
GSM5004188, GSM5004189) [22]. In order to perform 
quality control on our raw count data, the following 
criteria were set: A) min.cells = 3, min.features = 200, 
B) nCount_RNA >= 1000, C) 200 <= nFeature_RNA 
<= 8000, D) percent.mt <= 20. To address the issue  
of differing total counts among cells, we applied a 
global scaling normalization method (LogNormalize)  
to normalize the data. This involved normalizing the 
feature expression measurements of each cell by  
their total expression, followed by multiplication  
by a scaling factor (10000), and finally transforming  
the values using the natural logarithm. Based on  
the “vst” algorithm, we identified feature genes that 
exhibited high intercellular differences in the dataset 
and normalized all genes for further analysis. 
 
To simplify computations and remove data noise,  
we performed a joint analysis of PCA and Harmony, 
aiming for batch correction and dimensionality reduction. 
Harmony applies principal component analysis to 
embed the transcriptomic expression profile into a 
lower-dimensional space and then iteratively removes 
dataset-specific effects. Based on the study of Jiang  
et al., we manually annotated the single-cell data after 
quality control and identified a total of 7 cell types, 
including myeloid cell, epithelial cell, T cell, stromal 
cell, proliferative cell, B cell, and NK cell [22]. We 

visualized the above cell subgroups in the form of 
UMAP [23]. Additionally, we employed six algorithms 
to score gene sets in the single-cell dataset: AUCell 
[24], Ucells [25], Singscore [26], ssGSEA [27], 
addmodulescore [28, 29], and scoring [17]. The scoring 
value is the sum of scores from the previous five 
methods and serves to assess the overall distribution  
of parthanatos gene set scores more stably and 
comprehensively. 
 
The spatial transcriptomics data were obtained from  
the GSE186290 dataset. It is important to note that  
this dataset consists of spatial transcriptomic sequencing 
of tissue samples from GC mice, and there are currently 
no publicly available human GC spatial transcriptomics 
data for analysis. The Read10X_Image function was 
used to read the spatial distribution information of  
tissue images and cells, while the Load10X_Spatial 
function integrated the spatial expression profile with 
spatial localization information. Similar to the single-
cell analysis, we used the aforementioned six gene  
set scoring methods to evaluate the parthanatos scores 
of each cell. Finally, we used the SpatialFeaturePlot 
function to visualize the spatial distribution of partha-
natos scores. 
 
Construction of parthanatos molecular classifier for 
GC 
 
As research progresses, the scientific community  
is gradually realizing the significant molecular 
heterogeneity both between and within tumors. It is  
due to this heterogeneity that individuals with the  
same disease often have different treatment response 
strategies and clinical outcomes. In light of this, we have 
developed a novel molecular classifier for GC based  
on parthanatos-related genes. Our goal is to clearly 
distinguish GC patients with different parthanatos 
features. 
 
First, we merged the GC transcriptomic data  
from the TCGA-STAD cohort and the GSE84437 
cohort, resulting in a total of 743 GC samples. 
Molecular clustering analysis was performed using  
the “ConsensusClusterPlus” R package developed by 
Wilkerson et al. [30], with the following specific 
parameters: reps=50, pItem=0.8, clusterAlg=“km”, 
distance=“euclidean”, maxK=9. The optimal number of 
clusters was determined based on the consensus 
cumulative distribution function and delta area plot. The 
clustering of GC patients was based on unsupervised 
clustering of parthanatos-related genes. To evaluate the 
classification performance and clinical relevance of this 
classifier, we further assessed the parthanatos scores 
and clinical prognostic differences among different 
subtypes of GC patients. Additionally, we generated a 
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heatmap to visually depict the expression characteristics 
of each parthanatos-related gene in this molecular 
classifier. 
 
Identification of internal molecular characteristics of 
the parthanatos molecular classifier 
 
To fully explain the different clinical outcomes among 
GC patients with different molecular subtypes, we 
conducted in-depth research and exploration of their 
intrinsic molecular features. Firstly, based on the  
KEGG database, we collected 42 classical metabolic 
pathways and 24 classical immune pathways. The 
“GSVA” package was used to evaluate the metabolic 
and immune signaling strength in the 743 GC samples. 
Finally, we depicted the distribution of the intensity  
of each metabolic and immune signal in the form of  
a heatmap. In general, metabolic reprogramming and 
immune microenvironment are classical molecular 
markers of tumors, and different forms of metabolic 
reprogramming and immune microenvironment features 
may be potential reasons for the different prognostic 
outcomes of different parthanatos subtypes. 
 
Apart from the immune pathways, there are many  
other algorithms in bioinformatics that can evaluate  
the tumor immune microenvironment. Therefore, we 
have subsequently conducted various immune-related 
algorithms to explore the inherent relationship between 
the parthanatos subtype and the tumor immune 
microenvironment. A) The “Estimate” package is used 
to predict the content of stromal cells and immune  
cells in malignant tumor tissues based on gene 
expression data. This algorithm is based on enrichment 
analysis of individual sample gene sets and produces 
four scores: a) stromal score (indicating the presence of 
stroma in tumor tissue) b) immune score (representing 
the infiltration of immune cells in tumor tissue) c) 
ESTIMATE score (stromal score + immune score) d) 
tumor purity. Using the “Estimate” package, we 
calculated the aforementioned four scores for 743 GC 
patients and conducted corresponding comparisons. B) 
TIMER2.0 online platform provides seven algorithms 
for predicting immune cell infiltration in tumor samples, 
including: TIMER, CIBERSOFT, CIBERSOFT-ABS, 
QUANTISEQ, XCELL, EPIC, and MCPCOUNTER 
[31]. The specific procedure is as follows: based on  
R language, the 743 GC samples were divided into 5 
groups, with each group containing 150 samples, and 
the last group containing 143 samples. The expression 
matrix of these five groups was uploaded to the Immune 
Estimation module of the TIMER2.0 platform for 
prediction, and the results of immune cell infiltration 
were then downloaded and merged. Heatmaps were 
generated to show the immune cell infiltration of  
each sample and calculate the corresponding statistical 

differences [32]. C) Immune checkpoints are the main 
limiting factors for immune cells to exert anti- 
tumor functions. Therefore, we collected classical and 
recognized immune checkpoints from previous literature 
[33], and compared the expression characteristics  
of immune checkpoint-related genes in different 
parthanatos subtypes of patients. D) The association 
between each parthanatos-related gene and the GC 
immune microenvironment was calculated. Based on 
previous literature reports [34], we identified a set of  
29 genes related to immune cells and immune- 
related functions. The ssGSEA algorithm was used to 
evaluate the immune cell and immune function scores  
of 743 GC samples, and Spearman correlation analysis 
was performed to explore the potential association 
between each parthanatos-related gene and immune cell 
infiltration and immune function. At the same time, the 
correlation between parthanatos score and immune cell 
infiltration and immune function was calculated. 
 
Identification of potentially sensitive drugs for GC 
patients based on parthanatos molecular classifier 
 
Danielle Maeser and colleagues developed a novel 
tumor drug sensitivity prediction scheme, namely 
“oncoPredict” package [35]. This R package connects  
in vitro and in vivo drug screening, allowing easy 
prediction of tumor response to a large number of drugs 
screened in cancer cell lines. In this study, we utilized 
the “oncoPredict” package and the GDSC2 dataset to 
predict the response of 743 GC patients to each drug 
and ultimately analyzed potential beneficial drugs for 
different parthanatos subtypes of GC patients. 
 
Developing a novel GC prognostic assessment model 
based on parthanatos molecular classifier 
 
Based on the “limma” package, differential gene 
expression between different parthanatos subtypes was 
analyzed. The “clusterProfiler” package was used to 
assist in Gene Ontology (GO) enrichment analysis  
and KEGG pathway enrichment analysis [36–38]. 
Subsequently, the differentially expressed genes were 
used to construct a GC prognostic model. Firstly, 431 
GC samples from the GSE84437 dataset were randomly 
divided into a 6:4 ratio. 60% of the GC samples were 
considered as the training cohort for the model (260  
GC samples), while the remaining 40% of the GC 
samples were considered as an internal validation  
set 1 (test1 cohort, consisting of 171 GC samples). 
Additionally, all samples from the GSE84437 dataset 
were treated as an internal validation set 2 (test2  
cohort, consisting of 431 GC samples). The GC samples 
from the TCGA-STAD dataset were considered as the 
external validation set for the model (test3 cohort, 
consisting of 312 GC samples). 
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Firstly, in the training cohort, the model was constructed 
through the following steps: A) Univariate Cox regression 
was used to select genes that are related to GC prognosis. 
B) LASSO regression was applied to filter genes in order 
to avoid gene collinearity and overfitting of the model 
[39]. C) Multivariate Cox regression was used to build  
the prognostic model (based on the predict function to 
calculate the risk value for each GC patient). D) Patients 
were divided into high-risk and low-risk groups based on 
the median risk value. E) The “survival” and “survminer” 
packages were used to evaluate the modeling effect of the 
prognostic model by comparing the survival differences 
between different risk groups of GC patients [40]. F)  
The “survivalROC” package was utilized to plot the  
ROC curve and calculate the AUC value to evaluate the 
predictive accuracy of the model [41]. Subsequently, in 
the internal validation set 1, internal validation set 2, and 
external validation set, the same model genes selected 
from the training cohort were subjected to multivariate 
Cox regression. The predict function was used to predict 
the risk value for each sample. Based on the median risk 
value from the training cohort, all samples from the 
different datasets were grouped accordingly. Finally, the 
stability of the model was verified through internal and 
external validation strategies. To further facilitate the  
wide application of the prognostic model in clinical 
settings, clinical features were introduced as variables in 
the model [42]. Based on the “rms” package, a nomogram 
was constructed, integrating the patient’s risk group, 
grade, stage, gender, and age [32]. Calibration plots and 
ROC curves were used to evaluate the predictive accuracy 
of the nomogram. 
 
Differences in immune microenvironment between 
high and low risk group 
 
To investigate the potential reasons for the different 
outcomes between high- and low-risk groups, we 
subsequently conducted immune microenvironment 
analysis on samples from both groups. Based on  
the immune-related scores obtained during molecular 
clustering, we compared the corresponding differences 
between the high- and low-risk groups. Specifically, we 
used the TIMER2 platform to predict the immune cell 
infiltration abundance using seven immune algorithms, 
and the statistical differences in immune cell infiltration 
between the high- and low-risk groups were evaluated 
using the wilcox.test function. Additionally, we also 
compared the expression of immune checkpoint genes 
between different risk groups. 
 
Availability of data and materials 
 
The datasets analyzed in this work may be found in  
the Supplementary Materials or the first author may be 
contacted. 

RESULTS 
 
Pan-cancer analysis based on genomics and 
transcriptomics 
 
To study the variations and expression changes of 
parthanatos-related genes in various human tumors, we 
determined the mRNA expression as well as the 
frequency of copy number variations (CNVs) and single 
nucleotide variations (SNVs) of parthanatos-related 
genes in different tumors, using sample data from the 
TCGA database. Genes such as PARP1, NAMPT, 
AIMP2, MCL1, and TOMM20 exhibited widespread 
amplifications of CNVs in multiple cancers (Figure 1A), 
while genes like RNF146, GPX4, ESR1, CUL4A, and 
PTEN showed widespread deletions (Figure 1B). Figure 
1C shows the SNV status of parthanatos-related genes, 
with genes such as PTEN, DDB1, ESR1, PARP1, and 
AIFM1 displaying high levels of SNVs in multiple 
cancers, especially in UCEC, STAD, and SKCM, 
providing valuable guidance for subsequent experimental 
research (Figure 1C). In terms of expression, genes  
like PARP1, FEN1, and GAS5 showed widespread high 
expression in cancers such as BRCA, LUAD, and 
LUSC, while genes like PTUD1, ESR1, and ESR2 
showed widespread low expression (Figure 1D).  
Based on survival-related data, we also summarized the 
risk value of parthanatos-related genes in various 
cancers (Figure 1E). Additionally, Figure 1F shows the 
differential methylation levels of parthanatos-related 
genes between cancer and normal tissues. As shown  
in the figure, genes like RIPK1, RAB33A, and ESR1 
displayed significantly higher methylation levels in 
cancer tissues compared to normal tissues (Figure 1F). 
 
Single cell transcriptomic analysis of GC 
 
Our single-cell data consists of 3 GC tumor samples 
(GSM5004180, GSM5004181, and GSM5004182), 1 
tumor-adjacent sample (GSM5004183) and 6 metastasis 
sample (GSM5004184, GSM5004185, GSM5004186, 
GSM5004187, GSM5004188, GSM5004189). To per-
form quality control on our raw count data, we first 
filtered out unsatisfactory cells based on sequencing 
depth, number of genes, mitochondrial content, and 
ribosomal content, there were 53940 cells before quality 
control, and 41264 cells were left after quality control 
(Supplementary Figure 1). Subsequently, we conducted 
a joint analysis of PCA and Harmony to remove batch 
effects and reduce dimensionality, ultimately obtaining 
20 principal components (PCs) for further analysis. 
During the determination of the resolution value, we 
observed that increasing the resolution value allowed us 
to clearly observe which cell clusters were continuously 
dividing into subclusters, revealing the relationships 
between cell clusters at different resolutions. When the 
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Figure 1. Pan-cancer analysis of parthanatos-associated genes. (A) CNV amplification data of parthanatos-related genes in different 
tumor types and the fan color represents the amplification frequency. (B) CNV deletion data of parthanatos-related genes in different tumor 
types and the fan color represents the deletion frequency. (C) SNV mutation data of parthanatos-related genes in different tumor types and 
the fan color represents the frequency of SNV. (D) In the expression data of parthanatos-related genes in different tumor types, the color of 
the squares represents the value of log2 (FC), and the size of the squares represents the value of -log2 (FC). (E) The risk profile of 
parthanatos-related genes in different tumor types, with pink representing risky, green representing protective, and gray representing no 
statistical difference. (F) The comparison of methylation of parthanatos-related genes between different tumor types and normal tissues, the 
color of the circle represents the methylation difference, and the size of the circle represents the statistical significance. 
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resolution was set to 2, we observed significant 
interweaving between cells, so we chose a resolution of 
2 and obtained 34 unknown cell clusters (Figure 2A), 
and the specific maker genes expressed in each cell 
cluster were shown in bubble charts (Figure 2B). Then 

we combined all the single-cell samples, and performed 
dimensionality reduction on the merged samples using 
tSNE nonlinear clustering algorithms (Supplementary 
Figure 2), and we displayed 34 unknown cell clusters in 
the UMAP map, and found that they were expressed 

 

 
 

Figure 2. Single-cell dimensionality reduction. (A) Use the “clustree” package to visualize the division relationships between cell 
populations under different resolutions. (B) Annotate the cell characteristics of 34 clusters. (C–E) Distribution of 34 kinds of cell clusters in the 
perspective of UMAP dimensionality reduction algorithm. 
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and distributed differently in normal, tumor, and 
metastatic tissues (Figure 2C–2E). Based on cell 
annotation strategies developed by previous studies, we 
identified 7 cell types within the GC microenvironment: 
myeloid cell, epithelial cell, T cell, stromal cell, 
proliferative cell, B cell, and NK cell, the specific genes 
expressed by each cell type were shown in the form  
of bubble maps (Figure 3A), we also labeled the cell 
clusters on the UMAP map (Figure 3B). Figure 3C 
depicts the cellular distribution characteristics within 
normal tissue, tumor tissue, and metastasis tissue. 
 
Parthanatos gene set scoring based on single-cell and 
spatial transcriptome data 
 
Cells do not rely solely on one or a few genes to carry 
out their functions. Many genes in the upstream and 
downstream pathways of the functional pathways vary in 
expression as the functions vary in strength. Therefore, 
we used five algorithms (AUCell, Ucells, Singscore, 
ssgsea, and addmodulescore) to score the parthanatos 
gene set in single-cell data. The Scoring score is the  
total score of the five algorithms. Figure 3D shows the 
expression of parthanatos-associated genes in 7 cell 
clusters for each algorithm. Myeloid cell, epithelial cell 
and proliferative cell show strong signals, while NK 
cells and T cells show weaker signals (Figure 3D). 
 
To compare the differences in parthanatos-related gene 
expression among normal tissue, tumor tissue and 
metastasis tissue, we displayed the gene set scores for 
each cell cluster under the five algorithms in Figure 3F. 
The different algorithm scores indicate that compared to 
normal tissue, almost all cell types within the tumor 
tissue and metastasis tissue show higher parthanatos 
gene scores. Notably, the gene set scores for epithelial 
cell, T cell and proliferative cell in tumor tissue and 
metastasis tissue are significantly higher (Figure 3F). 
Furthermore, using the UMAP algorithm, we mapped 
the 7 cell clusters and their respective parthanatos  
gene set scores onto the merged sample tissue. By 
comparing the Scoring scores, we can clearly observe 
that epithelial cell, T cell and proliferative cell in tumor 
tissue and metastasis tissue have higher parthanatos 
gene set scores, which is consistent with our previous 
observations (Figure 4A). In addition, the control data 
from mouse GC tissue revealed, for the first time, the 
spatial distribution of parthanatos signals at the tissue 
level (Figure 4B). 
 
Cluster analysis based on parthanatos score 
 
We developed a GC classification model based on 
parthanatos-related genes, which can clearly distinguish 
GC patients with different parthanatos features. Using 
unsupervised clustering analysis algorithm [43], we 

divided a total of 743 GC patient samples from TCGA 
and GEO databases into two subtypes (C1 and C2). The 
results of consistency matrix heatmap, cumulative 
distribution curve, and delta area curve all confirmed 
that k=2 is the optimal clustering number (Figure 5A–
5C). Violin plots showed the enrichment scores of the 
two subtypes, where C2 subtype had higher parthanatos 
scores, indicating higher activity of parthanatos-related 
genes, while C1 subtype had the opposite trend (Figure 
5D). The heatmap displayed the expression patterns  
of different parthanatos-related genes between C1 and 
C2 subtypes. Except for some genes, most genes,  
such as RIPK1, DDB1, CUL4A, AIMP2, and PARP1, 
were expressed at higher levels in the C2 subtype 
compared to the C1 subtype, further confirming the 
higher expression activity of parthanatos-related genes 
in C2 subtype patients (Figure 5F). We also studied  
the prognosis differences between the two subtypes 
using the “survival” package and “survminer” program 
in R Studio. It was found that patients with the C2 
subtype had better prognosis and higher survival rates, 
suggesting that a higher parthanatos score is associated 
with better prognosis in GC patients (Figure 5E). 
 
Metabolic reprogramming and immune 
microenvironment characteristics of the parthanatos 
scoring model 
 
In order to fully explore the intrinsic molecular features 
of GC patients in different subtypes, we collected 42 
classic metabolic pathways and 24 classic immune 
pathways based on the KEGG database. We evaluated 
the metabolic and immune signaling intensities in 743 
GC samples and depicted the distribution of each 
metabolic and immune signal in the form of heat maps. 
In the C1 subtype, signals of metabolic pathways such as 
retinol metabolism, drug metabolism cytochrome P450 
metabolism, and metabolism of xenobiotics by cyto-
chrome P450 metabolism were enhanced, while signals 
of metabolic pathways such as purine metabolism, 
pyrimidine metabolism, cysteine and methionine 
metabolism, and riboflavin metabolism were weakened. 
The opposite was observed in the C2 subtype (Figure 
5G). Regarding immune-related pathways, signals of 
immune pathways such as TGF beta signaling pathway, 
chemokine signaling pathway, and intestinal network  
for IGA production were enhanced in the C1 subtype, 
while signals of immune pathways such as P53  
signaling pathway, proteasome, progesterone mediated 
oocyte maturation, oocyte meiosis, RNA degradation, 
spliceosome, and nucleotide excision repair were 
enhanced in the C2 subtype (Figure 5F). 
 
In addition, we used the ESTIMATE algorithm to 
analyze the proportions of immune cells, stromal cells, 
and tumor cells in tumor tissues, and obtained the 
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Figure 3. Single-cell annotation and parthanatos scores prediction. (A) Expression of specific marker genes in 7 cell types.  
(B, C) Dimension reduction and annotation of cell clusters based on UMAP algorithm. (D) 5 algorithms scored the gene sets of seven cell 
clusters. (E) Comparison of the expression difference of 14 model genes in 7 cell types of normal tissue, tumor tissue and metastatic tissue.  
(F) Comparison of gene set scores of 7 cell clusters among normal tissue, tumor tissue and metastatic tissue. 
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immune score, stromal score, ESTIMATE score, and 
tumor purity for both C1 and C2 subtypes. From  
the graphs, it can be seen that C1 subtype had  
more stromal and immune cells, while C2 subtype  
had higher tumor purity (Figure 6A–6D). This 
phenomenon may be caused by immune function 
suppression and abnormal accumulation of immune 
cells in the tumor microenvironment of the C1 
subtype. To further analyze the differences in the 
immune microenvironment between the two subtypes, 
we used seven immune cell infiltration prediction 
algorithms provided by the TIMER2.0 online platform 
(including TIMER, CIBERSOFT, CIBERSOFT-ABS, 
QUANTISEQ, XCELL, EPIC, and MCPCOUNTER) 
to analyze the extent of immune cell infiltration 
between the C1 and C2 subtypes. From the graphs, it 
can be observed that regardless of the algorithm  
used, the number of B cells in the C1 subtype was 

significantly higher than that in the C2 subtype, while 
the opposite was observed for neutrophils. Other 
immune cells also showed certain differences between 
the two subtypes (Figure 6E). Finally, Figure 6F shows 
the expression patterns of immune checkpoint-related 
genes in the C1 and C2 subtypes. Genes such as 
CD8A, CD44, NRP1, TNFSF14, TNFSF15, CD27, 
and CD48 were significantly higher expressed in the 
C1 subtype (Figure 6F). This result suggests an 
excessive activity of immune checkpoints in the  
tumor microenvironment of the C1 subtype, which 
may lead to tumor immune escape to a certain extent 
and subsequently cause excessive accumulation of 
immune cells. This is consistent with our previous 
findings on the abnormal accumulation of immune 
cells in the C1 subtype and the differences in immune 
microenvironment characteristics between the two 
subtypes. 

 

 
 

Figure 4. Distribution of parthanatos scores in single-cell atlas and spatial resolution. (A) Based on the UMAP algorithm, the gene 
set scores of 7 cell clusters were displayed in the combined samples (including normal tissue, tumor tissue and metastatic tissue). (B) Spatial 
transcriptome data of GC, gene set scoring under 6 gene set scoring algorithms. 
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Figure 5. Parthanatos-based clustering analysis. (A) Define a consensus matrix heat map of k = 2 clusters and their associated regions. 
(B) Cumulative distribution function (CDF) curve under different cluster number. (C) The relative change in area under the CDF curve for 
different values of k. (D) The violin plot shows enrichment scores for two clusters (C1 and C2), p<0.001. (E) Survival curves of C1 and C2 
clusters, purple for C1, green for C2. (F) Expression difference of parthanatos-related genes between CI and C2 subtypes. (G) Differences in 
the activity of metabolic pathways between CI and C2 subtypes. (H) Differences in immune pathway activity between CI and C2 subtypes. 
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Significance of parthanatos scoring model for GC-
targeted drug therapy 
 
To further explore the potential value of parthanatos  
in the clinical treatment of GC patients, we used the 
“oncoPredict” package and GDSC2 dataset to predict 
the response of 743 GC patients to various targeted 
therapies. We analyzed the potential beneficial drugs  
for GC patients in the C1 and C2 subtypes and plotted 
box plots to determine the impact of parthanatos on  
the sensitivity to 12 common targeted drugs in GC. 
Patients in the C1 subtype showed higher sensitivity  
to dasatinib, while patients in the C2 subtype showed 
higher sensitivity to 11 other drugs such as carmustine, 
sorafenib, rapamycin, and sepantronium (Supplementary 
Figure 3A–3L). This result may provide precise guidance 

for future individualized targeted drug therapy for GC 
patients. 
 
Relationship between parthanatos and immune cell 
infiltration in GC tissues 
 
The characteristics of GC include a high degree of 
heterogeneity in tumor cells and tumor immune 
microenvironment. To investigate this, we evaluated the 
immune cells and immune function scores of 743 GC 
samples based on the ssGSEA algorithm. We explored 
the potential associations between parthanatos-related 
genes and 29 types of immune cells or functions using 
Spearman correlation analysis. We also calculated the 
correlation between parthanatos scores and immune cell 
infiltration. We found that different parthanatos-related 

 

 
 

Figure 6. Analysis of immune microenvironment between different subtypes. (A–D) The difference between the two clusters in 
immune score, stromal score, ESTIMATE score and tumor purity, P-values are represented by *. (E) Seven algorithms were used to analyze 
immune cell or functional differences between CI and C2 subtypes. (F) Differences in the expression of immune checkpoint related genes 
between CI and C2 subtypes, P-values are indicated by *. *: P<0.05, **: p<0.01, ***: p<0.001, “ns” indicates no significant difference. 
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genes have varying degrees of correlation with various 
immune cells or functions. Among them, RAB33A, 
ESR1, and ESR2 were positively correlated with  
most immune cells or functions, while TOMM20, 
DDB1, and CUL4A were negatively correlated (Figure  
7A). The bubble plot displays the correlation between  
classic immune infiltration-related cells and parthanatos, 

including both positive and negative correlations 
(Figure 7B). We then selected the three immune cells 
with the highest correlation (Treg, Th2 cell, Th1 cell) 
and performed correlation analysis with parthanatos 
scores. The R-values were 0.38, 0.28, and 0.27, 
respectively, indicating positive correlations (Figure 
7C–7E). This finding is consistent with our previous 

 

 
 

Figure 7. Relationship between parthanatos score and immune microenvironment in GC. (A) Heat map depicting the relationship 
between parthanatos-related genes and levels of immune cell infiltration. Positive correlations are shown in red, negative correlations are 
shown in blue, and p-values are shown by *. (B) The bubble plot shows the correlation between parthanatos score and the levels of 
infiltration of various immune cells, with the size of the circle indicating the size of the correlation and the color of the circle indicating 
statistical significance. (C–E) Correlation between parthanatos score and Infiltration levels of three kinds of immune cells. *: p<0.05,  
**: p<0.01, ***: p<0.001, “ns” indicates no significant difference. 
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results, where we observed a higher quantity of Th1 and 
Th2 cells in the C2 subtype compared to the C1 subtype 
using the XCELL algorithm. 
 
Construction and verification of survival and 
prognosis model of GC patients based on 
parthanatos-related genes 
 
Based on the limma and “clusterProfiler” packages, we 
screened for differentially expressed genes between 
different parthanatos subtypes for GO enrichment 
analysis and KEGG enrichment analysis (Supplementary 
Figure 4). These genes were then used to construct  
a prognostic model for GC patients (SGCA, JAM2, 
SHISA3, DES, PDK4, SFRP2, GRP, TNC, PAEP, 
FBLN5, GLDC, CCDC80, HAND2, and PPP1R14A), 
Figure 3E shows the expression of 14 model genes  
in seven cell types of normal tissue, tumor tissue, and 

metastatic tissue (Figure 3E). In the train cohort,  
we performed univariate Cox regression, LASSO 
regression, and multivariate Cox regression analysis  
on the differentially expressed genes to build the 
prognostic model (Supplementary Figure 5). We divided 
the GC patients in the train cohort into high- and  
low-risk groups based on the median risk value. We  
then compared the prognosis differences and analyzed 
the ROC curve to evaluate the predictive accuracy of  
the model (Figure 8A and Supplementary Figure 6). 
Subsequently, in the internal validation set 1 (test1 
cohort), internal validation set 2 (test2 cohort), and 
external validation set (test3 cohort), we performed 
multivariate Cox regression using the model genes 
selected from the train cohort. We used the predict 
function to predict the risk values for each sample  
and used the median risk value from the train cohort as 
the cut-off value to divide the three validation sets into 

 

 
 

Figure 8. Survival curves and ROC curves for the high- and low-risk groups in the four cohorts. (A–D) Comparison of survival 
curve and ROC curve between train cohort, test1 cohort, test2 cohort and test3 cohort. 
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high- and low-risk groups. We then conducted 
prognosis difference comparisons and analyzed the 
ROC curve. In different cohorts, the high-risk group 
consistently showed worse prognosis compared to the 
low-risk group, and the AUC values for 3-year and  
5-year ranged from 0.6 to 0.8, indicating the stability 
and potential generalizability of the prognostic model 
(Figure 8B–8D and Supplementary Figure 6). In order to 
explore the differences in the immune microenvironment 
between the high and low-risk groups, we used the 
TIMER2 platform to predict the immune cell infiltration 
abundance using seven immune algorithms in the four 
cohorts. We also compared the expression differences 
of immune checkpoint genes between different risk 
groups (Supplementary Figure 7). The results showed 
that in all algorithms and cohorts, the low-risk group 
had higher numbers of plasma cells, NK cells, and 
certain CD4+ T cells (such as activated memory CD4+ 
T cells, Th1 cells, and Th2 cells), while tumor-
associated fibroblasts (CAFs) showed the opposite 
trend. Additionally, the box plot results showed higher 
expression of immune checkpoint-related genes in the 
high-risk group compared to the low-risk group. These 
differences in the immune microenvironment may be 
one of the main intrinsic factors leading to differences 
in prognosis and clinical data between the high- and 
low-risk groups. 
 
To facilitate the clinical application of the prognostic 
model, we introduced clinical features of GC as 
variables in the model and used the “rms” package to 
construct a column line chart for accurate prediction of 
GC patient prognosis. The column line chart consists of 
10 parallel lines. Each row represents a score, with 
gender in the second row, risk type in the third row, 
grade in the fourth row, stage in the fifth row, and age 
in the sixth row. The total score in the seventh row is 
obtained by adding the scores of age, grade, stage, and 
risk type. With this chart, we can easily estimate the 
survival rates of GC patients at 1, 3, and 5 years (Figure 
9A). Furthermore, Calibration plots and ROC curves 
were used to assess the predictive accuracy of the 
column line chart. The calibration curves for 1, 3, and 
5-year survival closely align with the diagonal line 
(Figure 9B), and the AUC values were 0.691, 0.683, 
and 0.709, respectively (Figure 9C). This indicates that 
both our prognostic model and the column line chart 
construction are accurate and have predictive value for 
prognosis. 
 
DISCUSSION 
 
Unlike other known forms of cell death, parthanatos  
is a cell death pathway that relies on PARP1 instead  
of caspase, and its occurrence involves the participation 
of multiple factors such as NAD and AIF [44]. In the 

development of cancer, parthanatos interacts closely 
with other forms of cancer cell death, such as apoptosis 
and autophagy, playing a significant role in breast 
cancer, colon cancer, ovarian cancer, and other cancers 
[10]. As one of the most common malignancies world-
wide, GC has been shown to be closely associated  
with cell death processes such as ferroptosis, pyroptosis, 
and immunogenic cell death [45–47]. We believe that 
targeting parthanatos may provide a new approach to 
precision treatment for cancer. Therefore, this study 
aims to explore the role of parthanatos in GC and search 
for new biomarkers for the treatment and prognosis of 
GC based on the molecular characteristics of parthanatos. 
 
Firstly, we explored the mutation and expression patterns 
of parthanatos-related genes in various human cancers. 
We downloaded clinical data from the TCGA database 
and analyzed the multi-omics data of parthanatos-
related genes in different human cancers. Additionally, 
to determine whether parthanatos could be a potential 
target for GC treatment, we also analyzed the risk  
and methylation status of parthanatos-related genes  
in different types of cancer. Our analysis revealed 
varying degrees of mutations and expression differences 
in parthanatos-related genes across multiple cancers, 
which significantly impacted prognosis risk. These 
findings open up several potential avenues for future 
research on parthanatos in human cancers. 
 
ScRNA-Seq is a high-throughput technology that allows 
for quantitative sequencing of gene expression profiles 
at the single-cell level, aiding in the deciphering of 
hidden heterogeneity within cell populations [48]. In a 
recent study, Shen et al. utilized scRNA-Seq to explore 
the expression characteristics of mesenchymal stem 
cells in GC and their role in treatment and prognosis 
[49]. To investigate the correlation between parthanatos 
and single cells in GC, we included a dataset from the 
GEO database (GSE163558) for scRNA-Seq analysis. 
We identified and classified cells in the samples, 
resulting in 7 cell clusters expressing cell-specific 
genes. These clusters include T cells expressing CD3D, 
CD3E and CD2; NK cells expressing KLRD1, GNLY 
and KLRF1; stromal cell expressing PECAM1 and 
VWF; epithelial cells expressing EPCAM, KRT19  
and CLDN4; B cells expressing CD79A, IGHG1 and 
MS4A1; proliferative cells expressing MK167, STMN1 
and PCNA; myeloid cells expressing CSF1R, CSF3R 
and CD68. We further scored the parthanatos gene set 
for each cell cluster, finding different gene set scores 
among the clusters, with significant differences between 
normal, tumor and metastatic tissues. The control data 
revealed the spatial distribution characteristics of 
parthanatos in GC tissue for the first time. However, 
due to the limited availability of control data, statistical 
analysis could not be conducted. We hope that more 
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control data will become available in the future to 
further uncover the differences in parthanatos signals 
between GC tissue and adjacent non-cancerous tissue  
at the spatial resolution level. Nonetheless, the above 
discoveries are advantageous in our analysis of tumor 
heterogeneity in GC at the single-cell level and spatial 

resolution, providing effective insights into the genetic 
and functional analysis of GC cells. 
 
The heterogeneity of GC is one of the main reasons why 
it is challenging to diagnose and treat accurately [50]. 
To classify GC patients appropriately and explore the 

 

 
 

Figure 9. Establishment of clinical nomogram. (A) A nomogram for predicting prognostic survival time in GC patients. (B) Calibration 
curves of 1-, 3-, and 5-year survival in GC patients. (C) ROC curves of 1-, 3-, and 5-year survival in GC patients. 
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role of parthanatos in GC, we merged the gene 
expression data from the TCGA-STAD cohort and the 
GSE84437 cohort, resulting in 743 GC samples. Based 
on the expression levels of parthanatos-related genes, 
we divided all samples into two subtypes: C1 and C2. 
C1 had lower parthanatos scores, while C2 had higher 
parthanatos scores. In previous studies, parthanatos and 
its related components have been reported to exhibit 
anti-tumor effects [51, 52], For example, PARP1 
negatively regulates epithelial-to-mesenchymal transition 
(EMT) and inhibits crucial processes such as tumor  
cell invasion [53]; AIF, as a cell death inducer, prevents 
the inactivation of the tumor suppressor PTEN by 
inhibiting its oxidation process, thereby suppressing 
tumor metastasis [54]. Our survival curve showed that 
patients in the C2 subtype had better overall survival 
than those in the C1 subtype, suggesting that protective 
genes may constitute the majority or dominantly play a 
role among parthanatos-related genes, which is consistent 
with previous research findings. On the other hand, our 
results showed that pathways such as metabolism of 
xenobiotics by cytochrome P450 were more active in 
the C1 subtype compared to the C2 subtype. Studies 
have shown that cytochrome P450 plays a central  
role in the oxidative activation of various carcinogens 
and is important in tumor development and response  
to chemotherapy [55]. We believe that the abnormal 
activation of certain metabolic pathways may be one of 
the reasons for the poorer prognosis in the C1 subtype. 
Similarly, the activity level of immune-related pathways 
such as TGF beta signaling pathway, chemokine 
signaling pathway, and intestinal network for IgA 
production, has been proven to be associated with  
GC treatment and prognosis [56–58], our research 
results also confirmed significant differences in these 
pathways between the C1 and C2 subtypes, validating 
the accuracy of the GC classification model based on 
parthanatos scores that we constructed. 
 
The tumor immune microenvironment plays a crucial 
role in the progression of malignant tumors, involving 
both host anti-tumor immune responses and the 
destruction of normal tissues. Increasing evidence 
suggests that immune cell infiltration, such as CD4+ T 
cells and B lymphocytes, plays a key role in various 
cancers, including GC [59–61]. However, the potential 
correlation between the development of GC and 
immune cell infiltration landscape has not been fully 
determined. Based on the GC clustering model we 
established, we attempted to explore the relationship 
between parthanatos and the immune microenvironment 
within GC. The ESTIMATE analysis can calculate the 
proportions of immune cells, stromal cells, and tumor 
cells within tumor tissues. Our results showed that the 
C1 subtype had a higher proportion of stromal cells and 
immune cells in tumor tissues, while the C2 subtype had 

higher tumor purity. Using the algorithms provided by 
the TIMER2.0 platform, we found differences in the 
level of immune cell infiltration between the C1 and C2 
subtypes, with a significantly higher number of B cells 
in the C1 subtype. It has been reported that tumor-
infiltrating B cells can regulate the pro-angiogenic 
effect of bone marrow cells through the secretion of 
soluble mediators, and they also promote tumor growth 
by blocking T cell-mediated immune responses through 
the production of lymphotoxins [62, 63]. This again 
validates the reason why patients in the C1 subtype 
have a worse prognosis. Similar differences were  
found in the expression of immune checkpoint-related 
genes, such as CD8A, CD44, NRP1, and TNFSF14, 
which were significantly higher in the C1 subtype.  
It is well known that immune checkpoints control 
immune responses, such as effector T cells and NK 
cells, through various mechanisms [64], when immune 
checkpoint-related genes are upregulated, the activity of 
immune cells is suppressed, and more immune cells are 
recruited into the tumor microenvironment to participate 
in anti-tumor immune processes under the influence  
of chemokines and other cytokines [65, 66], which is 
consistent with the results of our ESTIMATE analysis. 
Furthermore, using the ssGSEA algorithm, we also 
analyzed the relationship between parthanatos scores 
and immune cell populations and functions in the  
743 GC samples. We found that different parthanatos-
related genes had varying degrees of correlation with 
various immune cells or functions, and parthanatos 
scores were also correlated with classic immune cell 
infiltration, primarily in a positive manner. 
 
Currently, drugs such as sorafenib, rapamycin, 
vincristine, and MG-132 have been shown to have 
certain anti-cancer effects in GC. Among them, 
sorafenib significantly increases the expression of 
caspase-3, Bax, cyt-c proteins in a dose-dependent 
manner and reduces the expression of Bcl-2 protein. 
Inactivation of ERK protein phosphorylation is one of 
the mechanisms by which sorafenib inhibits GC [67]; 
rapamycin effectively blocks S1K4, 1E-BP-1, and 
HIF-31α activation in vitro in GC cells, significantly 
inhibiting tumor cell migration [68]; MG-132, as  
a ubiquitin-proteasome inhibitor, can significantly 
inhibit telomerase activity in GC cells, induce cell 
apoptosis, and cause G1 arrest [69]. Based on the 
“oncoPredict” package and the GDSC2 dataset, we 
conducted an analysis on tumor drug sensitivity 
prediction, predicting the responses of 743 GC patients 
to various targeted drugs, and analyzed potential 
beneficial drugs for different parthanatos subtypes  
of GC patients. Ultimately, we found that patients  
of subtype C1 were more sensitive to dasatinib,  
while patients of subtype C2 were more sensitive  
to carmustine, sorafenib, rapamycin, sepantronium, 
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vincristine, MG-132, lapatinib, epirubicin, osimertinib, 
cytarabine, and docetaxel. This result will provide 
precise guidance for the rational use of drugs in GC 
patients. 
 
Finally, based on the “limma” package, we selected 
differentially expressed genes between subtypes C1 
and C2. We used univariate Cox regression to screen 
for genes related to GC prognosis, LASSO regression 
to filter genes, and multivariate Cox regression to 
build a prognostic model. Finally, we obtained a GC 
prognostic risk model consisting of 14 parthanatos-
related genes (SGCA, JAM2, SHISA3, DES, PDK4, 
SFRP2, GRP, TNC, PAEP, FBLN5, GLDC, CCDC80, 
HAND2, and PPP1R14A). By using the predict 
function, we can calculate the risk score for each  
GC patient, where higher risk scores often correspond 
to poorer survival outcomes. Among these genes,  
a considerable proportion has been proven to be 
closely associated with GC development. For example, 
JAM2 belongs to the immunoglobulin superfamily  
cell adhesion molecules and plays a crucial role in 
maintaining cell-cell junction integrity. Imbalanced 
JAM2 gene expression has been correlated with  
GC staging, differentiation, and progression [70]; the 
pyruvate dehydrogenase kinase encoded by the PDK4 
gene is a crucial enzyme that maintains a high rate  
of glycolysis in cancer cells, promoting resistance to 
apoptosis, it has been shown to enhance proliferation 
and invasion of GC tumor cells and is associated with 
infiltrations of B cells, CD4+ T cells, and dendritic 
cells, making it an adverse prognostic factor in  
GC [71], which aligns with our findings. Similarly, 
SFRP1, GLDC, HAND2, and other genes have also 
been found to play critical roles in the development 
and prognosis of GC [72–75]. 
 
To evaluate the modeling performance and predictive 
accuracy of the model, we compared the prognostic 
differences between different risk groups in four 
cohorts, including the train cohort. We plotted ROC 
curves and calculated the AUC values. The stability of 
the model was validated through internal and external 
validation strategies. For the high- and low-risk groups 
classified by the model, we also conducted comparative 
analysis of immune infiltration and immune checkpoint-
related genes. We found that there were still differences 
between the two groups, indicating the significant role 
of the immune microenvironment. Among them, we 
observed a significantly higher number of cancer-
associated fibroblasts (CAFs) in the high-risk group 
than in the low-risk group, which may be one of the 
important reasons for the decreased number of immune 
cells and upregulation of immune checkpoint-related 
genes in the high-risk group. It has been reported that 
CAFs and their related biomarkers are associated with 

poor prognosis in various types of cancer [76, 77], apart 
from directly promoting tumor growth, metastasis, and 
angiogenesis, CAFs may also mediate tumor immune 
escape by directly inhibiting immune cell infiltration 
and activity or by promoting the recruitment of 
immunosuppressive cells [78, 79]. In addition, based on 
this model, we also generated column charts to predict 
the survival rates of GC patients at 1, 3, and 5 years by 
integrating risk group, grade, stage, gender, and age 
data. 
 
Furthermore, our research has certain limitations 
primarily due to the fact that it only includes 
bioinformatics analysis. For a detailed understanding of 
the mechanism of action between parthanatos and GC, 
further validation from in vivo and in vitro experiments 
is needed to support our conclusions. Additionally, 
finding effective predictive biomarkers for diagnosis 
and prognosis in malignant tumors is a challenging task 
for us, and future studies should include larger sample 
sizes to improve our research findings. 
 
CONCLUSIONS 
 
Through integrating a series of bioinformatics methods, 
we explored the potential link between parthanatos  
and GC. Single-cell combined spatial transcriptomic 
analysis highlighted the difference in signal expression 
of parthanatos between cells in GC samples, with 
almost all cells within tumor tissues and metastatic 
tissue displaying higher parthanatos signals compared  
to normal tissues. Based on the expression levels of 
parthanatos-related genes, we divided GC patients into 
two subtypes, which showed significant differences  
in prognosis, immune infiltration, and tumor purity, 
suggesting a relationship between the development  
of GC and aberrant parthanatos pathway. We also 
created and validated a novel prognostic risk model 
based on parthanatos-related genes, which showed good 
predictive capability. Higher risk scores were associated 
with poorer survival outcomes, potentially providing  
a more targeted and accurate new strategy for the 
treatment and prognosis of GC patients. 
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SUPPLEMENTARY MATERIALS 
 
Supplementary Figures 

 
 

 
 

 
 

Supplementary Figure 1. Data quality control. By controlling the sequencing depth, number of genes, mitochondrial content and 
ribosome content, the unqualified cells are filtered out. (A, B) Unsatisfied cells were filtered based on sequencing depth, number of genes, 
mitochondrial content, and ribosome content. (C) Screen for highly variable genes. 
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Supplementary Figure 2. UMAP nonlinear clustering algorithm was used to reduce and annotate the combined samples, and 
the normal samples and tumor samples were separated. (A) Distribution of normal samples and tumor samples before dimensionality 
reduction. (B) Distribution of normal samples and tumor samples after dimensionality reduction. 
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Supplementary Figure 3. Drug sensitivity analyses of CI and C2 subtypes to AZD7762. (A), sorafenib (B), rapamycin  
(C), sepantronium bromide (D), vincristine (E), MG-132 (F), lapatinib (G), epirubicin (H), docetaxel (I), dasatinib (J), cytarabine (K), and CDK9-
5038 (L). 
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Supplementary Figure 4. GO and KEGG analysis of differentially expressed genes from C1 and C2 subtypes. 
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Supplementary Figure 5. LASSO regression analysis and Cox regression analysis were used to construct the prognosis model. 
(A, B) LASSO coefficient spectra of prognostic related genes in GC. (C) Forest map showing 14 model genes and their hazard ratios. 

5498



www.aging-us.com 29 AGING 

 
 

Supplementary Figure 6. Patient partitioning based on median risk score. Survival time distribution of high- and low-risk groups and 
expression difference of parthanatos-related genes between high- and low-risk groups in train cohort (A), test1 cohort (B), test2 cohort  
(C) and test3 cohort (D). 
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Supplementary Figure 7. Differences in the immune microenvironment between high- and low-risk groups in the train 
cohort. (A), test1 cohort (B), test2 cohort (C) and test3 cohort (D), including seven different algorithms and differences in immune 
checkpoint related gene expression (E). 
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