
www.aging-us.com 1 AGING 

www.aging-us.com AGING 2024, Vol. 16, Advance 

Research Paper 

Identification and validation of a novel signature based on 
macrophage marker genes for predicting prognosis and drug 
response in kidney renal clear cell carcinoma by integrated analysis 
of single cell and bulk RNA sequencing 
 
Xiaoxu Chen1,2,*, Zheyu Zhang1,2,*, Zheng Qin1,2, Xiao Zhu1,2, Kaibin Wang1,2, Lijuan Kang1,2, 
Changying Li1,2, Haitao Wang1,2 

 
1Department of Oncology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 
China 
2Tianjin Key Laboratory of Precision Medicine for Sex Hormones and Diseases (in Preparation), The Second 
Hospital of Tianjin Medical University, Tianjin, China 
*Equal contribution 
 
Correspondence to: Changying Li, Haitao Wang; email: cli_cvrl@tmu.edu.cn, haitao_peterrock@outlook.com, 
https://orcid.org/0000-0003-4345-9375 
Keywords: single-cell RNA-seq, bulk RNA-seq, macrophage marker genes, signature, kidney renal clear cell carcinoma,  
drug response 
Received: November 22, 2023 Accepted: February 26, 2024 Published: March 20, 2024 
 
Copyright: © 2024 Chen et al. This is an open access article distributed under the terms of the Creative Commons Attribution 
License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original 
author and source are credited. 
 
ABSTRACT 
 
Macrophages are found in a variety of tumors and play a critical role in shaping the tumor microenvironment, 
affecting tumor progression, metastasis, and drug resistance. However, the clinical relevance of marker genes 
associated with macrophage in kidney renal clear cell carcinoma (KIRC) has yet to be documented. In this study, 
we initiated a thorough examination of single-cell RNA sequencing (scRNA-seq) data for KIRC retrieved from the 
Gene Expression Omnibus (GEO) database and determined 244 macrophage marker genes (MMGs). Univariate 
analysis, LASSO regression, and multivariate regression analysis were performed to develop a five-gene 
prognostic signature in The Cancer Genome Atlas (TCGA) database, which could divide KIRC patients into low-
risk (L-R) and high-risk (H-R) groups. Then, a nomogram was constructed to predict the survival rate of KIRC 
patients at 1, 3, and 5 years, which was well assessed by receiver operating characteristic curve (ROC), 
calibration curve, and decision curve analyses (DCA). Functional enrichment analysis showed that immune-
related pathways (such as immunoglobulin complex, immunoglobulin receptor binding, and cytokine-cytokine 
receptor interaction) were mainly enriched in the H-R group. Additionally, in comparison to the L-R cohort, 
patients belonging to the H-R cohort exhibited increased immune cell infiltration, elevated expression of 
immune checkpoint genes (ICGs), and a higher tumor immune dysfunction and exclusion (TIDE) score. This 
means that patients in the H-R group may be less sensitive to immunotherapy than those in the L-R group. 
Finally, IFI30 was validated to increase the ability of KIRC cells to proliferate, invade and migrate in vitro. In 
summary, our team has for the first time developed and validated a predictive model based on macrophage 
marker genes to accurately predict overall survival (OS), immune characteristics, and treatment benefit in KIRC 
patients. 
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INTRODUCTION 
 
Renal cell carcinoma (RCC) ranks as the third most 
commonly occurring urologic malignancy and the 
eighth most prevalent cancer globally. It accounts  
for around 400,000 new cases and 175,000 deaths 
reported worldwide each year [1, 2]. Over the past 20 
years, there has been an annual increase of 2% in the 
incidence of RCC worldwide [3]. KIRC is the leading 
pathological type of RCC, accounting for approximately 
70% of all RCCs [4]. Currently, surgery remains the 
primary treatment for localized or locally advanced RCC. 
This includes options such as radical nephrectomy (RN) 
or partial nephrectomy (PN) [5]. The 5-year overall 
survival (OS) rate for these procedures is approximately 
72%. However, it is concerning that more than 20 to 30 
percent of patients are already experiencing metastatic 
symptoms at the time of diagnosis. This indicates an 
advanced stage of the disease. Unfortunately, the overall 
5-year survival rate for these patients was only 12 
percent, highlighting the challenges associated with 
advanced metastatic RCC. Targeted therapies and 
immunotherapies have been demonstrated to effectively 
prolong OS in patients with distant metastases or non-
resectable RCC. Naturally, the therapeutic options for 
RCC are currently limited in their effectiveness [6]. In 
addition, there is a shortage of molecular biomarkers 
with the requisite reliability to accurately predict the 
prognosis of patients with KIRC and provide guidance 
for clinical treatment. 
 
Tumor microenvironment (TME) is an important 
determinant of tumor behavior, progression, and 
aggressiveness and has a critical impact on patient 
survival and immunotherapy response [7, 8]. 
Macrophages are important regulators of inflammation 
and immune response in TME. It has been reported 
that macrophage infiltration was associated with  
poor prognosis in many solid and hematologic tumors 
[9]. In both progressive and non-progressive tumors, 
M1-type macrophages predominate as progenitor 
subtypes and exhibit antitumor activity. Conversely, in 
malignant and advanced tumors, tumor associated 
macrophages (TAMs) tend to adopt the M2 phenotype, 
thereby promoting tumor malignancy [10]. TAMs can 
produce a variety of pro-angiogenic cytokines, such  
as VEGF, TNF-α, and IL-8. It has been found that 
TAM can promote tumor progression by enhancing 
tumor angiogenesis in several human tumors, such  
as breast cancer, melanoma, glioma, bladder cancer, 
and prostate cancer [11]. The potential efficacy of 
macrophages in the treatment of KIRC needs to be 
further intensively investigated. 
 
ScRNA-seq is a powerful method that allows the 
analysis of complex biological systems at the level  

of individual cells. It enables the identification of  
rare cell populations that are associated with tumors 
and metastases, thus providing insights into the 
heterogeneity of these processes [12]. In addition to 
the gene signatures comprising the five MMGs, our 
team also investigated the role of IFI30 in KIRC.  
We found that IFI30 had the highest hazard ratio (HR) 
in their model, indicating its potential significance in 
predicting patient outcomes. 
 
RESULTS 
 
Identification of macrophage marker genes 
 
The scRNA-seq data were obtained from 5490 cells 
from four KIRC samples in the GEO database 
(GSE156632). After strict quality control filtering 
(removing low quality cells, mitochondria, etc.), a  
total of 2300 elevated expression cells were obtained 
(Figure 1A). After normalization of the data, the top 
1500 of these highly expressed genes were selected 
(Figure 1B). PCA was conducted on four single-cell 
samples, resulting in a logical scattering and distribution 
of the individual samples (Figure 1C). To reduce 
dimensionality, we employed the PCA method and 
selected 15 principal components (PCs) with a P- 
value < 0.05 for subsequent analysis (Figure 1D). 
“Findnerghbors”, “FindClusters”, and “RunTSNE” 
functions were used to cluster the cells obtained  
above, and finally 14 clusters were obtained (Figure 
1E). Next, using the “FindAllMark-ers” function, we 
screened a total of 1461 differentially expressed marker 
genes from 9 clusters. The top ten marker genes with 
the highest expression in each cluster were then 
clustered and visualized in a heatmap (Figure 1F).  
The t-SNE algorithm was performed to visualize the 
nine clusters. The “singleR” package, CellMarker 
database, and references were used for cell annotation 
(Figure 1G). And cluster 0 was defined as macrophage 
subpopulations, which were confirmed by marker genes 
(CD68, APOE, CD14, and TRME2) associated with 
macrophage based on CellMarker database (Figure  
1H). Finally, we got 244 macrophage marker genes  
of KIRC (|logFC| > 1 and adjusted P-value < 0.05), 
which were listed in Supplementary Table 1. 
 
Construction and validation of a 5 macrophage 
marker genes-based prognostic model 
 
We performed univariate Cox regression analysis on the 
TCGA-training set to screen for 81 macrophage marker 
genes that are associated with prognosis (Figure 2A, 
Supplementary Table 2). After LASSO and multivariate 
regression analysis, five genes were finally obtained 
(IFI30, FUCA1, TIMP1, NAT8, and SMIM24) (Figure 
2B–2D). Then, based on correlation coefficients, a 
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MMG risk was established: MMGrisk = (0.327 × IFI30 
expression) + (−0.494 × FUCA1 expression) + (0.267 × 
TIMP1 expression) + (−0.108 × NAT8 expression) + 
(−0.145 × SMIM24 expression). KIRC patients were 
grouped into H-R and L-R cohorts based on median risk 
scores (Figure 3A–3D). The results suggest that as the 
risk score increases, the number of deaths increases and 
the survival time decreases (Figure 3E–3H), indicating  
a worse prognosis for the H-R group, which is also 

confirmed by the survival analysis results (P < 0.001). 
The expression of each MMG in the risk model  
was presented as a heatmap (Figure 3I–3L). The  
AUC for the 1-, 3-, and 5-year predictions in the 
TCGA-training cohort were 0.867, 0.770, and 0.789, 
respectively (Figure 3Q). The results of survival 
analysis showed poor prognosis in H-R cohort  
(Figure 3M). We used internal validation (TCGA test 
cohort) and external validation (GSE167573) to further 

 

 
 
Figure 1. Identification of MMGs via scRNA-seq analysis. (A) Quality control of scRNA-seq data from four KIRC samples. (B) The 
variance plot shows that there are 13,799 genes in all cells, with the red dots representing the top 1,500 highly variable genes. (C) 
Dimensionality reduction was performed by PCA. (D) 15 PCs were identified based on a P-value < 0.05. (E) All cells were categorized into 14 
clusters using the t-SNE algorithm. (F) The heatmap showed the top 10 most highly expressed genes in the 14 clusters. (G) Annotation of 
each cell cluster by marker genes. (H) Expression of known macrophage marker genes (CD68, APOE, CD14, and TREM2) in 14 cell clusters. 
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evaluate the predictive power of the prognostic model. 
The results of TCGA-test and TCGA-total cohorts 
showed better OS in L-R cohort (P < 0.001) (Figure 3N, 
3O), and the AUC in 1-, 3-, and 5-year were 0.677, 
0.682 and 0.713, respectively (Figure 3R). In TCGA-
total cohort, the AUC in 1-, 3-, and 5-year were 0.770, 
0.727 and 0.752, respectively (Figure 3S). The results 
from the GEO cohort demonstrated that the OS of the 
L-R cohort was significantly better than that of the H-R 
cohort (P < 0.001) (Figure 3P). Additionally, the AUC 
for 1-, 3-, and 5-year predictions were 0.747, 0.901, and 
0.834, respectively (Figure 3T). Moreover, in the KIRC 
cohort from the TCGA database, clinical characteristics 
were correlated with risk scores and showed as a 
heatmap (Figure 4D). Furthermore, correlation analysis 
showed a significant difference (P < 0.05) between risk 
score and T status (T1, T2, T3, and T4) (Figure 4A),  
N status (N0 and N1) (Figure 4B), M status (M0 and 
M1) (Figure 4C), pathologic grade (G1, G2, G3, and 
G4) (Figure 4E), and stage (stage I, stage II, stage III, 

and stage IV) (Figure 4F). Meanwhile, Kaplan–Meier 
survival curves were drafted between the two risk 
groups, and we found that the OS and progression-free 
survival (PFS) were substantially shorter in the H-R 
cohort (P < 0.05) (Figure 5A). The OS of the subgroups 
depending on clinical characteristics like age (Figure 
5B, 5C), sex (Figure 5D, 5E), grade (Figure 5F, 5G) and 
stage (Figure 5H, 5I) revealed that the H-R cohort 
showed a poor prognosis compared to the L-R cohort  
in every subgroup. This result suggests that the model 
can better predict the prognosis of KIRC patients with 
different clinical variables. 
 
Nomogram construction and evaluation of predictive 
effectiveness 
 
Through univariate and multivariate regression analyses, 
we determined that age, grade, stage, and the risk  
score were independent prognostic factors influencing  
the outcomes of KIRC patients (Figure 6A, 6B). 

 

 
 
Figure 2. The construction of the prognostic model. (A) Univariate Cox regression analysis. (B, C) LASSO regression analysis. (D) 
Forest plot of multivariate Cox regression. 
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By integrating clinical characteristics and risk score, we 
developed a nomogram to predict the 1-, 3-, and 5-year 
OS of patients with KIRC (Figure 6C). The calibration 
curve demonstrates a strong agreement between the 
observed the and predicted values (Figure 6D). Moreover, 
the AUCs indicated the high accuracy of the nomogram 
|in predicting 1-, 3-, and 5-year prognosis (Figure 6E– 
6G [13]). By plotting DCA curves, we found that this 
nomogram provided an excellent prediction of OS for 
patients with RCC for 1-, 3-, and 5-year (Figure 6H–6J). 
 
GO, KEGG and gene set enrichment analysis 
 
Gene Ontology (GO) enrichment analysis was 
conducted, revealing that the biological processes (BP) 
primarily involved antigen binding and immunoglobulin 
receptor binding. In terms of cellular component (CC), 
the immunoglobulin complex, presynapse, and external 
side of the plasma membrane were the most prominently 

represented. In molecular function (MF), humoral 
immune response, and immunoglobulin production were 
the predominant categories (Figure 7A). KEGG analysis 
resulted mainly in protein digestion and absorption, 
cytokine-cytokine receptor interaction, and PI3K-AKT 
signaling pathway (Figure 7B). Furthermore, gene  
set enrichment analysis (GSEA) was conducted, and  
we found that the H-R group was mainly enriched  
in pathways related to immune function, such as 
immunoglobulin complex and immunoglobulin receptor 
binding (Figure 7C–7F). Next, we further performed  
an immune microenvironment analysis to compare the 
differences between the two risk groups. 
 
Analysis of tumor immune landscape in high- and 
low-risk groups 
 
We found that the H-R group was positively correlated 
with the infiltration of several crucial immune cells 

 

 
 
Figure 3. Validation of the prognostic model. (A–D) Distribution of risk scores for MMGs in TCGA-training, TCGA-test, TCGA-total and 
GEO cohorts, respective. (E–H) Scatter plot of the OS for each patient in the TCGA-training, TCGA-test, TCGA-total, and GEO cohorts, 
respectively. (I–L) Heatmaps of the risk cohort and the five MMGs in TCGA-training, TCGA-test, TCGA-total, and GEO cohorts, respectively. 
(M–P) The Kaplan-Meier curves in TCGA-training, TCGA-test, TCGA-total, and GEO cohorts, respectively. (Q–T) The AUC at 1-, 3-, and 5-year 
for the prognostic models in TCGA-training, TCGA-test, TCGA-total, and GEO cohorts, respectively. 
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(Figure 8A), such as NK cells (R = 0.54), cancer 
associated fibroblast (R = 0.36), regulatory T cells (R = 
0.39), and DC cells, and negatively correlated with 
neutrophil infiltration (R = −0.54). The details of the 
infiltrated immune cells are presented in Supplementary 
Table 3. Next, we illustrate the relationship between 
risk score and immune-related function in KIRC.  
The result showed numerous crucial immune functions 
were dramatically different in the risk scores, such as 
Type II IFN response, Macrophage, APC co-inhibition, 
HLA, T cell co-inhibition, and Inflammation promoting 
(Figure 8B). Compared to the L-R group, the H-R group 
exhibited higher expression of most immune checkpoint 
genes, including CD44, TNFRSF4, TNFRSF18, 
TMIGD2, TNFRSF8, CD80, TNFRSF25, TNFSF14, 
TIGIT, PDCD1, CTLA4, LGALS9, and LAG3 (Figure 
8C). In addition, immunosubtype analysis showed that 
C3 subtype was predominant in the two risk cohorts 

(92% vs. 82%), the proportion of C1, C2, and C6  
in the H-R group was higher than that in the L-R  
group (Figure 8D), and the difference was statistically 
significant (P < 0.05). Finally, as for the TME score, 
stromal score (P = 0.0041), immune score (P = 8.9e-07), 
and estimate score (P = 4.6e-06) were higher in H-R 
patients of KIRC (Figure 8E–8G). 
 
Tumor mutation and drug sensitivity analysis 
 
Figure 9A shows the overall mutation profile of KIRC. 
The interaction of genetic mutations is illustrated in 
Figure 9B. By analyzing the somatic mutation profiles 
of different risk groups from TCGA database, the top  
15 most highly mutated genes were VHL, PBRM1, 
TTN, SETD2, BAP1, MTOR, MUC16, DNAH9, 
KDM5C, DST, HMCN1, CSMD3, LRP2, KMT2C, and 
AHNAK2 (Figure 9C, 9D). However, there was no 

 

 
 
Figure 4. Correlation between risk scores and clinical characteristics. (A–C) Boxplot of risk scores based on MMGs signature for 
KIRC patients with different T status, N status, and M status. (D) Heatmap showed the relationship between clinical characteristics and 
expression of MMGs in the two risk groups. (E) Boxplot of risk scores based on MMGs signature for KIRC patients with different 
pathological grades. (F) Boxplot of risk scores based on MMGs signature for KIRC patients with different tumor stages. 
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significant difference in TMB between the two risk 
groups (P = 0.21) (Figure 9E). The OS was notably 
increased in the high TMB cohort, suggesting that the 
H-R cohort with low TMB had the worst prognosis 
(Figure 9G, 9H). There are two primary mechanisms 
by which tumor cells evade the immune system: the 
induction of T-cell dysfunction in tumors with high 
levels of cytotoxic T lymphocyte (CTL) infiltration, 
and the prevention of T-cell infiltration in tumors with 
low CTL levels. The TIDE can effectively model both 
mechanisms in order to predict the sensitivity to 
immunotherapy [14]. In comparison with the L-R 
cohort, the TIDE scores of the H-R cohort were 
substantially higher (Figure 9F), further indicating that 
L-R patients benefit more from the immunotherapy. 
We subsequently utilized the “pRRophetic” package to 
delve deeper into the disparities in IC50 levels among 
various drugs within the L-R and H-R groups. The 

results showed that patients in the L-R group had 
lower IC50 scores for cancer drugs including AKT 
inhibitors and Pazopanib. On the contrary, patients in 
the H-R cohort had lower IC50 for the anti-cancer drugs 
including Axitinib, Gefitinib, Crizotinib, and Lisitinib 
(Figure 10A–10F). The results of the correlation 
between drug IC50 and risk score are shown in 
Supplementary Figure 1. These results suggest that 
this predictive model can be used as a predictor of  
the efficacy of anti-tumor drugs and as a reference for 
the precise treatment of kidney cancer patients. 
 
Validation of signature gene expression biological 
function analysis 
 
The expression levels of marker genes (IFI30, FUCA1, 
TIMP1, NAT8, and SMIM24) in our prognostic model 
were validated in mRNA and protein levels. We found 

 

 
 
Figure 5. Kaplan-Meier survival curves for two risk cohorts with different clinical characteristics. (A) Progression free survival. 
(B, C) Age. (D, E) Sex. (F, G) Grade. (H, I) Stage. 
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that the expression of IFI30 and TIMP1 is higher  
in the RCC cell lines than that in normal renal  
tubular epithelial cells, and is associated with a poorer 

prognosis. The expression of FUCA1, NAT8 and 
SMIM24 in renal carcinoma cell lines is lower than 
those in renal tubular epithelial cells and suggests a 

 

 
 
Figure 6. Establishment and evaluation of the nomogram. (A) Univariate Cox regression analyses of clinical characteristics and risk 
scores. (B) Multivariate Cox regression analyses of clinical characteristics and risk scores. (C) The construction of the nomogram. (D) 
Calibration curve for assessing the agreement at 1-, 3-, and 5-year OS. (E–G) The AUC of the nomograms compared for 1-, 3-, and 5-year OS, 
respectively. (H–J) The DCA curves of the nomograms compared for 1-, 3-, and 5-year OS, respectively. 
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better prognosis (Figure 11). Then, we selected the  
IFI30 with the highest hazard ratio (HR) for additional 
study. Pan-cancer analysis revealed that IFI30 is highly 
expressed in most human tumors compared with normal 
tissue (Figure 12A). As for KIRC, the expression of IFI30 
in tumor samples is significantly higher than that in non-
tumor samples, both in paired and non-paired samples 
(Figure 12B, 12C). The above analysis was further 
corroborated by the significantly higher expression of 
IFI30 in KIRC cell lines than in normal renal tubular 
epithelial cells (Figure 12D). Next, IFI30 was knocked 

down in RCC cell lines for subsequent functional 
experiments in the A498 and 786-O cells. Initially,  
we evaluated the knockdown efficiency of IFI30 at the 
RNA level and the protein level, respectively (Figure  
12E, 12F), the original Western blot and gels were shown 
in Supplementary Figure 2. CCK8 and EdU assays 
showed that knockdown of IFI30 significantly inhibited 
the proliferation of A498 and 786-O cells (Figure 12G, 
12K). In addition, results from colony formation assay 
showed that the knockdown of IFI30 resulted in a 
significant reduction in cell colonies compared with 

 

 
 

Figure 7. Functional enrichment analysis. (A) GO analysis. (B) KEGG analysis. (C–F) Gene set enrichment analysis. 
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the controls (Figure 12I). This is corroborated by the 
results of wound healing assay, which show that after 
inhibition of IFI30 expression, the wound healing rate of 
cells is significantly decelerated (Figure 12J). Similarly, 
knockdown of IFI30 inhibited the migration of A498 and 

786-O cells (Figure 12H). To verify the accuracy and 
reliability of the above results, experiments were 
performed in A498 and 786-O cells in a triplet manner. All 
data were expressed as the means ± SD of independent 
experiments. *P < 0.05, **P < 0.01, ***P < 0.001. 

 

 
 
Figure 8. Characteristics of the immune microenvironment of the tumor. (A) Immune cell bubble of different risk cohorts. (B) 
Heatmap showed the relationship between MMGrisk and immune-related functions. (C) The expression levels of the immune checkpoint 
genes between the two risk groups. (D) Analysis of immune subtypes in the two risk cohorts. (E–G) Differences expression levels of stromal, 
immune, and ESTIMATE scores between the two risk cohorts. 
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DISCUSSION 
 
In the TME, TAMs are the most abundant  
immune-associated stromal cells. On the one hand, 
macrophage phagocytosis results in the elimination  

of tumors, activation of inflammasomes, and 
presentation of antigens, thus triggering adaptive 
immune responses against the tumors [15]. On the  
other hand, macrophages may also contribute to tumor 
advancement, metastasis, and resistance to therapy [16]. 

 

 
 
Figure 9. Somatic mutations of the KIRC. (A) The overall mutation profile of KIRC. (B) Interaction effect of gene mutation differentially 
in the two risk groups. (C) The mutation frequency of genes in the L-R group. (D) The mutation frequency of genes in the H-R group. (E) 
Differential expression levels of TMB between the two risk groups. (F) Differential expression levels of TIDE between the two risk groups. 
(G) The Kaplan-Meier curves for the low-TMB and high-TMB groups. (H) The Kaplan-Meier analysis curves for the patients stratified by 
MMGrisk and TMB. 

5686



www.aging-us.com 12 AGING 

While macrophages undoubtedly play a pivotal role in 
the TME and patient outcomes, the relationship between 
MMGs and outcomes as well as immune response in 
KIRC patients remains uncertain. 
 
In this study, the prognostic signature constructed by 
integrating scRNA-seq and bulk RNA-seq data consists 
of five MMGs (IFI30, FUCA1, TIMP1, NAT8, and 
SMIM24). It has been reported that IFI30 can promote 
the EMT process in glioma cells by activating EGFR/ 
AKT/GSK3β/β-catenin. In addition, IFI30 directly 
modulates drug resistance in glioma cells [17]. Fan et 
al. elaborated that IFI30 is highly expressed in breast 
cancer and is associated with poor prognosis, and that it 
can affect breast cancer cell proliferation by regulating 
autophagy [18]. Activation of the AKT signaling 
pathway is facilitated by TIMP1, which has been 
demonstrated to confer resistance to CisPt and Dox in 
TNBC patients. It is worth nothing that the formation of 
the TIMP1/CD63 complex plays a crucial role in this 
process [19]. Baudot et al. [20] reported that P53 can 
directly regulate FUCA1 and promote chemotherapy-
induced cell death. Using in vitro and in vivo functional 
experiments, Xu et al. [21] showed that FUCA1 
silencing inhibited glioma growth by enhancing 
autophagy and inhibiting macrophage infiltration. It  
has been reported that NAT8 is regulated by FDFT1 
and promotes colon cancer cell proliferation in vivo  

and in vitro. You et al. reported that NAT8 is a  
CAF-related methylation driver gene that favors CAF 
infiltration in KIRC and is associated with sensitivity to 
immune checkpoint inhibitors, and that its methylation 
level is negatively correlated with the prognosis in 
KIRC patients [22]. Tong et al. screened out six  
DEGs (including NAT8) which downregulated in 
ccRCC patients with VHL non-mutation than with the 
mutation, and its decreased expression is associated 
with a better prognosis in ccRCC patients [23]. The role 
and mechanism of SMIM24 in tumors has not been 
reported. This study is the first to comprehensively 
assess the impact of MMGs in patients with KIRC in 
terms of clinical outcomes, immune profile, and drug 
sensitivity. 
 
Our team conducted both internal validation (using the 
TCGA-test dataset) and external validation (utilizing 
the GEO cohort) of the prognostic signature we 
obtained earlier. The consistently positive results in the 
validation set demonstrate excellent reproducibility. 
Subsequently, we developed a nomogram to predict 
the OS of KIRC patients at 1-, 3-, and 5-year. 
Furthermore, GO enrichment analysis revealed that the 
MMGs in the signature are predominantly enriched in 
immune-related pathways, such as immunoglobulin 
receptor binding, immunoglobulin complex, and humoral 
immune response. KEGG analysis revealed enrichment 

 

 
 
Figure 10. Drug sensitivity analysis. The comparisons in IC50 of AKT inhibitor (A), Axitinib (B), Gefitinib (C), Pazopanib (D), Crizotinib (E), 
and Cisplatin (F) between the two risk groups. 
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of MMGs in protein digestion and absorption, 
cytokine-cytokine receptor interaction, and PI3K-AKT 
signaling pathway. These pathways have been reported 
to be associated with immunotherapy response and 
TME [24–26]. The results of the GSEA analysis further 
validate the confidence of the above-enriched signaling 
pathways. 
 
TAMs play a role in promoting cancer cell growth and 
metastasis, as well as exerting immunosuppressive 
effects on adaptive immune cells within the TME.  
The study’s findings suggest that patients in the H-R 
group demonstrated significantly higher immune scores, 
stromal scores, and ESTIMATE scores (P < 0.05).  
In addition, our team detected widespread infiltration  
of immune cells and elevated expression of genes 
associated with immune checkpoints in the H-R group. 
These findings suggest that individuals within the H-R 
cohort have a less favorable prognosis compared to 

those in the L-R cohort. This is due to the fact that 
immune checkpoint genes, such as CD274, cause T cell 
dysfunction, hindering the ability of cytotoxic T cells to 
target tumor cells. As a result, this interference allows 
tumor cells to evade immune surveillance and promotes 
tumor progression [27, 28]. 
 
Gene mutations are key factors in tumor formation, and 
identifying specific gene mutations through second-
generation sequencing has the potential to provide the 
basis for precision targeted therapies. Our team found 
that the most predominant mutations in KIRC patients 
were missense mutations, with C > T Single nucleotide 
polymorphism (SNPs) being the most common type. In 
these mutant genes, BAP1 mutation frequency in the  
H-R group was significantly higher than that in the L-R 
group (15% vs. 6%). Kaler et al. found that BAP1 
deficiency leads to increased PROS1 expression in 
melanoma cells, polarizes macrophages toward the M2 

 

 
 
Figure 11. Validation of expression and survival of model genes. (A) The protein expression profiles of the key genes in the Human 
Protein Atlas (HPA) database. (B) The mRNA expression level of the key genes in a renal tubular epithelial cell line (HK-2) and KIRC cell lines 
(786-O, 769-P, A498, and ACHN). (C) Survival analysis for the key genes. Error bars are mean ± SD, *P < 0.05, **P < 0.01, ***P < 0.001. 
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state, activates the suppressive tumor immune 
microenvironment, and ultimately promotes immune 
escape [29]. The H-R group in this study had a higher 

TIDE score, which may be related to activation of the 
tumor-suppressing immune microenvironment due to 
polarization of M2 macrophages. In addition, we found 

 

 
 
Figure 12. The role of IFI30 in KIRC. (A) Pan-cancer analysis of IFI30 expression in human tumors. (B) Expression of IFI30 in KIRC and 
para-cancerous tissues in TCGA database. (C) Expression of IFI30 in KIRC and normal tissues in TCGA database. (D) IFI30 was highly 
expressed in KIRC cell lines compared to normal renal tubular epithelial cell line (HK-2). (E, F) RT-qPCR and Western blot were used to verify 
the interference efficiency of IFI30 in A498 and 786-O cells. (G) CCK8 assay. (H) Transwell assay. (I) Colony formation assay. (J) Wound 
healing assay. (K) EdU staining assay. Error bars are mean ± SD, *P < 0.05, **P < 0.01, ***P < 0.001. 
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that the H-R group with elevated TMB had the worst 
prognosis, whereas the L-R group with low TMB had 
the best prognosis. 
 
To assess the predictive power of prognostic signatures  
in terms of sensitivity to common chemotherapeutic  
and anti-angiogenic agents, our team investigated AKT 
inhibitors, Axitinib, Gefitinib, Pazopanib, Cirzotinib, and 
Cisplatin. The findings suggest that higher risk scores are 
associated with an increased IC50 for both AKT inhibitors 
and Pazopanib. In turn, a higher risk score is associated 
with a reduced IC50 for Axitinib, Gefitinib, Cirzotinib, 
and Cisplatin. Moreover, the GSEA analysis results 
demonstrate that the model signatures exhibit significant 
enrichment in drug metabolism related pathways. This 
further confirms that signatures have the potential to 
influence drug sensitivity and provides a basis for 
selecting targeted drugs for patients with KIRC. 
 
Finally, we performed a comprehensive pan-cancer 
analysis on IFI30, which was identified as having  
the highest HR value among the model genes. Our 
findings reveal elevated expression of IFI30 across 
multiple human tumors, associated with an unfavorable 
prognosis. We observed elevated levels of IFI30 in 
KIRC cells compared to normal cells. Subsequently, 
cell function experiments were performed using the 
A498 and 786-O cell lines. The results demonstrate a 
significant reduction in cell invasion, migration, and 
proliferation in KIRC cells following IFI30 knockout. 
Still, our study has some limitations. First, our study is 
based on the analysis and summarization of existing 
public databases, and a large number of real-world 
clinical samples for validation is still lacking. Second, 
further in vivo and in vitro experiments are needed  
to validate the mechanisms involved in this study. In  
the future, we will rely on our Tianjin Key Laboratory 
for Precision Medicine of Sex Hormones and Diseases 
to carry out our real-world clinical studies and verify  
in-depth molecular mechanisms. 
 
In summary, our team developed a prognostic model, 
including five macrophage marker genes, to predict 
prognosis and response to drug therapy in patients  
with KIRC. In addition, the discovery of IFI30 as a 
potential new target suggests that it could be a valuable 
component in the development of personalized therapies 
for KIRC. This research holds promise for improving 
the management and outcomes of KIRC patients. 
 
MATERIALS AND METHODS 
 
Data source 
 
Four scRNA-seq files (GSM4735364, GSM4735366, 
GSM4735370, GSM4735374) were acquired from the 

GEO database (http://www.ncbi.nlm.nih.gov/geo/ 
(accessed on 3, August 2023) accession number 
GSE156632 to acquire macrophage cell marker genes. 
Next, bulk RNA-seq data, matched clinical information 
annotations, and somatic mutation data were obtained 
from the TCGA database (https://portal.gdc.cancer.gov/ 
(accessed on 3, August 2023), including 72 normal 
kidney samples and 542 KIRC samples. A total of 533 
KIRC samples were included in the analysis after 
excluding patients with tumors for which no survival 
data were available. Furthermore, an external validation 
cohort and the corresponding clinical information were 
downloaded from the GEO database (GSE167573). 
 
Single cell RNA-seq analysis 
 
ScRNA-seq data analysis was done by using the 
“Seurat” package [30]. Cells with more than 5 percent 
of the mitochondrial genes were removed. In addition, 
cells with fewer than 50 mapped genes and clusters with 
less than 3 cell counts were eliminated. To perform 
dimensionality reduction using Principal Component 
Analysis (PCA), we used 1500 highly variable genes. 
The optimal clusters were then selected for visualization 
using Seurat’s Stochastic Neighbor Embedding (t-SNE) 
algorithm [31], “FindNeighbors”, and “FindClusters” 
(resolution = 0.5) function [32]. Next, the differences in 
gene expression between a specific cluster and all other 
clusters were compared using the “FindAllMarkers” 
function. And genes that exhibited a |log2FC| > 1 and 
adjusted P-value < 0.05 were considered as the marker 
gene. Finally, the “SingleR” package [33] was used to 
annotate the cells of different subpopulations. 
 
Construction and validation of the prognostic 
signature 
 
Firstly, by using the R package “limma” [34], we 
integrated expression profile data and clinical data  
of 533 KIRC patients from the TCGA database, and  
then randomly divided into a training cohort (n = 267) 
and a test cohort (n = 266) in a 1:1 ratio through  
“cart” package. Secondly, we performed univariate Cox 
regression analysis in the training cohort to identify 
macrophage marker genes (MMGs) associated with OS. 
Third, LASSO and multivariate Cox regression were 
performed to select hub genes to construct the risk 
model. And MMG risk score calculating formula was:  
 

 
1

( ) ( )
n

i
MMGriskscore coef i x i

=

×∑  

 
Where x (i) = each MMG expression, and coef (i) = 
regression coefficient. The patients (training cohort, test 
cohort and total cohort) were divided into H-R and L-R 
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cohorts based on the median value of the riskscore.  
The R package “survival” was applied to analyze the 
survival of the three data sets. Finally, “glmnet”, 
“caret”, “survminer”, “rms”, and “timeROC” packages 
were used to plot the ROC and calculate the AUC  
to evaluate the accuracy of the prognostic model. In 
addition, GSE167573 was used as an external validation 
dataset to evaluate the prognostic signature. And a  
KM survival analysis to validate the prognostic 
potential of risk genes based on the Kaplan-Meier 
plotter (http://kmplot.com (accessed on 5, August 2023) 
database. 
 
Expression of marker genes at the mRNA and 
protein level 
 
We analyzed the expression of the above-obtained 
marker genes at the transcriptome and protein  
levels. For the mRNA level, we performed RT- 
qPCR validation on renal cancer cells (ACHN,  
786-O, 769-P, and A498) and normal renal tubular 
epithelial cells (HK-2). For protein level, we obtained 
immunohistochemical (IHC) staining images of the 
marker genes from the Human Protein Atlas database 
(HPA; https://www.proteinatlas.org/ (accessed on 10, 
August 2023) [35]. 
 
Clinical characteristic, nomogram and decision 
curve analysis 
 
Univariate and multivariate Cox regression analysis 
were used to assess whether risk score and clinical 
characteristics (grade, sex, stage, and age) were 
independent factors that affect prognosis of KIRC. 
Next, a nomogram was constructed to predict the OS  
of KIRC individuals at 1-, 3-, and 5-year by the “rms” 
package [36, 37]. The receiver operating characteristic 
(ROC) curves and calibration curve were used to assess 
the nomogram’s predictive power accuracy [38]. Based 
on the “ggDCA” package, decision curve analysis 
(DCA) was performed to evaluate the net clinical 
benefit of the signature and clinical factors on KIRC 
patient survival outcomes. 
 
Functional enrichment analysis 
 
To clarify the function of core genes and underlying 
biological functions and mechanisms, we conducted 
KEGG and GO analysis by using “ClusterProfiler”, 
“org.Hs.eg.db” [39], “ggplot2”, “enrichplot” packages. 
We performed GSEA on the two risk groups identified 
in the TCGA cohort using the Molecular Signature 
Database (MSigDB) (specifically, c2.cp. KEGG gene 
set and c2.cp. GO gene set). We then visualized the  
top 5 pathways with a significance level of P < 0.05  
for each human gene ensemble. 

Tumor immune microenvironment and 
immunotherapy 
 
Seven algorithms (XCELL, TIMER,  
QUANTISEQ, MCPCOUNTER, EPIC, CIBER-
SORT-ABS, CIBERSORT) [40–46] were used to 
evaluate immune infiltration in KIRC patients. These 
data were used to analyze the infiltrating abundance  
of immune cells in the tumor microenvironment.  
Next, we used the “estimate” package [47] to 
determine the relative expression abundance of stromal 
cells, immune cells, and tumor cells in two risk 
groups. A higher score indicates a greater presence  
of each component in the tumor microenvironment. 
We compared the expression levels of established 
immune checkpoint genes (ICGs) between the two  
risk groups using the “limma”, “reshape2”, “ggplot2”, 
and “ggpubr” packages. Immune subtype (C1: Wound 
Healing, C2: IFN-gamma Dominant, C3: Inflammatory, 
C4: Lymphocyte Depleted, C5: Immunologically 
Quiet, C6: TGF-beta Dominant) [48] distribution 
difference was further compared in two risk groups  
by “RcolorBrewer” package. 
 
TMB, TIDE and mutation analysis 
 
We obtained somatic mutation data for KIRC patients 
from the TCGA database and processed them using the 
Perl language. We utilized the “maftools” package to 
identify the TMB score and survival data for both risk 
cohorts [49], and top 15 genes with the highest mutation 
frequency in both groups. KIRC patients were divided 
into high-TMB and low-TMB groups based on their 
median TMB score. K-M survival curve was performed 
to analyze the overall survival of the two risk groups  
by using “survival” and “survminer” packages. Finally, 
the TIDE score files were downloaded from the TIDE 
website (http://tide.dfci.harvard.edu/ (accessed on 15, 
August 2023) [50]. 
 
Drug sensitivity analysis 
 
The Genomics of Drug Sensitivity in Cancer (GDSC) 
database was utilized to evaluate the sensitivity of 
KIRC patients to drug treatment. This assessment  
was performed using the “pRRophetic” package [51], 
where we assessed treatment response based on 50% 
maximum inhibitory concentration (IC50). 
 
Cell lines culture and RNA interference 
 
Normal human renal tubular epithelial immortalized 
cells (HK-2) and KIRC cells (ACHN, 786-O, 769-P, 
and A498) were obtained from Tianjin Institute of 
Urology, The Second Hospital of Tianjin Medical 
University. HK-2 and ACHN cells were cultured in 
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Table 1. Primer sequence of genes. 

Gene  Sequence (5′–3′) 

GAPDH 
F GGGGAGCCAAAAGGGTCATCATCT 
R GACGCCTGCTTCACCACCTTCTTG 

IFI30 
F GCGTTAGACTTCTTTGGGAATGGGC 
R ACCGCACAGTGCTTCATAGTAGAGG 

IFI30-Si-1 
Sense CCAGCCACCACACGAGUAUTT 

Antisense AUACUCGUGUGGUGGCUGGTT 

IFI30-Si-2 
Sense GCAAGCGUUAGACUUCUUUTT 

Antisense AAAGAAGUCUAACGCUUGCTT 

FUCA1 
F AAGGCTTCTTGCTGTTGGGAAATGG 
R GCATAAACAGCCGATCCCTTTGAGG 

TIMP1 
F TTCTGGCATCCTGTTGTTGCTGTGG 
R GTGGTCTGGTTGACTTCTGGTGTCC 

NAT8 
F GGGATAGCAAAAGCCCTGGT 
R TCTTGAAGCCCATGCTCTGG 

SMIM24 
F TCATCGTCTATTTGGTCTTGCTGGC 
R CTCCATTCTGAACGTGGTCTCCTCC 

 
DMEM medium (MA0212, Meilunbio, Dalian, China). 
786-O, 769-P, and A498 cells were cultured in RPMI-
1640 medium (FI201-01, Transgen, Beijing, China). All 
the medium were supplemented with 10% fetal bovine 
serum (FS401-02, Transgene, Beijing, China) and 1% 
streptomycin/penicillin (S110JV, BasalMedia, Shanghai, 
China), and all the cells were incubated in a humidified 
atmosphere with 5% CO2 at 37°C. The short interfering 
RNA (siRNA) probe targeting IFI30 was designed  
and synthesized by GenePharma (Suzhou, China). All 
transfections were conducted using RFect Transfection 
Reagent (11012, Baidai, Changzhou, China). The siRNA 
sequences for IFI30 can be found in Table 1. 
 
Real-time quantitative polymerase chain reaction 
(RT-qPCR) 
 
Trizol reagent was used to extract RNA from the  
cell line. cDNA was generated using the Reverse 
Transcription Kit (BL696A, Biosharp, Beijing, China) 
according to the manufacturer’s protocol. Furthermore, 
TOROGreen qPCR Master Mix (AQ131-02, Transgene, 
Beijing, China) was applied for qRT-PCR. The relative 
RNA expression levels were quantified using the 2−ΔΔCt 
method, with GAPDH serving as the internal control. 
The sequence of primers can be found in Table 1. 
 
Western blot 
 
RIPA buffer (AR0103-100, BOSTER, Wuhan, China), 
PMSF (P0110, Solarbo, Beijing, China) and protease 
inhibitor (P6730, Solarbo, Beijing, China) (100:1:1) 
were used to obtain total protein and we used the BCA 
method to determine the total protein concentration. 

Proteins were separated using a 10% SDS/PAGE gel 
and subsequently transferred onto a PVDF membrane 
(ISEQ00010, Millipore, USA). The membrane was  
then blocked with 5% skimmed milk for membrane 
closure, followed by incubation with the primary 
antibody overnight at 4°C. After binding of the primary 
antibody, the membrane was incubated for 1 hour at 
room temperature with a secondary antibody tagged 
with horseradish peroxidase. The final exposure was 
detected with the ECL luminescent reagent. The 
antibodies used in this study were as follows: IFI30 
(11597-1-AP, Proteintech, Wuhan, China), β-Actine 
(66009-1-Ig, Proteintech, Wuhan, China). 
 
CCK8 and colony formation analysis 
 
KIRC cells from the logarithmic growth phase  
were taken, and both control and treated cells were 
digested and resuspended into single cell suspensions 
and counted. Equal amounts of cell suspension (1000 
cells/well) were added to 96-well plates with 3 subwells 
per group and placed in a cell incubator (37°C, 5% CO2). 
The plates were incubated for 24, 48, 72, and 96 hours  
in a cell-in-incubator. Add 200 ul of assay solution  
(180 ul complete medium + 20 ul CCK8 reagent) to each 
well and put the plates back into the incubator for 
another 2 h or so. After incubation, absorption at 450  
nm was measured at different times using an enzyme 
tagger. Colony formation was detected after incubation 
of 400 cells/well for 10–14 days in 6-well plates.  
The cells were fixed with methanol and stained with  
a solution of crystal violet. Clones containing at least  
50 cells were counted using ImageJ (1.5a, National 
Institutes of Health, Bethesda, MD, USA). 
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EdU assay 
 
We used EdU Imaging Kits (APExBIO, Houston, TX, 
USA) based on the manufacturer’s instruction to 
perform this assay. The cells were plated in a 20 mm 
glass bottom cell culture dish and exposed to 10 
μmol/L EdU for 4 hours. Following this, the cells were 
fixed at room temperature for 15 minutes with 4% 
paraformaldehyde in PBS followed by 0.5% Triton-
100 in PBS. The click reaction solution, as configured, 
was subsequently introduced and incubated for 30 
minutes at room temperature in dark conditions. 
Following three washes with PBS (3 minutes each), 
the cells were then incubated with a diluted solution  
of Hoechst 33342 (1:2000) at room temperature in  
the dark for 30 minutes. The images were obtained 
under laser confocal microscopy (Olympus, Tokyo, 
Japan), and the number of positive cells (red stained) 
was counted using ImageJ. 
 
Wound healing assay 
 
Cells were seeded in 6-well plates (4 × 105 cells/well). 
When the cell confluence reached 100%, the fused cells 
were scratched with a 200 μl pipette tip, the detached 
cells were washed off with PBS, and finally, pictures  
of the scratches were taken at 0 h and 24 h with an 
inverted microscope (Canon EOS 800D, Tokyo, Japan). 
ImageJ was used to count the migration distances in the 
selected fields. 
 
Transwell assay 
 
After centrifugation of the cell suspension obtained  
by digestion, the upper medium was removed and the 
cells were resuspended in a serum-free medium; 200 µl 
(approximately 1 × 105 cells) was inoculated into the 
upper chamber, and then 20% FBS containing culture 
(500 µl) was added to the lower chamber. After 24 
hours of culture, ImageJ was used to count the number 
of migrating cells in the selected domain. 
 
Statistical analysis 
 
The statistical analysis of bioinformatics was based  
on Perl language (Strawberry Perl 5.30.0.1) and R 
program (Version 4.2.1), and the experimental data 
were analyzed using ImageJ and GraphPad Prism 8.0. 
We used a t-test to compare the differences between  
the different groups. Error bars are mean ± SD, and  
P < 0.05 was considered statistically significant. 
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SUPPLEMENTARY MATERIALS 
 
Supplementary Figures 
 

 
 
Supplementary Figure 1. Correlation analysis between risk score and IC50 of drugs. (A) AKT inhibitor, (B) Axitinib, (C) Gefitinib, 
(D) Pazopanib, (E) Crizotinib, and (F) Cisplatin. 
 
 

 
 
Supplementary Figure 2. Original images for Western blots and gels. The expression of IFI30 in cell lines: (A) Bright-field image, (B) 
Gels image, (C) Merge image, and (D) Cropped Western blots; Verification of the interference efficiency of IFI30 in A498 and 786-0: (E) 
Bright-field image, (F) Gels image, (G) Merge image, and (H) Cropped Western blots. 
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Supplementary Tables 
 
Please browse Full Text version to see the data of Supplementary Table 1. 
 
Supplementary Table 1. Macrophage marker genes. 
 
Supplementary Table 2. The results of univariate regression analysis of the training set. 

Gene HR HR.95L HR.95H p-value 
HLA-DRA 0.847195 0.718101 0.999496 0.049305 
GPR34 0.825701 0.701832 0.971433 0.020919 
FCGRT 0.538468 0.38667 0.749859 0.000249 
LIPA 0.707475 0.587212 0.852368 0.000272 
FCGR1A 1.25263 1.005402 1.560652 0.044644 
LGMN 0.742707 0.584154 0.944296 0.015192 
CTSH 0.529963 0.389447 0.721177 5.36E-05 
ASAH1 0.600399 0.480702 0.7499 6.89E-06 
KCNMA1 0.759948 0.627371 0.92054 0.00501 
CPM 0.689651 0.56329 0.844359 0.00032 
MFSD1 0.695739 0.535894 0.903261 0.006452 
LY96 1.322334 1.058618 1.651745 0.01382 
SAT1 1.495539 1.074718 2.081138 0.016969 
RNASET2 1.284705 1.094293 1.508249 0.002207 
RNF130 0.575174 0.36182 0.914335 0.019354 
IFI30 1.667812 1.305568 2.130565 4.24E-05 
CREG1 0.760087 0.604187 0.956214 0.019168 
HINT1 0.639886 0.46408 0.882291 0.006448 
OTOA 0.223497 0.088439 0.564811 0.001537 
LYZ 0.858697 0.773004 0.95389 0.004511 
CPVL 0.812144 0.696391 0.947138 0.007996 
FUCA1 0.462551 0.344102 0.621774 3.25E-07 
C2 1.201378 1.032771 1.397511 0.017412 
DSTN 0.505553 0.364789 0.700634 4.19E-05 
CTSL 0.703532 0.521607 0.948909 0.021251 
COX7C 0.4382 0.276483 0.694507 0.000446 
SKP1 0.500874 0.344387 0.728468 0.000297 
CNN3 0.6132 0.469538 0.800818 0.00033 
OCIAD2 0.749662 0.593892 0.946288 0.015329 
CD24 0.726255 0.615589 0.856816 0.000149 
TIMP1 1.61787 1.32968 1.968521 1.53E-06 
ACP5 0.771911 0.66292 0.898822 0.000858 
PRDX2 0.627713 0.494551 0.796729 0.000129 
PLAUR 1.633876 1.334906 1.999803 1.92E-06 
TAGLN2 1.68683 1.139787 2.496428 0.008945 
CXCL14 0.87094 0.804909 0.942388 0.000592 
NPM1 0.658108 0.499739 0.866665 0.002894 
MZT2A 1.314675 1.035193 1.669611 0.024857 
HMOX1 0.837856 0.722273 0.971934 0.0195 
GADD45B 1.245944 1.01339 1.531865 0.036965 
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ENO1 0.774124 0.63184 0.948448 0.013483 
CRYAB 0.839357 0.723025 0.974406 0.021415 
IER3 1.263574 1.065898 1.497909 0.007035 
BNIP3 0.740863 0.625356 0.877705 0.000524 
GPX3 0.772442 0.653862 0.912526 0.002394 
PDZK1IP1 0.892691 0.814844 0.977975 0.014754 
CYB5A 0.671991 0.559981 0.806407 1.93E-05 
HMGN3 1.414896 1.029752 1.944092 0.032289 
IGKC 1.12356 1.027283 1.228859 0.010807 
FXYD2 0.678646 0.551242 0.835495 0.000258 
CYSTM1 0.544908 0.380046 0.781286 0.000958 
BHMT 0.836942 0.773843 0.905187 8.56E-06 
AKR1C1 0.696075 0.58204 0.832452 7.22E-05 
NDRG1 0.815593 0.685516 0.970353 0.021479 
ANXA4 0.793181 0.65747 0.956903 0.015517 
CD83 0.759306 0.619041 0.931352 0.00823 
NBEAL1 0.632333 0.488186 0.819042 0.000516 
CMBL 0.685989 0.590739 0.796597 7.75E-07 
APP 0.739861 0.589151 0.929124 0.009528 
SNHG25 1.276438 1.060417 1.536465 0.009878 
CXCL3 1.443355 1.164116 1.789575 0.000822 
CIB1 1.892944 1.345897 2.662343 0.000245 
CXCL8 1.161953 1.031647 1.308717 0.013385 
PRSS23 0.802165 0.656203 0.980594 0.031461 
SPON2 1.243939 1.062988 1.455692 0.006497 
C11orf54 0.586138 0.481123 0.714076 1.14E-07 
TSC22D1 0.654867 0.517172 0.829224 0.00044 
COL6A2 1.436221 1.191957 1.730541 0.000141 
GSTA2 0.878579 0.816193 0.945733 0.000572 
C1R 1.323955 1.13433 1.545279 0.000374 
GSTA1 0.896215 0.831721 0.96571 0.004032 
LGALS2 0.815218 0.745842 0.891047 6.73E-06 
CCND1 0.814273 0.702372 0.944001 0.00645 
CXCL2 1.254956 1.089415 1.445651 0.001652 
IGLC2 1.148435 1.044945 1.262175 0.004073 
NAT8 0.837271 0.782564 0.895803 2.58E-07 
SMIM24 0.714575 0.651167 0.784157 1.35E-12 
MIOX 0.839187 0.772443 0.911698 3.38E-05 
ATP1B1 0.740798 0.608552 0.901784 0.002787 
CD7 1.341999 1.117654 1.611377 0.001623 
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Supplementary Table 3. Immune cell infiltration with different algorithms. 

Immune cor p-value 

B cell_TIMER ‒0.1827 2.20E-05 
T cell CD4+_TIMER 0.21787 3.79E-07 
Macrophage_TIMER ‒0.10076 0.019979 
B cell naive_CIBERSORT ‒0.19438 6.18E-06 
B cell memory_CIBERSORT 0.170783 7.41E-05 
B cell plasma_CIBERSORT ‒0.11441 0.008197 
T cell CD8+_CIBERSORT 0.152013 0.000429 
T cell CD4+ memory resting_CIBERSORT ‒0.08979 0.038238 
T cell CD4+ memory activated_CIBERSORT 0.172982 5.96E-05 
T cell follicular helper_CIBERSORT 0.306198 4.94E-13 
T cell regulatory (Tregs)_CIBERSORT 0.38537 2.58E-20 
T cell gamma delta_CIBERSORT ‒0.08658 0.045723 
Monocyte_CIBERSORT ‒0.13665 0.001566 
Macrophage M0_CIBERSORT 0.174084 5.33E-05 
Macrophage M2_CIBERSORT ‒0.15967 0.000214 
Mast cell activated_CIBERSORT ‒0.16656 0.000112 
Eosinophil_CIBERSORT ‒0.10282 0.01757 
B cell naive_CIBERSORT-ABS ‒0.15063 0.000484 
B cell memory_CIBERSORT-ABS 0.16798 9.75E-05 
T cell CD8+_CIBERSORT-ABS 0.14724 0.00065 
T cell CD4+ memory activated_CIBERSORT-ABS 0.172908 6.00E-05 
T cell follicular helper_CIBERSORT-ABS 0.285577 1.84E-11 
T cell regulatory (Tregs)_CIBERSORT-ABS 0.378113 1.47E-19 
NK cell activated_CIBERSORT-ABS 0.114887 0.007932 
Macrophage M0_CIBERSORT-ABS 0.171999 6.57E-05 
Mast cell activated_CIBERSORT-ABS ‒0.15573 0.000308 
B cell_QUANTISEQ 0.134365 0.001878 
Macrophage M1_QUANTISEQ 0.317981 5.48E-14 
Monocyte_QUANTISEQ 0.237825 2.73E-08 
Neutrophil_QUANTISEQ ‒0.53793 2.61E-41 
NK cell_QUANTISEQ ‒0.09436 0.029387 
T cell CD4+ (non-regulatory) QUANTISEQ ‒0.34252 4.07E-16 
T cell CD8+_QUANTISEQ 0.216537 4.48E-07 
T cell regulatory (Tregs)_QUANTISEQ 0.258603 1.36E-09 
uncharacterized cell_QUANTISEQ 0.111849 0.009758 
T cell CD8+_MCPCOUNTER 0.107228 0.013253 
cytotoxicity score_MCPCOUNTER 0.154345 0.000348 
Myeloid dendritic cell_MCPCOUNTER ‒0.17014 7.90E-05 
Neutrophil_MCPCOUNTER ‒0.40675 1.18E-22 
Endothelial cell_MCPCOUNTER ‒0.22413 1.70E-07 
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Cancer associated fibroblast_MCPCOUNTER 0.364531 3.40E-18 
Myeloid dendritic cell activated_XCELL 0.237836 2.73E-08 
B cell_XCELL 0.22524 1.48E-07 
T cell CD4+ naive_XCELL 0.267986 3.22E-10 
T cell CD4+ central memory_XCELL 0.137421 0.001471 
T cell CD4+ effector memory_XCELL 0.115505 0.007601 
T cell CD8+ naive_XCELL 0.106782 0.013644 
T cell CD8+_XCELL 0.172948 5.98E-05 
T cell CD8+ central memory_XCELL 0.104476 0.015824 
T cell CD8+ effector memory_XCELL 0.201953 2.60E-06 
Class-switched memory B cell_XCELL 0.18312 2.10E-05 
Common lymphoid progenitor_XCELL ‒0.16368 0.000147 
Myeloid dendritic cell_XCELL 0.096855 0.025346 
Endothelial cell_XCELL ‒0.12138 0.005013 
Cancer associated fibroblast_XCELL 0.133251 0.00205 
Granulocyte-monocyte progenitor_XCELL ‒0.10022 0.020666 
Hematopoietic stem cell_XCELL ‒0.24757 6.93E-09 
Macrophage M1_XCELL 0.161886 0.000174 
Macrophage M2_XCELL ‒0.15247 0.000412 
Mast cell_XCELL ‒0.14739 0.000641 
Monocyte_XCELL 0.159148 0.000225 
B cell naive_XCELL 0.124741 0.003922 
Neutrophil_XCELL ‒0.08897 0.040048 
T cell NK_XCELL 0.54204 4.92E-42 
Plasmacytoid dendritic cell_XCELL 0.129805 0.002678 
B cell plasma_XCELL 0.086633 0.045594 
T cell CD4+ Th1_XCELL 0.345715 2.08E-16 
T cell CD4+ Th2_XCELL 0.11836 0.006224 
immune score_XCELL 0.205747 1.67E-06 
microenvironment score_XCELL 0.245138 9.82E-09 
B cell_EPIC ‒0.14113 0.001087 
Cancer associated fibroblast_EPIC 0.359103 1.15E-17 
T cell CD4+_EPIC ‒0.33787 1.07E-15 
T cell CD8+_EPIC ‒0.22823 9.97E-08 
Endothelial cell_EPIC ‒0.23637 3.34E-08 
Macrophage_EPIC 0.183773 1.96E-05 
NK cell_EPIC 0.256331 1.92E-09 
uncharacterized cell_EPIC 0.138785 0.001318 
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