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INTRODUCTION 
 

Liver cancer is the third leading cause of death due to 

cancer, with approximately 820,000 deaths annually 

[1]. Hepatocellular carcinoma (HCC) is the most 

common primary liver cancer. There are significant 

geographic differences in the incidence and mortality of 

hepatocellular carcinoma (HCC) worldwide, especially 

between Eastern (China, Japan, and Korea) and Western 

(e.g., the United States and European countries) 

countries. These differences are mainly attributed to 

differences in etiology, risk factors, genetic background, 

and prevention and treatment strategies. In Eastern 

countries, the main risk factors for HCC are hepatitis B 

and C virus (HBV and HCV) infection, and aflatoxin 

exposure. In contrast, in Western countries, the rising 
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ABSTRACT 
 

Background: The treatment and prognosis of patients with advanced hepatocellular carcinoma (HCC) have been 
a major medical challenge. Unraveling the landscape of tumor immune infiltrating cells (TIICs) in the immune 
microenvironment of HCC is of great significance to probe the molecular mechanisms. 
Methods: Based on single-cell data of HCC, the cell landscape was revealed from the perspective of TIICs. 
Special cell subpopulations were determined by the expression levels of marker genes. Differential expression 
analysis was conducted. The activity of each subpopulation was determined based on the highly expressed 
genes. CTLA4+ T-cell subpopulations affecting the prognosis of HCC were determined based on survival analysis. 
A single-cell regulatory network inference and clustering analysis was also performed to determine the 
transcription factor regulatory networks in the CTLA4+ T cell subpopulations. 
Results: 10 cell types were identified and NK cells and T cells showed high abundance in tumor tissues. Two NK 
cells subpopulations were present, FGFBP2+ NK cells, B3GNT7+ NK cells. Four T cells subpopulations were 
present, LAG3+ T cells, CTLA4+ T cells, RCAN3+ T cells, and HPGDS+ Th2 cells. FGFBP2+ NK cells, and CTLA4+ T 
cells were the exhaustive subpopulation. High CTLA4+ T cells contributed to poor prognostic outcomes and 
promoted tumor progression. Finally, a network of transcription factors regulated by NR3C1, STAT1, and STAT3, 
which were activated, was present in CTLA4+ T cells. 
Conclusion: CTLA4+ T cell subsets in HCC exhibited functional exhaustion characteristics that probably inhibited 
T cell function through a transcription factor network dominated by NR3C1, STAT1, and STAT3. 
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trend in HCC is mainly associated with an increase  

in non-alcoholic fatty liver disease (NAFLD) and 

metabolic syndrome, although HBV and HCV infections 

remain important risk factors. [2–5]. As an extremely 

serious public health problem, the development of 

therapeutic options for HCC has been the subject of 

attention. At this stage, HCC is mainly treated with 

surgery, radiotherapy, and chemotherapy, but these 

treatments are often effective only at the initial  

stage of HCC treatment, and eventually most cases 

become resistant to these traditional treatments and 

eventually develop extensive metastasis [6]. The early 

clinical symptoms of HCC are insidious, and the site 

of disease is often close to other vital organs of the 

body, which exacerbates the difficulty of traditional 

diagnosis and treatment [7]. Recently, the development 

of immunotherapy has raised expectations for the 

treatment of advanced HCC around the world [8]. The 

immunotherapeutic approach of the PD-L1 inhibitor 

Atezolizumab combined with the monoclonal antibody 

bevacizumab, which suppressed cancer migration,  

was effective in the treatment of advanced HCC [9]. 

However, the lack of effective therapeutic targets  

and limited response rate to the disease were always 

the general problems of immunotherapy, especially 

immune checkpoint inhibition therapy [10, 11]. Over 

the years, basic research for HCC has not led to 

breakthroughs in treatment and prognosis, and there  

is a requirement to approach the search for specific 

therapeutic agents and methods from a new perspective. 

This relies on a comprehensive understanding of the 

molecular mechanisms underlying the development of 

the disease, and therefore, unraveling the molecular 

mechanisms underlying the biological behavior of 

HCC is crucial for the prevention and treatment of 

HCC. 

 
The rapid development of immunotherapy has deepened 

insights into cancer, and studies have concluded that 

the tumor microenvironment (TME) is an important 

factor influencing immunotherapy [12]. The function of 

tumor-infiltrating immune cells in the TME is critical 

for regulating immunotherapy. In immunotherapy, T 

cells and NK cells are two key immune cells that play 

a crucial role in recognizing and destroying cancer 

cells [13]. T cells are part of the adaptive immune 

system and are capable of recognizing and responding 

specifically to specific antigens. In par therapy, T cells 

initiate an immune response against tumor cells by 

recognizing and binding to specific antigens on the 

surface of these cells through their T cell receptor 

(TCR). Once activated, CD8+ T cells (also known as 

cytotoxic T cells) can directly kill tumor cells. In 

addition, T cells are able to form memory cells that 

provide long-term immune protection against tumor 

recurrence [14]. Natural killer cells (NK cells) are an 

important type of immune cells. NK cells are the 

source of pro-inflammatory cytokines and chemokines 

in TME, which activate T cells or other immune cells 

(e.g., macrophages) to achieve an adaptive immune 

response [15]. However, when NK cells and T cells 

are functionally depleted, the organism is unable to 

achieve an anti-tumor response, and this exacerbates 

cancer progression [16, 17]. T cells and NK cells can 

interact and synergize in the immune response. T cells 

enhance NK cell activity by secreting the cytokine, 

IFN-γ, and T cells can enhance NK cell activity. In 

immunotherapies such as immune checkpoint inhibitors, 

CAR-T cell therapy, and NK cell-based therapies, the 

roles of T cells and NK cells are used to enhance the 

immune response to cancer. T cells and NK cells play 

complementary and mutually reinforcing roles in 

immunotherapy, and their interactions are critical for 

designing more effective cancer treatment strategies 

[18]. Improving NK cells and T cells exhaustion in 

cancer patients is essential to enhance survival. 

 

In this study, we obtained single-cell RNA sequencing 

data of hepatocellular carcinoma (HCC) and healthy 

liver tissues from the GEO database. Data preprocessing 

and screening were performed by Seurat package to 

retain eligible cells, and PCA and UMAP were used to 

perform downscaling and clustering analyses to identify 

different cell subpopulations. Differential expression 

analysis was used to explore gene expression hetero-

geneity among cell subpopulations. Biological pathways 

involved in cellular subpopulations were identified by 

single sample enrichment analysis (ssGEEA). Further, 

SCENIC analysis was used to reveal the transcription 

factor networks within CTLA4+ T cell subpopulations. 

In addition, transcriptome sequencing analysis and 

survival analysis were performed to assess the clinical 

relevance of cell subpopulations through the TCGA 

database. 

 

MATERIALS AND METHODS 
 

Analysis of HCC single-cell data 

 

The single-cell sequencing (scRNA-seq) data of  

tissue from HCC and healthy liver samples  

were collected from the Gene Expression Omnibus 

(GEO, https://www.ncbi.nlm.nih.gov/geo/) database. 

The download registration number was GSE162616, 

which contained three HCC samples and three  

normal samples. For analyzing the scRNA-seq data, 

the Seurat package [19] was loaded from the R 

programming software. The Read10X function was 

first called to read the scRNA-seq data and retain  

the valid sequencing data. Cells satisfying gene 

number between 200 and 3000 and mitochondrial gene 

proportion <10% were retained. The NormalizeData 
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function was loaded to conduct the log transformation. 

To determine the highly variable genes (HVGs)  

among them, the FindVariableFeatures function was 

loaded to determine the top 2,000 HVGs based on  

the relationship between the mean and variance of 

expression, and principal component analysis (PCA) 

was performed using these HVGs. Before principal 

component analysis, we called the ScaleData function 

to normalize the expression values of all genes. After 

PCA downscaling, the batch effect between the six 

samples was handled by the harmony package [20] 

The analysis parameters were set to max.iter.harmony 

= 50, lambda = 0.5, assay.use = “SCT”. Uniform 

Manifold Approximation and Projection (UMAP) 

dimensionality reduction analysis was conducted based 

on the first 30 principal components in the PCA, and 

finally the cells were clustered into clusters by the 

FindNeighbors and FindClusters functions. 

 

Cellular annotation 

 

The marker genes of the cells were obtained from the 

CellMarker database (http://xteam.xbio.top/CellMarker/), 

and the cell types previously clustered into clusters were 

annotated and analyzed based on the expression levels 

of the marker genes. For the identified NK cells and T 

cells, the parameter resolution = 0.1 was set for further 

cellular annotation. 

 

Differential expression analysis between cell 

subpopulations 

 

To explore the heterogeneity of gene expression 

patterns between identified cell subpopulations, the 

FindAllMarkers function from the Seurat package  

was called to calculate the highly expressed genes  

for each cell subpopulation. The parameters were set 

to: only.pos = T, min.pct = 0.25, logfc.threshold = 

0.25. 

 

HCC transcriptome sequencing analysis 

 

HTSeq-FPKM data of TCGA-Liver Cancer (LIHC) 

with expression value of log2 (fpkm+1) were 

downloaded from University of California, Santa  

Cruz (UCSC) Xena website (https://xena.ucsc.edu/). 

We also obtained the overall survival and survival 

status of the samples in TCGA-LIHC. The data from 

TCGA-LIHC were imported into the Sangerbox 

database (http://sangerbox.com/). The Sangerbox is an 

online biometrics analysis database site that provides  

a wealth of analytical tools for online statistics on 

patients' clinical information [21]. Ensembl IDs  
were converted to gene symbols according to the 

gencode.v22.annotation.gene.probeMap file obtained 

from UCSC Xena. 

Enrichment analysis and survival analysis and gene 

set enrichment analysis 

 

For the identified subpopulations of NK cells and  

T cells and the highly expressed genes therein,  

the GSVA package [22] was invoked to conduct a 

single-sample gene set enrichment analysis (ssGSEA) 

to determine the enrichment scores for each cell 

subpopulation. The median value of the enrichment 

scores of the cell subpopulations was used to group the 

samples in TCGA-LIHC into high-enrichment score 

groups and low-enrichment score groups. Differences 

in survival between the two groups were assessed by 

Kaplan-Meier (K-M) curves, and the statistic of choice 

was the log-rank test. Fifty Hallmark gene sets were 

extracted from the Molecular Signatures Database 

(MSigDB, https://www.gsea-msigdb.org/gsea/msigdb). 

We calculated the ssGSEA enrichment scores for the 

hallmark gene sets of the samples in TCGA-LIHC. 

 

Single-cell regulatory network inference and 

clustering analysis 

 

Single-cell regulatory network inference and clustering 

(SCENIC) [23] is an algorithm for gene regulatory 

network (GRNs) developed specifically for single- 

cell data. Its innovation is the introduction of gene  

co-expression networks inferred from transcription 

factor motif sequence validation statistical methods to 

identify highly reliable transcription factor-dominated 

GRNs. We used the GENIE3 method to calculate the 

potential target genes of each transcription factor (TF) 

and top5perTarget to construct the transcription factor 

regulatory network according to the official tutorial  

of SCENIC (http://scenic.aertslab.org/). Eventually we 

identified highly plausible TF-target gene relationship 

pairs and used the AUCell function to calculate the 

degree of regulon activity in each cell. Each regulon  

is a gene set of transcription factors and their directly 

regulated target genes, and the SCENIC package 

would score the activity of each regulon in individual 

cells. The scoring is based on the expression value  

of the gene, with higher scores representing greater 

activation of the gene set. 

 

Statistical analysis 

 

The Wilcoxon rank-sum test was used to compare  

the differences in continuous variables between two 

groups, and the Kruskal-Wallis test was used to 

compare the differences between continuous variables 

in more than three groups. For survival analysis,  

we divided TCGA-LIHC patients into high and low 
groups based on the median of continuous variables, 

and then used the log-rank test to compare the 

differences in survival time between the two groups. 
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The Pearson correlation was used to measure the 

correlation between CTLA4+ T-cell subsets and 

hallmark enrichment scores. All calculations were 

completed by the R language (version 4.3.1). For  

all statistical analyses, p < 0.05 was considered 

statistically significant. 

 

Data availability statement 

 

The datasets generated during and analyzed during the 

current study are available from the corresponding 

author on reasonable request. 

 

RESULTS 
 

Cell landscape of TIICs in HCC 

 

Single-cell data in GSE162616 were filtered, 

normalized, batch utility removed, downscaled, and 

clustered by the Seurat package, and 80,449 high-

quality cells were retained (Supplementary Figure 1A–

1D). Cell clusters were annotated based on expression 

levels of marker genes (Figure 1A, 1B), 10 cell types 

were identified, B cells, Plasma B cells, CTLA4+ T 

cells, IL1RL1+ T cells, LAG3+ T cells, B3GNT7+ NK 

cells, Myeloid cells 2, Hepatocytes, FGFBP2+ NK 

cells, Myeloid cells 1 (Figure 1C). According to the 

statistical results, the proportions of FGFBP2+ NK 

cells, IL1RL1+ T cells, CTLA4+ T cells, Myeloid 

cells 1, and Plasma B cells were higher than that of 

normal in tumor tissues. The proportions of B3GNT7+ 

NK cells, LAG3+ T cells were higher in Normal 

tissues (Figure 1D, 1E). 

 

Subpopulations of cells characterized by NK cells 

and T cells depletion are present in HCC tissues 

 

Studies have shown that the function of NK cells  

and T cells plays a key role in the treatment of  

HCC [24]. Studies also showed that the function of  

T cells in HCC was a critical factor in regulating 

immunotherapy [25]. To reveal the mode of action  

of NK cells and T cells in HCC, we extracted all NK 

cells and T cells in the cell landscape for further 

cellular annotation. We noted the presence of two cell 

subtypes in NK cells, FGFBP2+ NK cells, B3GNT7+ 

NK cells. Four cell subtypes were present in T  

cells, LAG3+ T cells, CTLA4+ T cells, RCAN3+ T 

cells, HPGDS+ Th2 cells (Figure 2A). The expression 

levels of the marker gene in the six cell subtypes  

were demonstrated in Figure 2B, 2C. CTLA4 was  

the key stimulatory receptor during T cell activation, 

and CTLA4 modulated multiple autoimmune disease 

responses [26]. FGFBP2 was the signature gene  

for cytotoxic killing function in NK cells [27]. As 

demonstrated by our results, FGFBP2+ NK cells 

expressed the highest level of killing-related  

genes, suggesting that it might play a tumor  

cell killing role in the immune microenvironment. 

Meanwhile, HAVCR2 and TGFB1 were overactivated 

in FGFBP2+ NK cells. The expression level of 

HAVCR2 was higher in tumor tissues. NK cells with 

high expression of HAVCR2 were in a terminal state 

with diminished signaling function and metabolic 

activity [28]. Our results demonstrated that FGFBP2+ 

NK cells in tumor tissues exhibited a functionally 

inhibited state due to overexpression of HAVCR2 

(Supplementary Figure 2A). B3GNT7+ NK cells 

highly expressed TGFB1 and TCF7 (Supplementary 

Figure 2B). TCF7 was a biomarker for naïve or 

undifferentiated cells [29]. The results suggested that 

B3GNT7+ NK cells might be naïve cell subtypes. 

LAG3+ T cells highly expressed LAG3 and CTLA4+ 

T cells highly expressed CTLA4 and TIGIT, which 

were also higher in tumor tissues than in normal 

tissues (Supplementary Figure 2C, 2D). CTLA4 and 

TIGIT are marker genes for depleted T cells [30]. 

CTLA4+ T cells may be a subpopulation of T cells 

characterized by depletion in HCC, with potential 

correlation to the suppressed state of the immune 

microenvironment. In addition, we found a higher 

proportion of FGFBP2+ NK cells, CTLA4+ T cells, 

and a lower proportion of LAG3+ T cells in tumor 

tissues compared to normal tissues (Figure 2D). 

Overall, we identified exhaustive immune cell sub-

populations, FGFBP2+ NK cells, CTLA4+ T cells 

based on the cellular landscape of TIICs in HCC. 

 
High CTLA4+ T cells portend poor prognosis in 

HCC 

 
In the TCGA-LIHC data, we examined the expression 

levels of CTLA4, TIGIT, LAG3, and HAVCR2. We 

found that CTLA4 was highly expressed in tumor 

tissues and LAG3 was lowly expressed in tumor 

tissues (Figure 3A). High levels of CTLA4 might be a 

critical factor contributing to the immunosuppressive 

microenvironment in HCC. LAG3 was a promising 

immune checkpoint, and overexpression of LAG3 

promoted tumor cell development by forming an 

immunosuppressive microenvironment to suppress the 

activity of immune cells [31]. When T cells were 

activated by cytokine stimulation, LAG3 was secreted 

in large quantities on their surface and this suppressed 

T cell function [32]. A greater percentage of LAG3+ T 

cells in normal tissues was found in the previous 

results. Low expression of LAG3 in tumor tissues 

might promote the tumor killing effect of T cells, but 

the number of LAG3+ T cells recruited in tumors was 

not sufficient to support their anti-tumor effect. Further, 

we found that patients with high expression of CTLA4 

exhibited a suboptimal prognostic outcome (Figure 3B).
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Overall, high abundance of CTLA4+ T cells and high 

levels of CTLA4 in tumor tissues contributed to the 

poor prognosis of HCC. 

 

CTLA4+ T cells promoted HCC progression 

 

In the TCGA-LIHC data, we found a higher 

enrichment score for CTLA4+ T cells (Figure 4A). 

The more CTLA4+ T cells activity, the worse the 

prognosis of HCC patients (Figure 4B). Notably, 

FGFBP2+ T cells, B3GNT7+ T cells, LAG3+ T cells, 

HPGDS+ T cells, and RCAN3+ T cells activities were 

not significantly associated with the prognosis of HCC 

patients (Supplementary Figure 3). CTLA4+ T cells 

were potential indicators for assessing the prognosis  

of HCC. To further investigate the correlation between

 

 
 

Figure 1. Cell landscape of TIICs in HCC. (A) Distribution of 10 cell types. (B) Bubble plots demonstrate the expression levels of marker 

genes in 10 cell types. (C) Violin plot of marker genes expression levels in 10 cell types. (D, E) Proportion statistics of 10 cell types in tumor 
tissues and normal tissues. 
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CTLA4+ T cells and cancer-related pathways, we 

found that CTLA4+ T cells showed significant 

positive correlations with inflammatory response, 

angiogenesis, reactive oxygen species pathway, 

epithelial-to-mesenchymal transition, and P53 pathway 

(Figure 4C, 4D). We also found that CTLA4+ T cells 

activity showed an overall positive correlation with 

clinicopathologic stage. As grade and stage increased, 

CTLA4+ T cells activity also increased in HCC 

patients (Figure 4E, 4F). In connection with the results 

of the previous analysis, our data suggested that 

CTLA4+ T cells activity might be a pivotal regulator 

of HCC progression. 

Transcription factor regulatory network in CTLA4+ 

T cells 

 

We identified the transcription factor regulatory 

network in CTLA4+ T cells. Ten key transcription 

factors were identified, YBX1, NR3C1, REL,  

FOSL2, IRF8, STAT1, CEBPD, NFKB1, STAT3, 

BHLHE40. We found that the activities of target 

genes regulated by NR3C1, STAT1, and STAT3 were 

higher in tumor tissues, implying that NR3C1, 

STAT1, and STAT3 played critical regulatory roles 

for the development of CTLA4+ T cell subsets (Figure 

5A). The transcription factor regulatory network of 

 

 
 

Figure 2. Cell landscape of exhausted FGFBP2+ NK cells, CTLA4+ T cells in HCC. (A) Distribution of 6 cell subtypes in NK cells and T 

cells. (B, C) Expression levels of marker genes in the 6 cell subtypes. (D) Proportion of the 6 cell subtypes in tumor tissues and normal tissues. 
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downstream target genes regulated by NR3C1, STAT1 

and STAT3 is shown in Figure 5B. Sell activity 

correlates with overall survival in HCC and may be an 

adjunctive biomarker for regulatory immunotherapy 

(PMID: 35702258). 

 

DISCUSSION 
 

TIICs are important regulators in cancer and are 

inextricably linked to the outcomes of early response, 

chemotherapy, and immunotherapy [33, 34]. In this 

study, we performed a comprehensive data analysis by 

single-cell sequencing data from HCC samples and 

normal samples in GSE162616. The landscape of TIICs 

in HCC was determined by marker genes of immune 

cells. 
 

According to our observations, T cells and NK  

cells were the most predominant in the tumor 

microenvironment of HCC. Three cell subtypes  

were present in T cells, CTLA4+ T cells, IL1RL1+ T 

cells, and LAG3+ T cells. CTLA4 was considered  

as one of the key immune checkpoint genes in  

effective immunotherapy [35]. CTLA4 was a regulator 

of the active state of T cells, and when T cells  

were highly expressing CTLA4, T Cells were in an 

immunocompromised state [26, 30]. IL1RL1 was also  

a major impediment to anti-tumor immune responses, 

and a study by Sun et al. noted that high expression  

of IL1RL1 signaling in Treg promoted fibrosis and 

immunosuppression in cancer-associated fibroblasts 

[36]. Deregulation of the IL1RL1 activation state in 

TIICs was an effective measure to remodel the anti-

tumor response. CD4+ T Cells enrichment was found  

to be associated with a lower risk of early recurrence 

[37]. Expression of LAG3, a co-inhibitory receptor  

for CD4+ T Cells, leads to impeded T cell activation 

and functional exhaustion [38]. In our study, CTLA4+  

T cells, IL1RL1+ T cells, and LAG3+ T cells identified 

in tumor tissues specifically overexpressed CTLA4, 

IL1RL1, and LAG3, respectively, which indicated that 

T Cells in HCC might be in the state of inhibition of 

activation or depletion of function, and were unable to 

properly achieve anti-tumor-related killing function. In 

addition, the results also showed that the abundance of 

these three T cells in tumor tissues was higher than that 

in normal liver tissues. These results further suggested 

that T Cells in HCC might be in an active inhibitory 

state or functionally depleted state. Liver-resident  

NK (LrNK) cells and conventional NK (cNK) cells 

were significantly reduced in HCC, and the T-cell 

inhibitory receptor Tim-3 was significantly upregulated 

in both NK cell subtypes, inhibiting their cytokine 

secretion and cytotoxic activity. This suggests that Tim-

3-mediated interference with PI3K/mTORC1 signaling 

is responsible for the dysfunction of both tumor-

infiltrating NK cell subtypes [39]. IL-15-activated  

NK cells, employing antibodies to promote antibody-

dependent cellular cytotoxicity (ADCC), are a novel 

method of killing tumor cells circumventing tumor

 

 
 

Figure 3. High CTLA4+ T cells portend a poor prognosis for HCC. (A) Expression levels of CTLA4, TIGIT, LAG3, and HAVCR2 in tumor 

tissues and normal tissues in TCGA-LIHC data. (B) K-M curves of HCC patients in CTLA4, TIGIT, LAG3, and HAVCR2 subgroups in TCGA-LIHC data. 
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immune escape [40]. In HCC the presence of several 

special T-cell subsets, CD137+ T cells and ICOS+  

T cells, presented antigenic activation [41]. The sub-

populations of T cells and NK cells identified in this 

study, likewise showed different functions, enriching 

the categorization and deepening new insights into the 

functions of T cells and NK cells in HCC. 

In our follow-up study, we found that high CTLA4+ T 

cells predicted a poor prognosis for HCC. IL1RL1 is 

normally associated with pro-inflammatory responses, 

whereas LAG3 (lymphocyte activation gene 3) is an 

immune checkpoint molecule associated with T-cell 

depletion and suppression of immune responses [31, 

36]. It was found that Amphiregulin couples IL1RL1+

 

 
 

Figure 4. CTLA4+ T cells promoted HCC progression. (A) The ssGSEA score of CTLA4+ T cells in normal and tumor tissues in TCGA-LIHC 
data. (B) K-M curves of HCC patients in the high/low CTLA4+ T cells scoring groups. (C, D) Pearson's correlation between CTLA4+ T cells 
scores and cancer-related pathways. (E, F) CTLA4+ T cells scores in normal tissue and grade subgroups, stage subgroups. 
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Tregs and cancer-associated fibroblasts to hinder  

anti-tumor immunity [36]. However, our study only 

demonstrated T cell subsets expressing different marker 

genes and did not determine the presence of Tregs.  

It is likely that it is IL1RL1+ Tregs that play a role in 

HCC. There is a great deal of disease heterogeneity 

among HCC patients, and different stages of the disease 

may be differently dependent on immunomodulatory 

responses. IL1RL1+ T cells and LAG3+ T cells may 

play different roles in early or locally progressive HCC, 

whereas in advanced stages or extensive metastases, 

their roles may become less significant due to changes

 

 
 

Figure 5. Transcription factor regulatory network in CTLA4+ T cells. (A) Important transcription factors in CTLA4+ T cells identified 
by SCENIC analysis. (B) Network of target genes regulated by NR3C1, STAT1 and STAT3. 
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in the tumor microenvironment. Overall, our study 

revealed the presence of functionally depleted CTLA4+ 

T cells, IL1RL1+ T cells, and LAG3+ T cells in  

HCC. Among them, CTLA4+ T cells were the cell 

subpopulation affecting the survival of HCC, and the 

functions of IL1RL1+ T cells and LAG3+ T cells in 

HCC need to be further investigated in depth. 

 

Two cell subtypes were found in NK cells, B3GNT7+ 

NK cells, and FGFBP2+ NK cells. Few studies have 

explored the function of B3GNT7 in liver cancer and 

immune cells. The hepatic metastatic and migratory 

abilities of colon cancer cells were significantly enhanced 

when B3GNT7 was overexpressed in the cells [42]. 

This showed that B3GNT7 might be a pro-cancer 

progression gene. FGFBP2 was the signature gene for 

cytotoxic killing function in NK cells [27]. In further 

analysis, HAVCR2 and TGFB1 were highly expressed 

in FGFBP2+ NK cells. It was found that HAVCR2  

was a signature of the end state of NK cells in NK cells, 

and high expression of HAVCR2 implied functional 

exhaustion of NK cells [28]. FGFBP2+ NK cells with 

high expression of HAVCR2 were also a subpopulation 

of functionally depleted cells in HCC. Impairment of 

these functional anticancer cells was a potential cause of 

HCC progression. 

 

Finally, we identified a transcription factor regulatory 

network centered on NR3C1, STAT1 and STAT3  

in CTLA4+ T cells. NR3C1 was the signature gene 

during differentiation of CD 8+ T cells and regulated 

the formation of memory precursor cell fates in  

CD 8+ T cells [43]. NR3C1 formed a transcription 

factor regulatory network with PDCD1. PDCD1 was 

also recognized as PD-1. There was a synergistic 

mechanism between the connection of CTLA-4 and 

PD-1 to inhibit T cells activation [44]. The TRIB3/ 

STAT1/CXCL10 axis modulated the infiltration 

abundance of CD 8+ T cells in tumor tissues, leading 

to the immune escape phenomenon [45]. In another 

study, STAT3 was also found to be critical for the 

developmental formation of terminal CD 8+ T cells 

[46]. Combined with our study, CTLA4+ T cells were 

a highly abundant and depleted cell subpopulation  

in HCC, which led to suboptimal survival in HCC 

patients. NR3C1, STAT1, and STAT3 showed higher 

expression levels in tumor tissues, and all of these 

transcription factors were shown to be associated  

with T cell depletion status and terminal T cells. In 

summary, CTLA4+ T cells were probably extremely 

important cell types in HCC, and inhibition of its 

infiltrative abundance and function could be considered 

as a novel therapeutic tool. 
 

However, this study still presented limitations. This 

study was based on data analysis from the GEO and 

TCGA databases and lacked data from cell or animal 

experiments. Follow-up experiments are needed to 

further validate the function of depleted T cell and NK 

cell subtypes in HCC progression. 

 

CONCLUSION 
 
Overall, we analyzed single-cell data in tumor tissues 

and normal tissues of HCC. Our findings demonstrated 

the presence of exhausted characteristic T cells cell 

subtypes and NK cells cell subtypes in HCC tissues, 

which could be essential cell subpopulations in cancer 

progression. CTLA4+ T cells play a key role in immune 

escape in HCC, as evidenced by the fact that they  

are highly expressed in tumor tissues and associated 

with poor prognosis. Further analyses revealed that 

CTLA4+ T cells achieve their functions through a 

specific network of transcription factors, suggesting 

that by targeting these key transcription factors, we may 

be able to restore the immune surveillance function of 

these cells and offer new therapeutic hope for HCC 

patients.  
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. scRNA-seq data processing. (A) Distribution of cells in six samples after removal of batch effects. (B) 

Distribution of the number of detected UMIs in the samples after filtering. (C) Number of detected genes in the samples after filtering. (D) 
Proportion of mitochondrial genes detected in the samples after filtering. 
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Supplementary Figure 2. Expression levels of marker genes in FGFBP2+ NK cells, B3GNT7+ NK cells, LAG3+ T cells, CTLA4+ T 
cells. (A) Expression levels of HAVCR2 and TGFB1 in FGFBP2+ NK cells. (B) Expression levels of TGFB1, TCF7 in B3GNT7+ NK cells. (C) 

Expression levels of LAG3, TGFB1 in LAG3+ T cells. (D) Expression levels of CTLA4, TIGIT in CTLA4+ T cells. 
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Supplementary Figure 3. K-M curves of HCC patients in the grouping of FGFBP2+ T cells, B3GNT7+ T cells, LAG3+ T cells, 
HPGDS+ T cells, and RCAN3+ T cells. 
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