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INTRODUCTION 
 

Atherosclerosis (AS), a cardiovascular disease (CVD), is 

characterized by the thickening and hardening of arterial 
walls due to the accumulation of cells, cholesterol, and 

extracellular matrix components [1–4]. Epidemiological 

studies have revealed that high blood pressure, tobacco 

use, diabetes, and high cholesterol levels are the  

risk factors for AS and related pathological processes  

[1, 5, 6]. Recent studies have demonstrated that the 

combination of aging and inflammation increases the 
risk of developing AS [7, 8]. Advances in the medical 

field have improved AS treatment outcomes but have not 

markedly alleviated the health risks and societal burden. 
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ABSTRACT 
 

Background: N6-methyladenosine (m6A) methylation is involved in the pathogenesis of atherosclerosis (AS). 
Limited studies have examined the role of the m6A methyltransferase METTL5 in AS pathogenesis. 
Methods: This study subjected the AS dataset to differential analysis and weighted gene co-expression network 
analysis to identify m6A methylation-associated differentially expressed genes (DEGs). Next, the m6A 
methylation-related DEGs were subjected to consensus clustering to categorize AS samples into distinct m6A 
subtypes. Single-cell RNA sequencing (scRNA-seq) analysis was performed to investigate the proportions of 
each cell type in AS and adjacent healthy tissues and the expression levels of key m6A regulators. The mRNA 
expression levels of METTL5 in AS and healthy tissues were determined using quantitative real-time 
polymerase chain reaction (qRT-PCR) analysis. 
Results: AS samples were classified into two subtypes based on a five-m6A regulator-based model. scRNA-seq 
analysis revealed that the proportions of T cells, monocytes, and macrophages in AS tissues were significantly 
higher than those in healthy tissues. Additionally, the levels of m6A methylation were significantly different 
between AS and healthy tissues. METTL5 expression was upregulated in macrophages, smooth muscle cells 
(SMCs), and endothelial cells (ECs). qRT-PCR analysis demonstrated that the METTL5 mRNA level in AS tissues 
was downregulated when compared with that in healthy tissues. 
Conclusions: METTL5 is a potential diagnostic marker for AS subtypes. Macrophages, SMCs, and ECs, which 
exhibit METTL5 upregulation, may modulate AS progression by regulating m6A methylation levels. 
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The development of AS is associated with cellular and 

molecular changes, such as epigenetic modifications [9, 

10]. Hence, novel molecular targets must be identified  

to enable early detection, risk evaluation, and targeted 

therapy development for AS. 

 

In mammalian cells, N6-methyladenosine (m6A) is the 

predominant RNA chemical modification [11, 12]. m6A 

methylation is catalyzed by m6A methyltransferase 

(writer), removed by m6A demethylase (eraser), and 

read by RNA-binding proteins (reader). Recent studies 

have indicated that m6A modification is associated  

with the pathogenesis of various diseases, including 

CVDs and cancer [11, 13, 14]. However, the biological 

function of METTL5 has not been previously reported 

in AS. 

 

This study performed differential analysis and weighted 

gene co-expression network analysis (WGCNA) to 

identify m6A-related differentially expressed genes 

(DEGs). Next, consensus clustering was used to 

classify AS samples into two m6A subtypes. The cell-

type identification by estimating relative subsets of 

RNA transcripts (CIBERSORT) algorithm was used  

to calculate the immune infiltration scores for each  

AS sample and evaluate the differential infiltration 

levels of immune cells between the m6A subtypes. 

The functions of DEGs between the two m6A subtypes 

were determined using functional enrichment analysis. 

The proportions of different cell types in AS and 

healthy tissues and the expression levels of key m6A 

regulators were determined using single-cell RNA 

sequencing (scRNA-seq). Finally, a nomogram based 

on m6A-related genes (M6ARGs) was developed to 

evaluate the risk of developing AS. 

 

METHODS 
 

Data acquisition and pre-processing 

 

The GSE100927 dataset, which comprises the data  

of 35 healthy individuals and 69 patients with AS,  

was downloaded from the Gene Expression Omnibus 

(GEO) database (http://www.ncbi.nlm.nih.gov/geo). 

The Perl script and the R package “limma” were used  

to process and normalize the expression profiles of  

the GSE100927 dataset. From previous studies, 40 

M6ARGs were retrieved. 

 

Processing of scRNA-seq data 

 

The scRNA-seq dataset GSE159677 was retrieved 

from the GEO database. The dataset comprises scRNA-

seq data of 3 carotid artery plaques and 3 adjacent 

healthy tissues. Batch correction in the samples was 

performed using the ‘Seurat’ software package. The 

data of cells with a gene count of 200–6000 and a 

mitochondrial gene proportion of <25% were included, 

whereas those of cells with low-quality data were 

excluded from the dataset. The data were standardized 

using the “Normalize Data” function. Genes with 

specific expression patterns were identified using the 

“FindVariableFeatures” function. The “RunPCA” 

function was used for clustering and uniform manifold 

approximation and projection, a manifold learning 

technique for dimension reduction [15, 16]. The 

“FindMarkers” function was used to analyze DEGs  

in various cell subtypes. Genes specific to each cell 

cluster were identified, and cells were annotated using 

the “SingleR” R package. The “VlnPlot” function from 

the “Seurat” package was used to generate violin plots 

depicting the differential m6A scores and m6A 

regulators between cell types. 

 

WGCNA 

 

The co-expression modules were identified using 

WGCNA with the R package ‘WGCNA’ [17]. To 

generate a topological overlap matrix (TOM), the  

ideal soft threshold power was determined to generate a 

weighted adjacency matrix. Next, the TOM dissimilarity 

measure (1-TOM) was used to generate modules using 

the hierarchical clustering tree algorithm, ensuring a 

minimum module size of 60. A random color was 

assigned to each module. The eigengene module was 

used to represent the overall gene expression profiles in 

each module. To determine the correlation between 

modules and disease status, the module significance 

values were calculated. “Gene significance” was used to 

establish the correlation between a gene and a clinical 

trait. 

 
Random forest (RF) and support vector machine 

(SVM) 

 

The RF algorithm, a powerful and widely applicable 

machine learning algorithm, is used for classification 

and regression analysis [18]. SVM is a type of 

generalized linear classifier that operates in a supervised 

learning manner for binary classification of data [19]. 

AS-associated m6A regulators were screened using  

the RF [18] and SVM-Recursive Feature Elimination 

(RFE) [19] algorithms. The RF classifier was generated 

using the R package “Random Forest,” while the SVM 

classifier was generated using the R package “e1071”. 

 
Immune landscape analysis 

 

The CIBERSORT algorithm was used to determine  

the relative abundances and infiltration scores of 22 

immune cell types in each sample [20]. The correlation 

between five m6A regulators and the infiltration levels 
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of 22 immune cell types was examined. The results 

were presented using the R packages “reshape2” and 

“ggpubr”. 

 

Consensus clustering 

 

Based on the expression levels of five m6A regulators, 

the AS samples were categorized into different m6A 

subtypes using the R package “Consensus Cluster 

Plus”. Based on the consensus matrix and cumulative 

distribution function (CDF), the maximum cluster 

number was determined to be 9, which was chosen as 

the optimal number of clusters. Principal component 

analysis (PCA) was performed to further examine  

the distribution among the clusters associated with 

m6A. Furthermore, the differential infiltration levels 

of immune cells between various m6A clusters were 

examined. 

 

Gene set variation analysis (GSVA) 

 

GSVA enables the evaluation of the relative enrichment 

levels of gene sets in samples. This approach assesses 

the activity of gene sets in different samples, revealing 

differential biological processes, cellular functions,  

or pathways. The differential biological activities 

between the two m6A subtypes were determined using 

the “GSVA” R package. The GSVA gene sets were 

obtained from the modules of the MSigDB database 

called “curated gene sets” and “ontology gene sets”. 

 
Gene ontology (GO), Kyoto encyclopedia of genes 

and genomes (KEGG), and disease ontology (DO) 

analyses 

 

The biological functions of the DEGs between the m6A 

subtypes were assessed using functional enrichment 

analysis. GO enrichment analysis determines the 

enrichment of genes in molecular functions, biological 

processes, and cellular components. Meanwhile, KEGG 

pathway enrichment analysis determines the pathways 

in which DEGs are enriched. Disease Ontology (DO) 

enrichment analysis was performed to examine the 

correlation between the disease and DEGs. 

 
Construction of a nomogram and the receiver 

operating characteristic (ROC) curves 

 

Based on the expression levels of five m6A  

regulators, a nomogram model based on M6ARGs  

was constructed to predict the risk of developing  

AS. The prediction accuracy of the nomogram was 

validated using decision curve analysis (DCA) and  

a calibration curve. The diagnostic efficacy of five 

m6A regulators in AS subtypes was examined using 

ROC curve analysis. 

Quantitative real-time polymerase chain reaction 

(qRT-PCR) 

 

Total RNA was extracted from AS and adjacent 

healthy tissues using Trizol reagent (Thermo Fisher 

Scientific) and reverse-transcribed into complementary 

DNA, following the manufacturer’s instructions, to 

examine the m6A regulator expression levels. qRT-

PCR analysis was performed using the SYBR Green 

master kit (Vazyme) with a LightCycler 480 II (Roche 

Diagnostics) instrument. The following primers were 

used for amplifying METTL5: 5′-GGGTTAGCCGG 

GAGATCCT-3′ (forward) and 5′-GCAGGCGACTC 

TCTAGTTCC-3′ (reverse). 

 

Statistical analysis 

 

The differential analysis between AS tissues and normal 

tissues was performed using R software (Version 4.2.1). 

Differences were considered significant at P < 0.05. 

 

Availability of data and materials 

 

The datasets presented in this study can be found in 

online repositories. The names of the repository/ 

repositories and accession number(s) can be found in 

the article. 

 

RESULTS 
 

WGCNA results 

 

To identify AS-related gene modules, co-expression 

networks and modules were constructed for the control 

and treatment groups using WGCNA. A scale-free 

network was constructed using β = 10 as the soft 

threshold (Figure 1A, 1B). Subsequently, 7638 genes 

were divided into 14 distinct modules with different 

colors (Figure 1C–1E). As shown in Figure 1F, the 

brown module was strongly associated with AS (R = 

0.82, P = 3e-26). Finally, 3529 hub genes were 

identified from this module based on specific criteria 

(Figure 1G). 

 

DEG screening 

 

The “limma” package was used to examine 31 

M6ARGs (6 upregulated genes and 25 downregulated 

genes) (Figure 1H). The SVM-RFE machine learning 

algorithm was used to identify 35 M6ARGs (Figure 1I, 

1J). The combination of RF and feature selection was 

used to establish the correlation between the error rate, 

the number of classification trees, and the relative 

importance of 20 genes (Figure 1K, 1L). Additionally, a 

Venn diagram was used to intersect 40 M6ARGs and 

DEGs and obtain five crucial m6A regulators (Figure 
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1M). qRT-PCR analysis revealed that the METTL5 

mRNA levels in AS tissues were downregulated when 

compared with those in healthy tissues (Figure 1N). 

 

Analysis of immune infiltration 

 

The differential immune features between patients 

with AS and healthy individuals were examined using 

CIBERSORT analysis (Figure 2A). The infiltration 

levels of memory B cells, M0 macrophages, and 

activated mast cells were upregulated, whereas those 

of resting memory CD4+ T cells, monocytes, and  

M1 macrophages were downregulated in AS samples 

(Figure 2B). Correlation analysis revealed that 

IGF2BP3 expression was positively correlated with 

M0 macrophage abundance and negatively correlated 

with resting mast cell and resting memory CD4+ T cell 

abundances (Figure 2C). These results indicate that 

M6ARGs mediate the onset and progression of AS by 

modulating the infiltration levels of immune cells. 

 

Identification of m6A clusters in AS 

 

Different m6A clusters associated with AS were 

identified using a consensus cluster algorithm based  

on the expression levels of five m6A regulators.  

When the K value was 2, the consensus algorithm 

categorized patients with AS into two m6A subtypes 

(Figure 2D–2F). Compared with those in cluster 1,  

the expression levels of METTL5, YTHDC1, and  

FTO were upregulated in cluster 2 (Figure 2G, 2H). 

PCA (Figure 2I) revealed that the two m6A subtypes 

exhibited distinct biological processes. CIBERSORT 

analysis demonstrated that the infiltration levels of 

plasma cells, resting memory CD4+ T cells, activated 

natural killer (NK) cells, M1 macrophages, and resting 

mast cells were upregulated, whereas those of M0 

macrophages were downregulated in cluster 1 (Figure 

2J, 2K). 

 

GSVA results 

 

The differential biological activities between the two 

AS subtypes were examined using GSVA. Cluster 2 

was positively correlated with major histocompatibility 

complex class I receptor activity, positive regulation  

of interleukin 1 production, and metabolism-related 

pathways, including glutathione metabolism, amino 

sugar and nucleotide sugar metabolism, and fructose 

and mannose metabolism (Figure 2L, 2M). 

 

 
 

Figure 1. Construction of the co-expression network using weighted gene co-expression network analysis (WGCNA). (A) 

Sample clustering dendrogram with tree leaves corresponding to individual samples. (B) Soft threshold β = 10 and scale-free topological fit 
index (R2). (C) The original and combined modules of the clustering tree. (D) Representative clustering of module eigengenes. (E) 
Representative heatmap of the correlation between 14 modules. (F) Scatter plot between module membership in brown module and the 
gene significance for AS. (G) Correlation analysis between module eigengenes and clinical status. Each row represents a module, while each 
column represents a clinical status. (H) The expression patterns of 31 N6-methyladenosine (m6A)-related genes (M6ARGs) were presented 
in the heatmap. (I, J) Biomarker signature gene expression validation using the support vector machine recursive feature elimination (SVM-
RFE) algorithm. (K) Random Forest error rate versus the number of classification trees. (L) The top 20 relatively important genes. (M) Venn 
diagram for screening genes. (N) Relative mRNA level of METTL5 in atherosclerosis (AS) (yellow bars) and healthy tissues (blue bars). *p < 
0.05, **p < 0.01 and ***p < 0.001. 
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GO, KEGG, and DO analysis results 

 

Functional enrichment analysis revealed that DEGs 

between the two clusters were enriched in macrophage 

activation, muscle system processes, and negative 

regulation of the immune system (Figure 3A). KEGG 

pathway enrichment analysis demonstrated that DEGs 

were enriched in the chemokine signaling, PPAR 

signaling, Toll-like receptor signaling, and lipid and AS 

pathways (Figure 3B). DO analysis revealed that DEGs 

were associated with arteriosclerosis, AS, arteriosclerotic 

heart disease, and aortic aneurysm (Figure 3C). 

Nomogram and ROC curves 

 

A nomogram based on M6ARGs was constructed to 

evaluate the risk of developing AS (Figure 4A). DCA 

revealed the enhanced predictive ability of the nomogram 

(Figure 4B). As shown in Figure 4C, the predicted risk 

was consistent with the actual risk. The five-m6A 

regulator-based model demonstrated enhanced diagnostic 

efficacy (Figure 4D). The ROC curve revealed that the 

area under the curve (AUC) values for YTHDC1, 

IGF2BP3, NXF1, FTO, and METTL5 were 0.803, 0.859, 

0.792, 0.798, and 0.850, respectively (Figure 4E). 

 

 
 

Figure 2. Identification of N6-methyladenosine (m6A)-related molecular clusters in atherosclerosis (AS). (A) The relative 

abundances of 22 infiltrating immune cells between AS and non-AS controls. (B) Boxplots showing the differential immune cell infiltration 
levels between AS and non-AS controls. (C) Correlation analysis between five m6A regulators and infiltrating immune cells. (D) Consensus 
clustering matrix when k = 2. (E) The cumulative distribution function (CDF) curve. (F) The relative change in area under the CDF curve for k 
= 2–9. (G, H) The differential expression levels of five m6A regulators between two m6A clusters. (I) Principal component analysis (PCA) of 
cluster 1 and cluster 2. (J) Boxplots showing the differential immune cell infiltration levels between AS and non-AS controls. (K) Differential 
immune cell infiltration levels between cluster 1 and cluster 2. (L) Differentially enriched biological functions between cluster 1 and cluster 
2 were ranked based on the t-value obtained using gene set variation analysis (GSVA). (M) Differentially enriched Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathways between cluster 1 and cluster 2 were ranked based on the t-value obtained using GSVA. *p < 0.05, 
**p < 0.01, ***p < 0.001, ****p < 0.0001. 

 

 
 

Figure 3. Functional analysis of differentially expressed genes (DEGs) between two N6-methyladenosine (m6A) subtypes. 
(A) Gene Ontology (GO) analysis. (B) Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. (C) Disease Ontology (DO) analysis. 
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scRNA-seq profiles of AS 

 

After pre-processing the GSE159677 single-cell dataset, 

the combined data of AS and adjacent healthy tissues 

were subjected to t-distributed stochastic neighbor 

embedding (t-SNE) non-linear dimension reduction. 

The segregation of all cells revealed 26 cell subclusters 

(Figure 5A). The “FindAllMarkers” function was used 

to identify DEGs in each cluster (logFC = 0.25). The 

“singleR” function was used to identify the following 

seven cell types: B cells, T cells, chondrocytes, smooth 

muscle cells (SMCs), macrophages, endothelial cells 

(ECs), and monocytes (Figure 5B). Additionally, the 

proportions of each cell type in AS and healthy tissues 

were examined. Compared with those in healthy tissues, 

the proportions of T cells, monocytes, and macrophages 

were upregulated and the proportions of SMCs and  

ECs were downregulated in AS tissues (Figure 5C).  

The m6A scores were significantly different between 

AS and healthy tissues (Figure 5D). The levels of m6A 

regulators in seven cell types are shown in Figure 5E. 

The m6A regulator levels significantly varied between 

the seven cell types (Figure 5F). METTL5 was up-

regulated in specific cell types, including macrophages, 

SMCs, and ECs (Figure 5G). 

DISCUSSION 
 

AS is a chronic inflammatory disease involving  

cellular and molecular alterations, such as epigenetic 

modifications [21–23]. Currently, limited methods are 

available for the early diagnosis and risk stratification of 

AS, impeding the development of therapeutic strategies. 

Hence, there is a need to identify novel diagnostic 

markers and molecular subtypes to provide useful novel 

insights for developing clinical interventions for AS. 

m6A modification is involved in various biological 

processes in AS [24–26]. Hence, this study aimed to 

investigate the role of m6A regulators in AS and 

identify m6A subtypes in AS for risk stratification, 

precision therapy development, and risk prediction. 
 

This study identified 31 differentially expressed 

M6ARGs between 35 healthy tissues and 69 AS  

tissues. WGCNA revealed that the brown module  

was associated with AS. From the module, 3529 hub 

genes were extracted using specific filtering criteria. 

The results of the Venn diagram revealed that five  

m6A regulators are potential hub genes involved in  

AS progression. qRT-PCR analysis demonstrated that 

METTL5 was downregulated in AS tissues, which was

 

 
 

Figure 4. Establishment of the nomogram model. (A) Establishment of the nomogram model based on five N6-methyladenosine 

(m6A) regulators. (B, C) Construction of the calibration curve (B) and decision curve analysis (DCA) (C) for assessing the predictive efficiency 
of the nomogram model. (D) Receiver operating characteristic (ROC) curves of a five-m6A regulator-based model. (E) ROC curves of five 
m6A regulators. 
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consistent with the bioinformatics analysis results. 

YTHDC1 upregulation is reported to promote neuron 

survival and ameliorate ischemic brain injury. 

Mechanistically, YTHDC1 promotes the phosphorylation 

of AKT1 by degrading PTEN mRNA, resulting in the 

activation of the anti-apoptotic signaling pathways, 

including the BCL2 and MTOR pathways [27]. IGF2BP3 

enhances reendothelialization after arterial injury by 

modulating EC proliferation, migration, and apoptosis 

through the upregulation of VEGFA mRNA stability and 

activation of the VEGF/PI3K/Akt signaling pathway [28]. 

FTO inhibits NLRP3-mediated pyroptosis through the 

suppression of β-catenin ubiquitination and degradation 

by decreasing the stability of CBL mRNA, contributing to 

the alleviation of cardiac ischemia/reperfusion injury [29]. 

 

The infiltration levels of M0 macrophages, memory  

B cells, and activated mast cells were upregulated  

in patients with AS, indicating the important role of 

immune cell infiltration in AS development. 

Unsupervised clustering revealed that the infiltration 

levels of resting memory CD4+ T cells, activated  

NK cells, and M1 macrophages are upregulated in 

cluster 2. Enrichment analysis confirmed that the DEGs 

between two m6A subtypes are involved in activating 

macrophages and immune-related pathways, such as the 

chemokine signaling, Toll-like receptor signaling, and 

antigen processing and presentation pathways. CCL8 

enhances the permeability of ECs and downregulates 

the levels of TJP1 and CDH5, impairing the function of 

the endothelial barrier and facilitating AS development 

[30]. Mechanistically, CCL8 activates the PI3K/AKT, 

ERK1/2, and NF-κB signaling cascades by binding to 

CCR1 and CCR2, regulating the generation of NOX2-

induced reactive oxygen species. Therefore, m6A modi-

fication mediates AS progression by regulating the 

immune microenvironment through the modulation of 

the immune-associated pathways. 

 

 
 

Figure 5. Cellular composition of the atherosclerosis (AS) tissue microenvironment. (A) The t-stochastic neighbor embedding  
(t-SNE) plot shows the distribution of 26 major cell subsets. (B) Annotation of each cell type in AS and adjacent healthy tissues. (C) Proportion 
of each cell type in AS and healthy tissues. (D) The differential N6-methyladenosine (m6A) scores between AS and healthy tissues. (E) m6A 
scores in each cell type. (F) The differential m6A scores between cell types. (G) Violin plot of the expression levels of five key m6A 
regulators in each cell type. 
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Single-cell analysis revealed that, compared with  

those in healthy tissues, the infiltration levels of T 

cells, monocytes, and macrophages were upregulated 

and the infiltration levels of SMCs and ECs were 

downregulated in AS tissues. DCLK1 is upregulated in 

the infiltrating macrophages of AS tissues, promoting 

inflammatory responses and plaque formation. Previous 

studies have reported that DCLK1 promotes IKBKB 

phosphorylation through direct binding, activating  

the NF-κB signaling pathway and regulating the 

expression of inflammatory genes [31]. Macrophage 

lipid accumulation and uptake can be inhibited by 

USP9X. The downregulation of USP9X in macrophages 

promotes the formation of foam cells and inflammatory 

responses, contributing to the progression of AS. 

USP9X removes K63 polyubiquitination at the K27 

site of the class A1 scavenger receptor (SR-A1). The 

deubiquitination process impairs the internalization  

of SR-A1 after its interaction with oxidized low-

density lipoprotein (ox-LDL), decreasing the uptake of 

ox-LDL in macrophages [32]. The m6A score was 

significantly different between AS and healthy tissues, 

suggesting that m6A methylation may be involved in 

AS progression. However, METTL5 was upregulated 

in macrophages, SMCs, and ECs. Therefore, this study 

hypothesized that these cell types may modulate m6A 

methylation levels through the regulation of METTL5 

expression, promoting the onset and development of 

AS. The nomogram model exhibited an enhanced 

predictive power for assessing the risk of developing 

different AS subtypes. ROC analysis revealed that the 

m6A regulators with AUC values > 0.8 were METTL5 

(0.850), YTHDC1 (0.803), and IGF2BP3 (0.859). 

 

This study systematically analyzed the expression  

of m6A regulators in AS and evaluated the potential  

of five m6A regulators to serve as diagnostic markers 

for AS. However, this study has some limitations.  

This study did not examine the correlation between 

METTL5 expression and immune cell infiltration. 

Additionally, the molecular mechanisms of METTL5 

in the progression of AS were not elucidated. 

 

CONCLUSIONS 
 

A five-m6A regulator-based model was used to predict 

the risk of developing different AS subtypes. The 

levels of METTL5 were upregulated in macrophages, 

SMCs, and ECs. Thus, these cell types may promote 

AS progression through the modulation of m6A 

methylation levels by regulating METTL5 expression. 
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