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INTRODUCTION 
 

Mitochondria, as essential organelles in cellular 

processes, are primarily responsible for generating  

the majority of cellular energy and are integral to 

numerous cellular functions [1, 2]. Mitochondrial 

DNA (mtDNA) is a critical component in the realm of 

biology, influencing both the quantity and functionality 

of mitochondria within cells [3–5]. Mitochondria 

possess a range of mtDNA copies, varying from 

several to thousands, which play a crucial role in 

cellular metabolic functions and energy production. 

Cells adjust mtDNA copy numbers in response to 

various physiological and pathological conditions to 

meet changing energy needs. Tissues with high energy 

demands, such as the heart [6], kidney [7], and muscles 

[8], typically demonstrate increased mtDNA copy 

numbers. Mitochondria play a vital role in regulating 

cellular energy homeostasis and exhibit a ‘bioenergetic 

reserve capacity’ that enables them to adapt to changes 

in metabolic requirements [9]. Conversely, in instance 

of compromised mitochondrial function, such as in 

certain pathological or physiological conditions, a 

decrease in mtDNA copy numbers is often observed, 

resulting in diminished cellular energy production [10–

12]. Furthermore, it has been reported that cells respond 

to situations of heightened energy demand surpassing 

respiratory capacity by increasing mitochondrial content; 

however, this adaptive response may diminish with 

advancing age [13]. 
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ABSTRACT 
 

Mitochondrial DNA (mtDNA) copy number and telomere length (TL) are dynamic factors that have been linked to 
the aging process in organisms. However, the causal relationship between these variables remains uncertain. In 
this research, instrumental variables (IVs) related to mtDNA copy number and TL were obtained from publicly 
available genome-wide association studies (GWAS). Through bidirectional Mendelian randomization (MR) analysis, 
we examined the potential causal relationship between these factors. The forward analysis, with mtDNA copy 
number as the exposure and TL as the outcome, did not reveal a significant effect (B=-0.004, P>0.05). On the 
contrary, upon conducting a reverse analysis, it was found that there exists a positive causal relationship (B=0.054, 
P<0.05). Sensitivity analyses further confirmed the reliability of these results. The outcomes of this study indicate a 
one-way positive causal relationship, indicating that telomere shortening in the aging process may lead to a 
decrease in mtDNA copy number, providing new perspectives on their biological mechanisms. 
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Recent advancements in the study of mtDNA  

copy number variation have resulted in significant 

discoveries. Specifically, researchers have been able to 

establish associations between mtDNA copy number 

variations and a range of diseases, such as metabolic 

syndrome [14–16], cardiovascular diseases [17–19],  

and neurodegenerative disorders [20, 21]. Furthermore, 

the utilization of innovative technologies like high-

throughput sequencing has enhanced the precision of 

measuring and analyzing mtDNA copy numbers [22]. 

The impact of mtDNA copy number variation on the 

aging process has become a focal point of extensive 

research [23–25]. The existing findings indicate a 

potential decline in mtDNA replication with advancing 

age, potentially linked to age-related physiological 

alterations. In the evolving realm of personalized 

medicine and precision therapy, discerning individual 

variances in mtDNA copy number could facilitate early 

disease detection and the development of tailored treat-

ment approaches. Furthermore, investigating mtDNA 

copy number variation as a prospective therapeutic 

intervention for specific conditions is poised to emerge 

as an innovative strategy in the future. Changes in 

mtDNA copy numbers have the capacity to function as 

both a consequence and a driver of disease advancement, 

encapsulating a complex biological principle that 

encompasses fundamental cellular processes and a wide 

array of clinical ramifications. 

 
Telomeres, which are repetitive DNA sequences located 

at the termini of chromosomes, serve primarily to 

safeguard chromosomal ends from degradation and 

fusion, thereby preserving the integrity of genetic material 

[26–28]. The measurement of these sequences, referred  

to as telomere length (TL), is crucial for the maintenance 

of cellular stability and longevity [29, 30]. Owing to the 

nature of DNA polymerase activity, telomeres undergo 

gradual shortening with each round of cell division. Upon 

reaching a critical threshold of shortening, cells enter a 

state of senescence and cease proliferating, a phenomenon 

commonly referred to as “Hayflick’s limit” [31]. Thus,  

TL is recognized as a significant indicator of cellular 

aging and lifespan, serving as a focal point in telomere 

research. Recent advancements in this field have revealed 

the link between abnormally shortened telomeres and 

various diseases, including genetic disorders [32–34], 

cardiovascular diseases [35, 36], cancers [37–39], and 

aging-related illnesses [29, 40]. Additionally, lifestyle 

[41–43], such as alcohol consumption [44], smoking [45], 

stress [46], diet [47], and exercise [48], have been 

reported to have an impact on TL. The lengthening of 

telomeres is contingent upon the presence of telomerase, 

yet the absence of telomerase in somatic cells poses 

challenges in retarding the progression of cellular 

senescence. Conversely, the elongation of TLs may not 

necessarily decelerate the aging process of an organism 

and could potentially increase susceptibility to diseases 

closely associated with TL [49]. Hence, it is necessary  

to understand the relationship between TL and various 

physiological and pathological processes to enhance  

its predictive value in disease prognosis and individual 

health management. The variability in mtDNA copy 

number may impact the cellular energy demands required 

for TL maintenance [50], consequently influencing  

TL. Additionally, the generation of reactive oxygen 

species (ROS) by mitochondria during metabolic 

activities can directly influence TL [51, 52]. Despite  

some investigations into the association between TL and 

mtDNA, the current evidence is insufficient to definitively 

establish a causal relationship. Therefore, the objective of 

this study is to examine the possible causal association 

between the aforementioned aging traits through the 

analysis of extensive public genome-wide association 

study (GWAS) data, in conjunction with the application 

of the Mendelian randomization (MR) analysis. This 

methodology has the potential to provide valuable insights 

into elucidating the intricate interplay between TL and 

mitochondrial function. 

 

RESULTS 
 

The causal relationship between mtDNA copy 

number and TL 

 

In the forward analysis, utilizing mtDNA as the 

exposure, a total of 67 instrumental variables (IVs) were 

identified to be associated with mtDNA, with an 

average F value of 93.32 (Supplementary Table 1). 

Following the exclusion of confounding factors and the 

matching of IVs with outcome (TL), 64 IVs remained 

consistent (Supplementary Table 2). Subsequently,  

the exposure and outcome IVs were integrated, and  

the “MR-PRESSO” method was employed to identify 

and remove outliers, resulting in 58 remaining IVs 

(Supplementary Table 3), of which 8 had “False” values 

for “mr_keep” (Supplementary Table 3). Therefore, a 

total of 58 IVs were included in the MR analysis for the 

forward analysis (Supplementary Table 3). 

 

In the reverse analysis, TL was considered as the 

exposure, resulting in the identification of 154 IVs 

closely associated with TL, with an average F value  

of 115.74 (Supplementary Table 4). Subsequent to the 

exclusion of confounding factor and matching IVs 

with the outcome, 147 IVs were found to be identical 

(Supplementary Table 5). Following integration and 

outlier exclusion steps, 135 IVs were retained 

(Supplementary Table 6), among which 20 had “False” 

values for the “mr_keep” (Supplementary Table 6).  

As a result, the total number of IVs included in  

the MR analysis for the reverse analysis was 115 

(Supplementary Table 6). 
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The comprehensive findings of bidirectional MR 

analysis indicated that, in the forward analysis assessing 

the causal relationship between mtDNA copy number 

variation and TL, five methods (MR Egger, weighted 

median, inverse variance weighted (IVW), simple  

mode, and weighted mode) did not exhibit statistically 

significant results (Figure 1A, β=-0.004, P>0.05). 

Conversely, in the reverse analysis examining the causal 

relationship between TL and mtDNA copy number 

variation, all five methods consistently demonstrated a 

positive causal association with statistically significant 

results (Figure 1B, β=0.054, PMR Egger=0.02, Pweighted 

median=0.005, PIVW<0.0001, Psimple mode=0.01, Pweighted 

mode=0.04). Detailed data results can be found in 

Supplementary Table 7. This evidence implies that 

alterations in TL may lead to changes in mtDNA copy 

number, indicating a direct causal relationship between 

TL and mtDNA copy number. 

 

Sensitivity analysis 

 

During the sensitivity analysis, we assessed  

the influence of individual single nucleotide 

polymorphism (SNP) on the collective results of 

bidirectional MR analysis. Forest plots revealed 

variability in the effects of specific SNPs on the 

outcome, suggesting potential heterogeneity in current 

analysis (Supplementary Figures 1, 2). Nevertheless, 

the cumulative impact of individual SNPs on the 

outcome was consistent with the overarching trend 

observed in the MR analysis. Heterogeneity was 

identified in both forward and reverse analyses (Table 

1, P<0.05); however, subsequent assessment utilizing 

a random-effects model yielded findings congruent 

with the primary MR analysis. No statistically 

significant variances in multiple heterogeneity were 

noted (Table 1, P>0.05), underscoring the reliability 

of our present analysis. 

 

Leave-one-out tests were conducted to evaluate the 

effects of excluding individual SNPs on the results of 

MR analysis. The findings revealed that excluding 

individual SNPs had minimal impact on the overall 

results in both forward (Supplementary Figure 3) and 

reverse (Supplementary Figure 4) analyses. Scatter  

plots showed no significant alterations in the slopes of 

the fitted curves representing the relationship between 

exposure and outcome in the forward analysis (Figure 

2A), indicating a less apparent causal relationship in 

this direction. Conversely, in the reverse analysis 

(Figure 2A), the MR analysis of exposure to outcome 

displayed a distinct alteration in slope, suggesting  

a plausible causal relationship in this direction. In  

general, scatter plots did not demonstrate substantial 

deviations of outlier SNPs in any direction, indicating 

the lack of anomalies in the included IVs in the study.

 

 
 

Figure 1. Forest plot for Mendelian randomization (MR) results. (A) The MR results for the forward analysis; (B) the MR results for 

the reverse analysis. The x-axis (B) shows effect estimates; dots represent primary effect estimate; horizontal lines depict the confidence 
interval of effect estimate. 
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Table 1. Heterogeneity and pleiotropy tests of instrumental variables (IVs) in 
bidirectional Mendelian randomization (MR) analysis. 

Outcome Exposure Q P.val Pivw-mre Ppleio 

mtDNA copy number Telomere length 2.02E-04 8.91E-01 6.43E-01 

Telomere length mtDNA copy number 8.51E-05 5.29E-05* 5.53E-01 

mtDNA, mitochondrial DNA. P, P-value; ivw, inverse variance weightedmre; mre, random-
effects model; pleio, pleiotropy test. * indicates P-value less than 0.05. 

 

The forest plots in bidirectional analysis, as depicted  

in Figure 2B for forward analysis and Figure 2D  

for reverse analysis, displayed a uniform distribution  

of individual SNPs on either side of the IVW central 

axis. No evidence of abnormal SNP distribution was 

observed. These findings highlight the reliability and 

robustness of the IVs included in current analysis. 

 

Finally, the potential bias introduced by sample overlap 

was calculated using the ‘mrSampleOverlap’ R package. 

The results revealed that as the rate of sample overlap 

increase, there is a corresponding increase in bias and 

the probability of Type I errors (Figure 3A, the forward 

MR analysis; Figure 3B, the reverse MR analysis). 

However, in bidirectional analysis, this trend remained 

relatively stable (Figure 3), indicating that the impact of 

sample overlap on the results of current MR analysis is 

minimal. 
 

DISCUSSION 
 

MR, a method in epidemiology used to evaluate  

causal relationships between environmental factors and 

diseases, employs genetic variations as IVs to control for 

 

 
 

Figure 2. Scatter plot (left) and funnel plot (right) for bidirectional Mendelian randomization (MR) analyses. The results labeled 
(A, B) correspond to the outcomes of the forward MR analysis, while (C, D) represent the findings from the reverse MR analysis. Each point 
represents an included SNP in the MR analysis, and the color of the lines corresponds to the methods described in the legend. 
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confounding factors [53]. This methodology offers a 

more accurate assessment of causality, providing 

significant implications for personalized medicine  

and precision treatment due to its prospective and 

widely applicable nature [54, 55]. The current study 

utilized MR analysis to explore the causal relationship 

between TL and mtDNA copy number. The findings 

demonstrated a positive causal link between shortened 

TL and a decline in mtDNA copy number, suggesting 

that a reduction in TL is accompanied by a decrease in 

mtDNA copy number. In contrast, IVs associated with 

mtDNA copy number did not exhibit a statistically 

significant effect on TL. The results of sensitivity 

analysis supported the robustness and reliability of  

the findings. This evidence provides valuable insights 

into the complex mechanisms that involve cellular 

aging, enhancing our understanding of the dynamic 

interaction between telomeres and mitochondria in the 

context of cellular aging.  

 

The regulation of TL is a complex process influenced 

by various factors and mechanisms. Telomeres, which 

are composed of DNA sequences and proteins,  

serve as protective structures of chromosomes [56]. 

During cell division, the telomeres shorten, and once  

the short telomere reaches a critical length, the cell 

stops dividing, resulting in senescence. The telomere 

shortening process can be reversed by telomerase; 

however, most somatic cells lose telomerase activity 

after adulthood [57, 58]. The activity of telomerase is 

aberrant in certain types of cells, such as stem cells and 

cancer cells [59, 60]. As a result, telomere lengthening 

not only poses a health risk, but may also increase  

the risk of certain diseases, including cancer [57,  

61]. Thus, strategies aimed at extending telomeres to 

delay aging should be carefully considered. In addition, 

telomeres are protected by a special group of proteins 

called telomere protection proteins. These proteins  

form a unique structure that protects telomeres from 

degradation and damage [62]. These proteins require 

energy to be translated, assembled, and modified. From 

a physiological regulation perspective, mitochondria, 

which generate energy for the cell, appear to interact 

with TL [63].  

 

 
 

Figure 3. The influence of sample overlap on the bias of MR analysis results and type I error. (A) corresponds to the outcomes of 
the forward MR analysis, while (B) represents the findings from the reverse MR analysis. 
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Telomere shortening leads to aging, and aging cells 

undergo apoptosis (or death), damaging and degrading 

mtDNA, resulting in a decrease in mtDNA copy 

number. Thus, scholars believe mtDNA copy number 

decrease and TL shortening are complementary 

biological features of aging [64, 65]. In this study, we 

investigated the potential influence of IVs associated 

with TL on the variability of mtDNA copy number. 

The results indicated a positive causal relationship, 

suggesting that telomere shortening may lead to a 

reduction in mtDNA copy number. While this study 

did not definitively determine whether this causal 

relationship is direct or indirect, it did provide direct 

evidence of the interaction between TL and variability 

in mtDNA copy number. In contrast, despite the 

significant role of mitochondria in energy production, 

we did not observe any substantial causal effect of 

mtDNA copy number variation on TL. This result 

suggests that alterations in TL during cellular process 

are not entirely dependent on energy supply from 

mitochondria, a topic that warrants further exploration. 

Previous studies have demonstrated that an elongation 

of TL is associated with increased susceptibility to 

various malignancies, such as prostate, lung, and liver 

cancer [37, 66–69]. It was consistent with the findings 

in our analysis. The longer the telomeres, the more 

mtDNA copies there are, enhancing the mitochondrial 

function and the well-being of the body. The number 

of mtDNA copies is considered an important criterion 

for measuring mitochondrial biomass [70]. In this  

way, the positive causal relationship between TL and 

mtDNA copy number may help maintain mitochondrial 

health and combat aging-related diseases and processes. 

Long TL may contribute to increased cancer risk, as 

well as sufficient energy supply through mtDNA. 

Therefore, this is also a topic worth considering in  

the field of tumors [71]. These findings suggest that 

integrating TL and mtDNA copy number into 

comprehensive strategies for diagnosing and treating 

tumors may prove to be a novel and potentially 

beneficial approach. Moreover, an investigation into 

the regulatory mechanisms controlling TL and its 

association with mtDNA copy number variability 

offers a potential pathway for the advancement of  

anti-aging strategies and the improvement of cellular 

well-being. Exploring these intricacies will not only 

progress our comprehension of the fundamental 

biological processes but also lay the groundwork for 

novel interventions with extensive implications for 

fostering healthy aging and preventing diseases. 

 
The results of sensitivity analysis demonstrate that this 

study is methodologically robust, but certain potential 

limitations must also be acknowledged. A notable 

limitation is the lack of explicit confounding factors. 

For example, according to correlation-based analysis, 

oxidative stress, free radicals, and living habits could 

affect TL or mtDNA copy number, but IVs related to 

these factors were not excluded from current MR 

analysis. This is because, on one hand, the evidence 

supporting these conclusions is derived from the 

analysis of public data, rather than on experimental 

studies or randomized trials. On the other hand, due to 

the lack of phenotype matching data in the GWAS 

database, we are unable to analyze these confounders 

and exclude specific IVs. Considering these potential 

confounding factors, we acknowledge their bias on the 

results of our analysis. Hence, we implemented a 

stricter screening criterion by requiring that the P-

values from all five MR analysis methods be below 0.05, 

and there was no evidence of horizontal pleiotropy in 

the same direction in order to establish significant 

causality. Based on these rules, this MR analysis can 

still produce reliable results. In addition, there is a 

limitation to distinguish precise instances of exposure 

and outcome sample overlap using MR analysis. 

Despite application of a method to investigate the bias 

of sample overlap in MR analysis, the current evidences 

are only according to the assumptions and statistical 

inference, highlighting that there may be a possibility of 

bias in the results. The identified limitations are 

required to be strengthened and refined in the sub-

sequent studies for improving the reliability of MR 

analysis results. 

 

In conclusion, the current MR analysis indicates a 

unidirectional positive causal effect of TL on mtDNA 

copy number, suggesting a complex interrelationship 

between these two biomarkers in the aging process. 

This discovery provides new perspectives on the 

interaction between TL and mtDNA copy number and 

proposes novel hypotheses for their biological pathways. 

 

MATERIALS AND METHODS 
 

Study design description 
 

This is a two-sample MR study following  

STROBE-MR (Strengthening the Reporting of 

Mendelian Randomization Studies) guidelines [72]. 

Data were obtained from the openGWAS database 

(https://gwas.mrcieu.ac.uk/) by searching for the terms 

‘telomere length’ and ‘mitochondrial DNA’. Afterwards, 

we selected the datasets with the largest sample size in 

the same race. Finally, as for TL, we used the “ieu-b-

4879” [73] dataset and as for mtDNA copy number, we 

used the “ebi-a-GCST90026372” [5] dataset. In Figure 

4, we provide the details of these candidate datasets. 

Using these datasets, we developed a comprehensive 

framework for bidirectional MR analysis to investigate 

the causal relationship between mtDNA copy number 

and TL. The forward MR analysis used mtDNA copy 
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number as an exposure and TL as an outcome, whereas 

the reverse MR used TL as an exposure and mtDNA 

copy number as an outcome. A further explanation of 

the fundamental assumptions behind MR analysis can 

be found in Figure 4. Selected genetic variants should 

be examined to assess whether they satisfy the three 

MR assumptions: (1) IVs are strongly correlated with 

exposure; (2) IVs are not associated with confounding 

factors affecting both exposure and outcomes; (3) IVs 

only affect outcomes through the exposure, excluding 

other indirect pathways. As the data in this study were 

derived from publicly accessible GWAS summary 

statistics, no further ethical approval or informed 

consent was required. A detailed description of the 

datasets (such as GWAS ID, sample size, population 

category, SNP count, IV selection standards, and 

number of IVs) used for MR analysis can be found in 

Figure 4. 

 

IVs selection 

 

Identifying IVs for exposure 

The ‘extract_instruments’ function from the 

'TwoSampleMR' R package [74] was used to select IVs 

related to exposure (Figure 4). It was important to 

ensure that both the sample size and the effect 

attributable to factor (EAF) were accurate. We used 

openGWAS data to supplement missing sample sizes; 

1000 Genomes project [75] data were used to calculate 

missing EAFs. After obtaining IVs, we computed  

F-values, ensuring that only instrumental variables with 

F-values greater than 10 were used in our analysis [76]. 

 

Excluding confounders 

The phenoscanner database [77] (http://www. 

phenoscanner.medschl.cam.ac.uk/) was utilized to 

exclude confounding IVs. With default settings, all 

SNPs associated with IVs were extracted and saved to a 

text file, without column names. Since TL is measured 

from leukocytes in peripheral blood, SNPs related to 

white cells or lymphocytes counts were not included, 

nor were SNPs related to outcome. 

 

Identifying outcome-related IVs 

Using the ‘extract_outcome_data’ function, we  

obtained IVs related to outcomes. We then used  

the ‘harmonise_data’ function to align IVs related to 

exposures and outcomes. Mismatching is a common 

MR analysis error, especially when the number of 

outcome-related IVs exceeds those related to exposure. 

In these cases, the same effect and reference alleles 

must be used for each IV. 

 

Excluding anomalous IVs 

Two primary steps were involved in this step: (1) 

excluding IVs whose p-values related to outcomes are 

less than 5e-08 [78], and (2) removing outliers using the 

‘Outlier Test’ provided by the ‘MRPRESSO’ R package 

[79]. The Distortion Test was utilized to examine 

statistical differences pre and post removal of outliers. 

 

 
 

Figure 4. Flow diagram of the process for the bidirectional two-sample Mendelian randomization (MR) analysis. SNP, single 
nucleotide polymorphism; N, number of SNPs; mtDNA, mitochondrial DNA. 

7393

http://www.phenoscanner.medschl.cam.ac.uk/
http://www.phenoscanner.medschl.cam.ac.uk/


www.aging-us.com 8 AGING 

Following these data cleansing steps, we compiled final 

data for MR analysis between exposure and outcomes 

(IVs include in MR analysis correspond to conditions 

where ‘mr_keep’ = TRUE).  

 

MR analysis 

 

The MR analysis was performed with the ‘mr’ function 

from the ‘TwoSampleMR’ R package. MR Egger, 

weighted median, IVW, simple mode, and weighted 

mode methods were utilized in the analysis. Causal 

relationships were established based on consistent 

direction in effect values (β values) across all methods 

and statistical significance (P<0.05). The primary MR 

results were presented using forest plots. 

 

Sensitivity analysis 

 

Three aspects of sensitivity analysis were performed on 

the MR results, including heterogeneity, pleiotropy, and 

leave-one-out sensitivity. By using the ‘mr_heterogeneity’ 

function (based on Cochran Q test), we assessed 

heterogeneity. A PQ test<0.05 indicated heterogeneity, 

thereby leading to a random effects re-evaluation of  

MR results [80]. By using the ‘mr_pleiotropy_test’ 

function (based on MR-Egger), we assessed pleiotropy. 

A P-value<0.05 suggested the presence of pleiotropy 

[81]. In these cases, we re-examined for anomalous  

IVs using the MR-PRESSO method and reanalyzed  

after excluding these IVs. Furthermore, we tested the 

reliability and robustness of IVs included in the current 

MR analysis by using the ‘mr_leaveoneout’ (leave-one-

out sensitivity) and ‘mr_singlesnp’ functions. A scatter 

plot was created using the ‘mr_scatter_plot’ function to 

visualize trends of correlation between exposure and 

outcome. In addition, funnel plots generated from the 

‘mr_funnel_plot’ function were used to determine the 

concentrations and distributions of the IVs. 

 

Assessing bias from sample overlap 

 

In this study, possible biases due to varying  

levels of sample overlap were calculated by  

using the ‘estimate_overlap_bias’ function from the 

‘mrSampleOverlap’ R package [82]. Estimation bias 

and Type I error tended to increase minimally in  

MR results, indicating their robustness. However, the 

exponential increase in bias indicates that the overlap 

between samples significantly impacts the current MR 

analysis. More MR analysis of different populations is 

needed to strengthen the results. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Forest plot for single SNP between mtDNA copy number as exposure and TL as outcome. 
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Supplementary Figure 2. Forest plot for single SNP between TL as exposure and mtDNA copy number as outcome. 
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Supplementary Figure 3. Leave one out plot for MR analysis between mtDNA copy number as exposure and TL as outcome. 
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Supplementary Figure 4. Leave one out plot for MR analysis between TL as exposure and mtDNA copy number as outcome. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1–7. 

 

Supplementary Table 1. IVs related to mtDNA copy number as exposure including F value. 
 

Supplementary Table 2. IVs related to mtDNA copy number on TL as outcome. 

 

Supplementary Table 3. IVs involved in MR analysis between mtDNA copy number as exposure and TL as outcome. 

 

Supplementary Table 4. IVs related to TL as exposure including F value. 

 

Supplementary Table 5. IVs related to TL as exposure on mtDNA copy number as outcome. 

 

Supplementary Table 6. IVs involved in MR analysis between TL as exposure and mtDNA copy number as outcome. 

 

Supplementary Table 7. The results of MR analysis between exposure and outcome. 
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