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ABSTRACT 
 

Despite neoadjuvant chemoradiotherapy (CRT) being the established standard for treating advanced  
rectal cancer, clinical outcomes remain suboptimal, necessitating the identification of predictive biomarkers 
for improved treatment decisions. Previous studies have hinted at the oncogenic properties of the Fc 
fragment of IgG binding protein (FCGBP) in various cancers; however, its clinical significance in rectal  
cancer remains unclear. In this study, we first conducted an analysis of a public transcriptome comprising  
46 rectal cancer patients. Focusing on cell adhesion during data mining, we identified FCGBP as the  
most upregulated gene associated with CRT resistance. Subsequently, we assessed FCGBP immunointensity 
using immunohistochemical staining on 343 rectal cancer tissue blocks. Elevated FCGBP immunointensity 
correlated with lymph node involvement before treatment (p = 0.001), tumor invasion, and lymph node 
involvement after treatment (both p < 0.001), vascular invasion (p = 0.001), perineural invasion (p = 0.041), 
and reduced tumor regression (p < 0.001). Univariate analysis revealed a significant association between high 
FCGBP immunoexpression and inferior disease-specific survival, local recurrence-free survival, and 
metastasis-free survival (all p ≤ 0.0002). Furthermore, high FCGBP immunoexpression independently 
emerged as an unfavorable prognostic factor for all three survival outcomes in the multivariate analysis (all p 
≤ 0.025). Enriched pathway analysis substantiated the role of FCGBP in conferring resistance to radiation. In 
summary, our findings suggest that elevated FCGBP immunoexpression in rectal cancer significantly 
correlates with a poor response to CRT and diminished patient survival. FCGBP holds promise as a valuable 
prognostic biomarker for rectal cancer patients undergoing CRT. 
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INTRODUCTION 
 

Colorectal cancer (CRC) ranks as the third most 

prevalent cancer in males and the second most common 

cancer in females globally [1]. In 2020, it accounted for 

1.9 million new cases, representing 10.7% of all new 

cancer diagnoses and earning its position as the third 

most frequent malignancy. Additionally, it stood as the 

third leading cause of cancer-related deaths in men  

and the fourth in women. Notably, radiotherapy holds 

significant therapeutic relevance for rectal cancers. 

Enhanced local disease control for individuals with 

locally advanced rectal cancer, characterized by stage 

T3–4 tumors or positive lymph nodes, can be achieved 

through the adoption of total mesorectal excision as  

the standard surgical approach, complemented by 

preoperative chemoradiotherapy (CRT) [2, 3]. Despite 

these advancements, the implementation of multimodal 

therapy has not translated into substantial improvements 

in overall survival [4]. Approximately 30% of patients 

with locally advanced rectal cancer experience relapse, 

often manifesting as distant metastases. To enhance 

therapeutic decision-making, the identification of 

prospective predictive biomarkers becomes imperative 

for optimizing treatment strategies and improving 

outcomes in this challenging patient population. 

 

FCGBP, a substantial mucin-like glycoprotein secreted 

by goblet cells, was initially identified on the human 

intestinal mucosa as a distinctive binding site for the  

Fc region of IgG [5, 6]. Its structural composition  

shares similarities with other conventional mucin 

proteins, such as Mucin 2 (MUC2). These proteins  

are characterized by a high molecular weight (>200 

kDa) and consist of numerous repeated domains, such 

as von Willebrand factor D domains, tandem repeat 

domains, and cysteine-rich units [6–8]. The distribution 

of FCGBP spans various tissues, including the colon, 

small intestine, gall bladder, cystic duct, choledochus, 

bronchus, submandibular gland, and uterine cervix, 

along with the corresponding secretory fluids [5]. While 

the precise function of FCGBP remains incompletely 

understood, it has been associated with innate immunity 

as an integral component of intestinal mucus—a primary 

defense mechanism in the gastrointestinal system [9–

13]. Given the pivotal role of mucins in regulating 

bacterial adherence on mucosal surfaces, alterations in 

FCGBP may signify substantial structural modifications 

within the mucus.  

 

Due to its pivotal roles in adhesion and immunologic 

functions, numerous studies have explored the evolving 

significance of FCGBP in the development of human 

malignancies. While diminished expression levels of 

FCGBP have been noted in gallbladder and prostate 

cancers [14, 15], contrasting observations reveal elevated 

FCGBP expression in glioma, hepatocellular carcinoma, 

and ovarian cancer [16–18]. The prognostic implications 

of FCGBP expression have been established in these 

malignancies, shedding light on its potential as a 

predictive biomarker. Notably, FCGBP expression has 

demonstrated associations with chemotherapy responses 

in patients with ovarian cancer [19], suggesting a 

modulatory role in the efficacy of contemporary 

anticancer modalities. The initial connections between 

FCGBP and CRC stem from its involvement in 

ulcerative colitis [20], a chronic inflammatory condition 

predisposing the individuals to CRC [21]. Subsequent 

investigations have unveiled that FCGBP expression 

significantly correlates with tumor metastasis and 

reduced overall survival in patients with CRC [22].  

This finding underscores the potential of FCGBP as a 

predictive biomarker for assessing responses in patients 

with rectal cancer. Consequently, this study aims to 

establish correlations between FCGBP expression, CRT 

efficacy, and survival outcomes. Utilizing a combination 

of public databases and a large-scale Taiwanese rectal 

cancer cohort, our research seeks to provide valuable 

insights into the potential clinical implications of 

FCGBP in this context. 

 

RESULTS 
 

FCGBP emerges as the most significantly upregulated 

gene associated with cell adhesion in CRT-resistant 

rectal cancer 

 

To explore potential genetic determinants linked to  

the efficacy of neoadjuvant CRT, we conducted 

transcriptomic profiling using a published dataset 

(GSE35452) comprising rectal cancer tissue blocks  

(n = 46). Within this cohort, 22 patients (47.8%) were 

classified as nonresponders, while 24 patients (52.2%) 

were labeled as responders, forming the basis for the 

comparative analysis aimed at identifying predictive 

genetic biomarkers. Focusing on the cellular adhesion 

gene ontology (GO: 0007155), we pinpointed 6 probes 

covering 5 transcripts: FCGBP, MUC4, DSG3, MUC5B, 

and SPON1, all associated with CRT resistance (see 

Table 1 and Figure 1). Notably, among these 5 genes, 

FCGBP exhibited the highest mRNA expression level 

(log2 ratio = 1.5838, p = 0.0004). Subsequently, our 

investigation extended to a comprehensive examination 

of the expression levels and clinical significance of 

FCGBP in a larger rectal cancer cohort. 

 

Clinicopathological features of the validation cohort 

in rectal cancer 

 

We enrolled a cohort of 343 patients diagnosed with 

rectal adenocarcinoma who underwent neoadjuvant 

CRT, and their clinicopathological characteristics are 
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Table 1. Summary of differentially expressed genes associated with cell adhesion (GO:0007155) in relation to 
response to chemoradiotherapy in rectal carcinoma.* 

*Gene with log2 ratio >=1; comparison p-value <0.01 were selected. 

 

summarized in Table 2. The majority of cases were 

male (n = 223, 65.0%), and most were below the  

age of seventy (n = 217, 63.3%). At the time of the 

initial clinical diagnosis, 210 patients (61.2%) presented 

with advanced tumoral status (cT3–T4), and 144 

patients (42.0%) exhibited positive lymph node status 

(cN1–N2). Following CRT, 188 patients (54.8%) 

showed invasion depth beyond the muscularis propria 

(ypT3–T4), and positive lymph nodes (ypN1–N2)  

were observed in 118 patients (34.4%). Additionally, 

vascular invasion and perineural invasion were noted in 

38 cases each (11.1%). To assess the efficacy of CRT in 

patients with rectal cancer, the tumor regression grade, 

as determined by the Dworak system, was employed 

[23]. Scores indicated that 73 cases (21.3%) exhibited 

little or no regression (grade 0–1), while 22 cases 

(6.4%) demonstrated complete regression (grade 4). 

 

Immunointensity of FCGBP and its correlation with 

clinicopathological variables in rectal cancer 

 

To assess the clinical significance of FCGBP in rectal 

cancer, we conducted immunohistochemical staining 

to evaluate its immunointensity and correlation  

with clinicopathological variables within our rectal 

cancer cohort. As illustrated in Figure 2A, 2B, the 

immunointensity of FCGBP staining exhibited a 

significant increase in tumor tissues associated with 

CRT-resistant rectal cancer. Comparative analysis  

with key clinical features outlined in Table 2 revealed 

a positive correlation between the immunointensity  

of FCGBP and lymph node metastases before CRT  

(p = 0.001), tumor invasion, and positive lymph node 

metastases after CRT (both p < 0.001), vascular 

invasion (p = 0.001), perineural invasion (p = 0.041), 

and a lower tumor regression grade (p < 0.001). 

 

The prognostic significance of FCGBP 

immunoexpression in rectal cancer 

 

As outlined in Table 3, rectal cancer was the cause  

of death for 63 patients (18%), with local recurrence 

and distant metastasis observed in 35 patients (10%) 

and 62 patients (18%), respectively. Subsequently, we 

conducted both univariate and multivariate analyses  

to assess the prognostic markers for disease-specific 

 

 
 

Figure 1. Expression profiling of genes associated with cell adhesion (GO:0007155) and their relationship to 
chemoradiotherapy response. We identified FCGBP as the most significantly upregulated gene associated with poor response to 
chemoradiotherapy. 

Probe 
Comparison 

log ratio  

Comparison  

P-value 

Gene 

symbol 
Gene name Biological process 

203240_at 1.5838 0.0004 FCGBP Fc fragment of IgG binding protein binding of sperm to zona pellucida, cell adhesion 

217109_at 1.2719 0.0006 MUC4 mucin 4; cell surface associated cell adhesion, cell-matrix adhesion 

235075_at 1.2535 0.0001 DSG3 desmoglein 3 (pemphigus vulgaris antigen) cell adhesion, homophilic cell adhesion 

213432_at 1.2364 0.0007 MUC5B mucin 5B; oligomeric mucus/gel-forming cell adhesion 

209436_at 1.1393 <0.0001 SPON1 spondin 1; extracellular matrix protein cell adhesion, multicellular organismal development 

217110_s_at 1.0344 0.0047 MUC4 mucin 4; cell surface associated cell adhesion, cell-matrix adhesion, transport 
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Table 2. Associations and comparisons between FCGBP expression and 
clinicopathological factors in 343 rectal cancer patients receiving chemoradiotherapy. 

Parameter  No. 
FCGBP Expression 

p-value 
Low Exp. High Exp. 

Gender 
Male 223 119 104 

0.622 
Female 120 62 58 

Age 
<70 217 105 112 

0.476 
≥70 126 66 60 

Pre-Tx tumor status  
T1-T2 133 73 60 

0.138 
T3-T4 210 98 112 

Pre-Tx nodal status  
N0 199 115 84 

0.001* 
N1-N2 144 56 88 

Post-Tx tumor status  
T1-T2 155 105 50 

<0.001* 
T3-T4 188 66 122 

Post-Tx nodal status 
N0 225 131 94 

<0.001* 
N1-N2 118 40 78 

Vascular invasion 
Absent 305 162 143 

0.001* 
Present 38 9 29 

Perineurial invasion 
Absent 305 158 147 

0.041* 
Present 38 13 25 

Tumor regression grade 

Grade 0-1 73 22 51 

<0.001* Grade 2~3 248 131 117 

Grade 4 22 18 4 

Exp., expression; Tx, treatment; *, statistically significant. 

 

 
 

Figure 2. Immunohistochemical expression of FCGBP. Representative images of rectal cancer exhibiting FCGBP expression among 
tumor tissues. (A) Chemoradiotherapy responder with low FCGBP expression. (B) Chemoradiotherapy non-responder with high FCGBP 
expression. Representative images were captured at x200 magnification. 
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Table 3. Univariate log-rank analysis for important clinicopathological variables and FCGBP expression. 

Parameter  No. of case 
DSS LRFS MeFS 

No. of event p-value No. of event p-value No. of event p-value 

Gender 
Male 223 42 

0.9755 
9 

0.2176 
25 

0.3460 
Female 120 21 26 37 

Age 
<70 217 34 

0.0728 
23 

0.9398 
38 

0.5771 
≥70 126 29 12 24 

Pre-Tx tumor status  
T1-T2 133 15 

0.0074* 
13 

0.6695 
18 

0.0663 
T3-T4 210 48 22 44 

Pre-Tx nodal status 
N0 199 31 

0.0932 
19 

0.4755 
30 

0.0697 
N1-N2 144 32 16 32 

Post-Tx tumor status  
T1-T2 155 13 

<0.0001* 
8 

0.0020* 
15 

<0.0001* 
T3-T4 188 50 27 47 

Post-Tx nodal status 
N0 225 31 

0.0022* 
18 

0.0434* 
32 

0.0077* 
N1-N2 118 32 17 30 

Vascular invasion 
Absent 305 50 

0.0023* 
28 

0.0379* 
50 

0.0136* 
Present 38 13 7 12 

Perineurial invasion 
Absent 305 51 

0.0180* 
33 

0.4263 
53 

0.1782 
Present 38 12 2 9 

Tumor regression grade 

Grade 0-1 73 28 

<0.0001* 

14 

0.0017* 

25 

<0.0001* Grade 2~3 248 34 21 36 

Grade 4 22 1 0 1 

FCGBP expression 
Low Exp. 171 16 

<0.0001* 
8 

0.0002* 
9 

<0.0001* 
High Exp. 172 47 27 53 

DSS, disease-specific survival; LRFS, local recurrence-free survival; MeFS, metastasis-free survival; Exp., expression; Tx, 
treatment; *, statistically significant. 

 

survival (DSS), local recurrence-free survival (LRFS), 

and metastasis-free survival (MeFS). At the univariate 

level, elevated FCGBP immunoexpression (Figure 3A–

3C), low tumor regression grade, advanced post-CRT 

tumoral status, positive post-CRT lymph node status, 

and the presence of vascular invasion were significantly 

and adversely associated with all three endpoints (all  

p ≤ 0.0434). Furthermore, advanced pre-CRT tumoral 

status and the presence of perineural invasion were 

notably correlated with inferior DSS (p = 0.0074  

and 0.018, respectively). In the multivariate analysis  

(Table 4), both high FCGBP immunoexpression and a 

 

 
 

Figure 3. Kaplan–Meier analysis showed high expression of FCGBP was associated with inferior disease-specific survival (A), local recurrence-
free survival (B) and metastasis-free survival (C). 
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Table 4. Multivariate analysis. 

Parameter 
DSS LRFS MeFS 

HR 95% CI p-Value HR 95% CI p-Value HR 95% CI p-Value 

FCGBP high expression 2.391 1.280-4.203 0.006* 2.595 1.130-5.960 0.025* 5.373 2.582-11.183 <0.001* 

Tumor regression grade 2.770 1.684-4.545 <0.001* 2.404 1.248 -4.651 0.009* 2.012 1.235-3.279 0.005* 

Post-Tx tumor status  1.910 0.989-3.689 0.054 2.020 0.867-4.704 0.103 1.557 0.828-2.927 0.169 

Pre-Tx tumor status  1.891 1.043-3.427 0.036* - - - - - - 

Post-Tx nodal status  1.133 0.653-1.967 0.657 1.262 0.611-2.608 0.529 1.120 0.640-1.962 0.691 

Vascular invasion 1.421 0.727-2.776 0.304 1.687 0.681-4.181 0.259 1.178 0.591-2.347 0.642 

Perineurial invasion 1.450 0.745-2.822 0.274 0.310 0.072-1.338 0.1116 1.076 0.513-2.257 0.846 

DSS, disease-specific survival; LRFS, local recurrence-free survival; MeFS, metastasis-free survival; CI, confidence interval; HR, 
hazard ratio; Tx, treatment; *, statistically significant. 

 

low tumor regression grade independently emerged as 

unfavorable prognostic factors for all three endpoints (all 

p ≤ 0.025). Moreover, advanced pre-CRT tumoral status 

was also associated with inferior DSS (p = 0.036) in the 

multivariate analysis. 

 

 

Correlation of FCGBP with biological processes in 

rectal cancer 

 

FCGBP’s impact on biological processes in rectal cancer 

was examined for both positive and negative correla-

tions. A pathway enrichment analysis was performed  

to associate FCGBP expression with undisclosed 

biological functions in rectal cancer. Utilizing the same 

transcriptome database (GSE35452), we probed into  

the biological activities of FCGBP-interacting networks. 

The gene ontology (GO) terms, specifically those related 

to biological processes, were employed, and the pertinent 

biological functions of FCGBP in rectal cancer are 

presented in the Supplementary Table 1. Among these, 

epithelial structure maintenance and the flavonoid 

metabolic process, which is pertinent to radiation 

protection, were identified as significant processes 

positively correlated with FCGBP expression (illustrated 

in Figure 4). Notably, the term “response to gamma 

 

 
 

Figure 4. Gene ontology terms representation based on the top 10 positive and negative correlations with FCGBP 
expression. Yellow indicates positive correlations, and blue indicates negative correlations. 
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radiation” stood out as the most distinctive term 

negatively associated with FCGBP expression. The 

correlations between FCGBP expression and genes 

involved in these biological functions are detailed  

in Supplementary Table 2. 

 

DISCUSSION 
 

In this investigation, we employed a transcriptome 

dataset, focusing our data mining efforts on the 

process of cell adhesion. Within this context, FCGBP 

emerged as the most markedly upregulated gene in 

CRT-resistant rectal cancer. Subsequent validation 

through immunohistochemical staining confirmed  

that heightened FCGBP expression is significantly 

correlated with an adverse response to CRT and 

unfavorable survival outcomes in our rectal cancer 

patient cohort. Consequently, the expression levels  

of FCGBP present a promising potential as a 

biomarker for predicting the prognosis of patients with 

rectal cancer undergoing preoperative CRT. 
 

While the precise mechanisms underlying FCGBP 

expression in CRC development remain unclear,  

it is plausible to hypothesize that dysregulation of 

FCGBP may contribute to compromised mucosal 

immune defense, subsequently participating in intes-

tinal inflammation. Given the pivotal role of chronic 

inflammation in tumor development, dysregulated 

FCGBP may be implicated in the carcinogenesis of 

CRC [24]. Similar to other mucins, FCGBP acts as  

a crucial mediator between an inflammatory milieu  

and a sustained physiological response, a process 

essential for cancer development and progression [25]. 

Chronic infections or injuries induce pro-inflammatory 

cytokines, leading to aberrant glycosylation and 

altered mucin expression [26]. These modifications  

in tumor-associated mucins furnish tumor cells  

with a diverse array of potential ligands capable  

of interacting with receptors on the cell surface 

throughout the course of tumor development and 

progression [27]. In a particular study, the suppression 

of MUC2, the primary component of intestinal 

mucus, resulted in the phosphorylation of STAT3  

in tumor cells via the cytokine IL-6. This, in turn, 

stimulated the expression of IL-6 in both tumor  

and stromal cells, establishing an inflammatory 

microenvironment that promotes tumor growth [28]. 

IL-6, in this context, promotes epithelial-mesenchymal 

transition (EMT), a characteristic of tumor cells 

associated with invasion and metastasis [29]. In a 

separate study, FCGBP was found to be involved  

in EMT induced by the TGF-β1 pathway [14]. These 
collective findings suggest a potential significant  

role for FCGBP in the EMT process during tumor 

progression. 

Extensive research has extensively documented the 

varied levels of FCGBP expression across diverse 

tumor types [14–19]. The observed disparities in 

FCGBP expression levels among different malignan-

cies may signify distinct underlying functions and 

mechanisms. Tumors, in their quest to survive and 

proliferate in challenging environments, may utilize 

mucins to modulate the local microenvironment during 

inappropriate invasion and metastasis to various organ 

and tissue sites. Notably, the mucin layer could capture 

and retain biologically active molecules, such as growth 

factors, within the matrix, thereby facilitating tumor 

growth. Furthermore, mucins might serve as key players 

in aiding tumors to evade immune responses by creating 

an impenetrable barrier for immune effector cells or by 

inactivating immune effector cells through receptor–

ligand interactions. This potential anti-immune response 

may indicate observed immune cell infiltrations in 

various malignancies, including glioma, hepatocellular 

carcinoma, and ovarian cancer [17–19]. Conversely, 

mucins may also exert a tumor-suppressive role [30]. 

For instance, the intestinal mucus layer can function  

as a physical barrier against dietary carcinogens or pro-

carcinogenic microorganisms. Additionally, through 

interactions with membrane-bound mucins, secreted 

mucins might influence the differentiation and 

proliferation of epithelial cells—processes that are 

disrupted in cancerous growth. Given the emergence of 

immunotherapy as a promising anticancer treatment, 

investigations focusing on mucin-mediated tumor 

immunity are warranted. Understanding the intricate 

interplay between mucins and the immune system  

could provide valuable insights for developing novel 

therapeutic strategies in the realm of cancer treatment. 

 

In Crohn’s disease and ulcerative colitis, the 

heightened expression of FCGBP may signify 

pathophysiologic changes in CRC development [20, 

21]. However, numerous studies utilizing analytical 

approaches based on microarrays, online databases, 

and tissue microarray immunohistochemistry have 

revealed a significant diversity in FCGBP expression 

at both the mRNA and protein levels in CRC  

tissues compared with noncancerous colorectal tissues 

[31–33]. Some investigations have indicated that 

elevated FCGBP expression is associated with superior 

survival outcomes. It is noteworthy that none of these 

studies have explored the correlation between FCGBP 

expression levels and the treatment response to CRT  

in rectal cancer. In our current study, we made the 

novel observation that FCGBP mRNA expression is 

increased in rectal cancer tissues with CRT resistance 

through bioinformatic transcriptome analysis. This 
finding was further validated in our rectal cancer 

patient cohort, where elevated FCGBP expression at 

the protein level was linked to adverse pathological 
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features following CRT, as well as shorter survival 

outcomes. Despite the retrospective nature of our 

rectal cancer cohort, the inclusion of a substantial 

number of tumor specimens in this study helps 

overcome this limitation.  

 

High FCGBP expression has previously been correlated 

with chemotherapy resistance in advanced ovarian 

serous adenocarcinomas [19]. While the precise 

function of FCGBP in response to radiotherapy and/or 

chemotherapy remains incompletely understood, as 

these treatments induce DNA damage in cancer cells, 

FCGBP may contribute to tumor resistance against 

these DNA toxins by forming a molecular shield  

[30]. To deepen our understanding of the biological 

functions of FCGBP in rectal cancers, we evaluated 

the expression correlation between FCGBP and genes 

of interest involved in significant biological pathways 

identified from the enrichment analysis. We discovered 

that among the genes associated with epithelial 

structure maintenance (correlation coefficient > 0.5 

and p < 0.05), TFF1 (trefoil factor 1) and TFF3  

are significant oncogenic genes that promote CRC  

cell progression [34, 35]. Previous studies have  

shown that upregulation of TFF1 and TFF3 in cancer 

cells can facilitate EMT and confer resistance to 

chemotherapy and radiotherapy [36–39]. Notably,  

in addition to epithelial structure maintenance, our 

pathway enrichment analysis revealed a positive 

correlation between FCGBP expression and the 

flavonoid metabolic process. Flavonoids, a group of 

polyphenolic compounds, are recognized for their 

antioxidant properties and protective effects against 

radiation [40–42]. These findings suggest that FCGBP 

may be involved in radiation sensitivity through the 

metabolism of specific antioxidants. Furthermore, by 

examining genes involved in the flavonoid metabolic 

process, we found a positive correlation between 

FCGBP expression and UGT1A1, a crucial enzyme in 

the metabolism of chemotherapy drugs [43, 44]. The 

interaction between FCGBP expression and the genes 

regulating metabolism in cancer cells may contribute 

to CRT resistance. The observed negative correlation 

between the response to gamma radiation and FCGBP 

expression supports the notion that FCGBP modulates 

CRT sensitivity in rectal cancer. Further investigation 

into the correlation between FCGBP expression levels 

and the therapeutic efficacy of chemotherapy and 

radiotherapy holds the potential to yield novel insights 

into cancer treatment. 

 

In conclusion, this study provides evidence  

indicating that heightened FCGBP immunoexpression 
is notably linked to a suboptimal response to CRT,  

as demonstrated through bioinformatic analyses of 

publicly available databases. The observed correlations 

between FCGBP expression, poor responses to CRT, 

and inferior survival outcomes were subsequently 

validated in our specific rectal cancer patient cohort. 

Consequently, the expression of FCGBP emerges as a 

potentially valuable predictive and prognostic marker 

for patients with rectal cancer undergoing CRT. 

 

MATERIALS AND METHODS 
 

Transcriptome profiling of rectal cancer 

 

To investigate potential genes associated with  

the efficacy of neoadjuvant CRT, we utilized  

a published Gene Expression Omnibus dataset 

(GSE35452) comprising rectal cancer tissue blocks  

(n = 46) for transcriptomic profiling. In this dataset, 

biopsy specimens were collected during colonoscopic 

screening before CRT treatments. The raw microarray 

data (CEL files) obtained from the Human Genome 

U133 Plus 2.0 Array were processed using the 

statistical software Nexus Expression 3.0, and gene 

expression levels were determined using all probe sets 

without employing any filtering or mapping method. 

Based on the response to CRT, the samples were 

categorized into “nonresponders” and “responders” 

groups, and a supervised comparison between the two 

groups was conducted. We identified differentially 

expressed genes related to cell adhesion (GO: 0007155) 

and further refined the selection by focusing on genes 

with a p-value below 0.01 and a log2 ratio greater than 

1 for subsequent analysis. 

 

Patient enrollment  
 

The clinicopathological features and treatment outcomes 

were retrospectively reviewed and collected. Initial 

clinical staging was determined through colonoscopy, 

and patients without distant metastasis, as confirmed  

by chest X-ray and/or abdominopelvic computed 

tomography (CT), were included. Prior to proctectomy, 

all patients underwent a regimen of 45–50 Gy of 

radiotherapy in twenty-five fractions over five weeks, 

coupled with continuous infusional 5-fluorouracil-based 

treatment concurrently. For patients with tumoral status 

at least T3 or nodal status at least N1, additional 

chemotherapy (commonly using FOLFOX, CapOX, and 

5-FU for at least 4 months) was administered before or 

after chemoradiotherapy. Sphincter-saving low anterior 

resection ensured a free circumferential resection margin 

for all patients. Lateral node dissection was performed 

when metastatic involvement was suspected, although 

none of our patients underwent lateral node dissection. 

Regular follow-up screenings occurred every 3–6 months 
for 5 years, involving a carcinoembryonic antigen blood 

test every 3 months, and an annual colonoscopy and 

abdominal CT or magnetic resonance imaging scan. 
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Histopathological appraisal and immunohistochemical 

scoring 

 

In the absence of patient clinical profiles, two 

experienced pathologists (Chien-Feng Li and Wan-

Shan Li) meticulously examined all tumor samples  

to ensure a more objective assessment. The tumor  

and node stages before and after CRT were defined 

according to the seventh edition of the American Joint 

Committee on Cancer staging system. To assess the 

effectiveness of CRT in rectal cancer patients, we 

utilized the tumor regression grading system outlined 

by Dworak et al. [23]. Immunohistochemical staining 

procedures, consistent with protocols from our prior 

research [45], were employed. Tissue slides were 

incubated with the FCGBP primary antibody (Abcam; 

#Ab121202; Cambridge, UK). The immunointensity of 

FCGBP staining was categorized as follows: 0 (absent), 

1+ (weak), 2+ (moderate), 3+ (strong). The H-score 

was applied to evaluate FCGBP immunoreactivity, 

calculated with the equation: H-score = ΣPi(i + 1), 

where Pi represents the percentage of stained tumor 

cells for each intensity (ranging from 0% to 100%), 

and i denotes the staining intensity (0 to 3+). The H-

score, ranging from 100 to 400, was determined by 

combining the intensity and proportion of positively 

stained tumor cells. High FCGBP expression was 

defined as H-scores greater than or equal to the median 

of all scored instances. 

 

Gene ontology analysis 

 

We employed gene set variation analysis (GSVA) to 

evaluate the enrichment levels of predefined gene sets  

in each sample [46], utilizing the R package GSVA.  

The biological process category from the Gene Ontology 

was obtained from the Molecular Signatures Database 

(MSigDB; https://www.gsea-msigdb.org/gsea/msigdb/). 

GSVA scores were calculated for each sample, offering 

an estimation of the enrichment levels of GO terms. To 

investigate GO terms correlated with FCGBP expression, 

we conducted a Spearman rank correlation test, with 

statistical significance determined by a Bonferroni-

corrected adjusted p-value threshold of 0.05. 

 

Statistical analysis 

 

All data underwent statistical analysis using Statistical 

Product and Service Solutions software version 22.0. 

The relationship between the expression of genes of 

interest, clinicopathological characteristics, and FCGBP 

expression levels was evaluated using Pearson’s chi-

squared test. Survival curves were generated using  
the Kaplan–Meier method, and the log-rank test was 

applied to statistically compare two groups measured 

from surgery to the date of cancer death (DSS), first 

local recurrence (LRFS), or first metastasis (MeFS). 

Multivariate Cox proportional hazards regression 

analysis, incorporating parameters with prognostic 

utility identified at the univariate level, was employed 

to identify independent prognostic variables. Statistical 

significance was determined using a two-tailed test, 

with a p-value below 0.05 considered significant. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Tables 

 

 

 

Please browse Full Text version to see the data of Supplementary Tables 1, 2. 

 

 

Supplementary Table 1. Pertinent biological processes of FCGBP in rectal cancer. 

 

Supplementary Table 2. Association of FCGBP expression and genes of epithelial structure maintenance, 
flavonoid metabolic process, and response to gamma radiation. 
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