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INTRODUCTION 
 

Osteosarcoma (OS) is the predominant malignant  

bone tumor in clinical practice. With the widespread 

implementation of multidrug chemotherapy strategies in 

the 1970s, the five-year survival rate of patients with 

conventional high-grade OS has significantly improved 

(60-70%) [1]. Unfortunately, due to the stagnation of 

research progress in related fields, the survival rate has 

not improved since then [2], and the risk of adverse 
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ABSTRACT 
 

Background: Osteosarcoma (OS) is a primary malignant bone tumor arising from mesenchymal cells. The 
standard clinical treatment for OS involves extensive tumor resection combined with neoadjuvant 
chemotherapy or radiotherapy. OS's invasiveness, lung metastasis, and drug resistance contribute to a low cure 
rate and poor prognosis with this treatment. Metallothionein 1G (MT1G), observed in various cancers, may 
serve as a potential therapeutic target for OS. 
Methods: OS samples in GSE33382 and TARGET datasets were selected as the test cohorts. As the external 
validation cohort, 13 OS tissues and 13 adjacent cancerous tissues from The Second Affiliated Hospital of 
Nanchang University were collected. Patients with OS were divided into high and low MT1G mRNA-expression 
groups; differentially expressed genes (DEGs) were identified as MT1G-related genes. The biological function of 
MT1G was annotated using Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO) and gene 
set enrichment analysis (GSEA). Gene expression correlation analysis and competing endogenous RNA (ceRNA) 
regulatory network construction were used to determine potential biological regulatory relationships of DEGs. 
Survival analysis assessed the prognostic value of MT1G. 
Results: MT1G expression increased in OS samples and presented higher in metastatic OS compared with non-
metastatic OS. Functional analyses indicated that MT1G was mainly associated with spliceosome. A ceRNA 
network with DEGs was constructed. MT1G is an effective biomarker predicting survival and correlated with 
increased recurrence rates and poorer survival. 
Conclusions: This research identified MT1G as a potential biomarker for OS prognosis, highlighting its potential 
as a therapy target. 
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toxic events poses a great obstacle in the development 

of new treatment strategies. Therefore, further studies 

on the molecular mechanisms of OS progression are 

still needed to reveal opportunities for new therapeutic 

strategies to improve the survival rate of OS patients. 

Existing studies have demonstrated that OS exhibits  

a complex karyotype with a high degree of genetic  

and chromosomal instability reflected by multiple 

rearrangements across the genome, kataegis and 

chromothripsis [3–6]. Extensive reports have described 

genetic markers associated with prognosis [7, 8], and 

existing evidence indicates that transcriptional programs 

in OS may be epigenetically regulated [9–13]. This 

provides a theoretical basis for the formulation of new 

strategies for cancer treatment [14]. 
 

Cancer recurrence and metastasis are key factors 

contributing to the poor treatment outcomes in OS [15]. 

However, existing research has failed to elucidate  

the specific molecular mechanisms underlying  

the proliferation and invasion of OS cells. Previous 

studies have indicated that stromal cells, including 

mesenchymal stem cells (MSCs), in the tumor 

microenvironment can influence the proliferation and 

invasion of cancer cells by generating a series of 

signaling factors [16, 17]. Studies have successfully 

demonstrated that the transformation of MSCs into OS 

cells can occur through aneuploidy and genome loss, 

suggesting a potential derivation of OS cells from 

BMSCs [18]. Moreover, several studies have indicated 

that the occurrence of ferroptosis in MSCs significantly 

impacts tumor progression, with MT1G emerging as a 

critical regulator of this process [19, 20]. Nevertheless, 

the role of MT1G in OS remains unclear. The purpose 

of this study was to further elucidate the pathogenesis of 

OS and investigate the role of bone BMSCs in OS 

proliferation and invasion. We obtained transcriptome 

sequencing data from 91,439 cells isolated from 

primary and metastatic samples obtained from patients. 

Our study indicated low expression of metallothionein 

1G (MT1G) as a potential biomarker associated with a 

poor prognosis in OS. The gene set enrichment analysis 

(GSEA) results indicated that MT1G was mainly 

associated with spliceosome. We also demonstrated the 

feasibility of MT1G as a biomarker in OS samples, 

providing a potential strategy for clinical OS treatment. 

 

MATERIALS AND METHODS 
 

Acquisition of cell samples and processing of single-

cell RNA-seq data 
 

We downloaded the single-cell transcriptome expression 
profiles of 129755 cells raw data in 11 samples from 

GSE152048 via the Gene Expression Omnibus (GEO) 

database (https://www.ncbi.nlm.nih.gov/geo/). The 

MSCs from primary and metastasis samples were finally 

analyzed in our study after filtering out poor-quality cells. 

 

We generated a Seurat object based on the 

transcriptome sequencing data using the Seurat package 

[21]. We excluded cells with mitochondrial genes 

accounting for over 10% of the total gene expression 

and extracted transcriptome sequencing data from 

91439 cell patient-derived primary and metastatic 

samples. The top 2000 genes with highly variable 

features accounting for cell-to-cell differences were 

identified by variance analysis and subjected to data 

scaling and centering. These variable genes were further 

used for principal component analysis (PCA) with 

linear dimensionality reduction. The top 35 principal 

components (PCs) were applied for graph-based 

clustering (res = 0.4) to identify distinct groups of cells. 

The cell clusters were visualized based on the UMAP 

method of dimensionality reduction. Clusters were 

annotated through the well-known cellular marker 

genes. Differentially expressed genes (DEGs) of MSCs 

between metastasis tissue and primary tissue were 

screened with pval.adj =0.05 as the cutoff criterion. 

 

Bulk transcriptomic data sets 

 

We acquired gene expression records from GSE33382 

(GEO), comprising 84 OS patients and 3 normal controls. 

Using the median value of MT1G expression as the 

dividing line, the 84 patients were separated into groups 

with high (n = 42) and low (n = 42) MT1G mRNA 

expression. The limma (http://www.bioconductor.org/ 

packages/release/bioc/html limma.h1ml) package in R 

version 3.6.3 (http://R-project.org) was used to identify 

prominent DEGs between the high and low MT1G-

expression groups. When the p-value was less than  

0.01, genes were considered to have differential 

expression. The R package pheatmap (https://cran.r-

project.org/web/packages/pheatmap/index.html), version 

1.0.12, was used to create heatmaps. In addition, gene 

expression profiles and clinical data were extracted from 

TARGET (https://ocg.cancer.gov/programs/target). Using 

the median value as the dividing line, the TARGET 

cohort (n = 88) was split into high/low groups (high, 44 

cases; low, cases). The same approach as previously 

reported was utilized to identify DEGs between the high 

and low TARGET groups. The DEGs shared by the 

GSE33382 and TARGET data sets were shown using  

a Venn diagram made in ggplot2 (https://cran.r-

project.org/web/packages/ggplot2/index.html). 

 

Tissue samples and immunohistochemistry (IHC) 

 
The Second Affiliated Hospital of Nanchang University 

provided 13 OS tissues and 13 adjacent cancerous 

tissues from January 2019 to December 2021 as an 
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external validation cohort. Samples were provided as 

formalin fixed paraffin-embedded blocks. This research 

was approved by the Ethics Committee of The Second 

Affiliated Hospital of Nanchang University [Review 

(2018) No. (107)]. All participants provided informed 

consent. A total of 13 OS tissues and 13 adjacent 

cancerous tissues were included in this study. A tissue 

microarray was created from these 26 tissues and was 

used for IHC staining. Histochemical scores were 

calculated using the Quant Center analysis tool. The 

formula was calculated as follows: H score= ∑(PI × I) = 

(% weak intensity cells × 1) + (% moderate intensity 

cells × 2) + (% high intensity cells × 3) [22]. 

 

Functional enrichment analysis 

 

The enrichment analysis of DEGs in the MT1G 

high/low expression groups in the test cohort was 

performed by Kyoto Encyclopedia of Genes and 

Genomes (KEGG) and GO (Gene Ontology). 

Significant changes in function and pathways between 

the high/low MT1G expression groups were identified 

using GSEA and the reference gene set used was 

c2.cp.v7.2.symbols.gmt (Curated). Data visualization 

was performed using the ggplot2 package. 

 

Construction and hub gene extraction 

 

We completed the protein‒protein interaction (PPI) 

network construction of DEGs using the STRING 

online tool (https://cn.string-db.org) and further  

used Molecular Complex Detection (MCODE, 

http://apps.cytoscape.org/apps/mcode), Cytoscape 

version 3.6.2) to screen the core proteins in the PPI 

network. 

 

Correlation analysis and competing endogenous 

RNA (ceRNA) network construction 

 

Spearman’s correlations were calculated to determine 

the association between MT1G expression in the 

TARGET cohort and the expression of 12 DEGs 

(CCND1, CDKN2A, HES1, MRPS18C, MT1E, MT1F, 

MT1M, MT1X, MT2A, PRPF3, PRSS27, TRIB2) 

common between the GSE33382 and TARGET data 

sets. R software and ggplot2 were used to visualize the 

data. 

 

Then, the limma package was used to obtain the 

differentially expressed long noncoding RNAs 

(DELs) from the TARGET cohort. Finally, the 

miRcode database (http://www.mircode.org) was used 

to predict highly conserved microRNAs (miRNAs) 
associated with DELs. Meanwhile, we used  

the miRDB (http://mirdb.org/), miRTarBase 

(http://miRTarBase.cuhk.edu.cn/) and TargetScan 

databases (http://www.targetscan.org/mamm_31/) to 

predict downstream target genes of miRNAs. The 

common DEGs in the comparison results were used to 

establish the ceRNA network. 

 

Survival analysis and diagnostic performance 

assessment 

 

Kaplan‒Meier (KM) analysis of the TARGET data was 

performed by using the R packages survival 

(https://www.rdocumentation.org/packages/survival/ver

sions/2.42-3) and survminer (https://cran.rstudio.com/ 

web/packages/survminer/index.html). Subsequently, the 

timeROC package (https://cran.r-project.org/web/ 

packages/timeROC/index.html) was used to analyze 

the survival prognosis of MT1G high expression 

patients at 1, 3 and 5 years. 

 

We used the pROC package (https://cran.r-project.org/ 

web/packages/pROC/) to generate receiver operating 

characteristic (ROC) curve with vertical coordinates for 

true positive rate/sensitivity and horizontal coordinates 

for false positive rate/specificity. To determine whether 

MT1G could be used as a biomarker to determine the 

difference between OS and normal tissues, the cutoff 

value that gave the highest likelihood ratio was 

selected. 

 

Statistical analysis 

 

GraphPad Prism 8 software was used to compare 

expression data with one-way ANOVA and two-tailed 

Student’s t tests. Each experiment was conducted at 

least three times, and all results were expressed as the 

mean standard deviation (SD). The relevance of the 

statistics was described as follows: n.s., not significant. 

 

Availability of data and materials 

 

We used the databases GSE33382 and GSE152048. 

The datasets for this study can be found in the  

Gene Expression Omnibus (GEO) database 

(https://www.ncbi.nlm.nih.gov/geo/). This is an open-

source database. 

 

RESULTS 
 

Processing of single-cell RNA-seq profiles and 

screening of MSC-associated marker genes 

 

The flowchart demonstrates the overall design and 

process about this study (Figure 1). The variance analysis 

revealed the top 10 significantly DEGs across the cell 

samples (Supplementary Figure 1A). The principal 

component analysis (PCA) method screened the 

significantly correlated genes in each component. The top 
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30 significantly correlated genes were shown via 

heatmap and dot plot in Supplementary Figure 1A, 1B. 

The first 35 PCs represented the main differences 

between the cells (Supplementary Figure 1B). According 

to the UMAP algorithm and marker gene annotation, 

2011 MSCs were identified in metastatic tissue and 

primary tissue (Figure 2A). A total of 7012 DEGs 

between metastatic tissue and primary tissue of MSCs 

were identified. We downloaded the OS bulk data of 

GSE33382 and conducted differential expression 

analysis. The results showed that MT1G was highly 

expressed in tumor tissues compared with normal tissues 

(Figure 2B). Furthermore, MT1G was more highly 

expressed in metastatic tumor tissues than in primary 

tumor tissues (Figure 2C). We validated MT1G 

expression using 13 OS tissues and 13 adjacent cancerous 

tissues as the validation dataset. MT1G expression levels 

were confirmed using IHC (Figure 1D, 1E). 

 

Identification of DEGs 

 

After screening for DEGs between high and low  

MT1G-expression groups (Figure 3A), we found 134 

upregulated genes and 103 downregulated genes  

from the high and low MT1G expression groups 

(Supplementary Table 1), for a total of 237 coexpressed 

genes (Figure 3C). The TARGET cohort was 

subsequently divided into high/low MT1G expression 

groups using the same strategy (Figure 3B), and 160 

upregulated genes and 557 downregulated genes were 

screened (Supplementary Table 2 and Figure 3D). 

Finally, we screened 12 common DEGs (8 upregulated 

and 4 downregulated) from the two DEG groups 

(Figure 3E, 3F). 

 

Functional enrichment analysis and GSEA 

 

KEGG and GO enrichment results showed that the core 

genes were mainly enriched in the following pathways: 

the p53 signaling pathway, human cytomegalovirus 

infection, tumor-associated pathways, detoxification of 

copper ions, and dendritic shaft and neuroligin family 

protein binding (Figure 4 and Supplementary Tables 3–

6). The enriched terms for the TARGET cohort were the 

PI3K-Akt signaling pathway, Rap1 signaling pathway, 

copper ion detoxification, intrinsic components of the 

plasma membrane and phosphatase binding. (Figure 5 

and Supplementary Tables 7–10). We selected 

c2.cp.kegg.v7.4.entrez as the reference gene set for our 

GSEA. In the GEO cohort, DEGs mainly involved 

 

 
 

Figure 1. Research flowchart. The research process of this study is depicted in Figure 1. 
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spliceosome and ECM receptor interactions (Figure 6A). 

In the TARGET cohort, DEGs were involved in 

spliceosome, ribosome and cytokine‒cytokine receptor 

interactions (Figure 6B). 

 

Construction of PPI networks and hub-gene screening 

 

We constructed PPI networks from the GEO and 

TARGET cohort DEGs separately using the STRING 

tool (Figure 7A, 7C) and used the MCODE clustering 

algorithm to filter hub gene clusters. For the GEO 

cohort, screened hub genes were linked in the 

following networks: MCODE_1 (CCND1, MAP2K1, 

CDKN2A, MCL1, CFLAR), MCODE_2 (SYN1, 

PPFIA2, NRXN2), MCODE_3 (MRPL35, MRPS18C, 

MRPL40), MCODE_4 (MAGEA3, XAGE1A, SSX5), 

MCODE_5 (TMEM147, KRTCAP2, SEC61G), 

MCODE_6 (EPHA4, PLXND1, PLXNA2) and 

MCODE_7 (ILF2, CHTOP, MAGOH; Figure 7B). 

Hub genes in the TARGET cohort were involved in 

the following networks: MCODE_1 (BIRC5, CDCA8, 

CDKN3, CKS2, H2AFZ, HDAC7, HIST1H2AD, 

HIST1H2AL, HIST1H2BG, HIST1H2BJ, HIST1H3D, 

HIST1H3G, HIST1H4D, HIST2H2BF, HIST2H4A, 

KDM1A, MAD2L1, NDC1, PBK), MCODE_2 

(MT1E, MT1F, MT1G, MT1H, MT1M, MT1X, 

MT2A, PTPN1), MCODE_3 (DDX23, LSM7, 

MAK16, MRTO4, NOLC1, POLR1E, PRPF3, 

PRPF38A, RRP1, SNRNP40), MCODE_4 (HYOU1, 

SEC61A1, SRPR, SRPRB), MCODE_5 (CCND1, 

CDC20, WDR77), MCODE_6 (LAMA4, LAMB1, 

LAMC1), and MCODE_7 (ADCY2, ADORA2A, 

AK2, CNR1, DRD2, PDE3A, PDE4B; Figure 7D). 

 

Expression analysis of MT1G-related genes 

 

By comparing the 12 common DEGs in the GEO and 

TARGET cohorts, we found that the expression of the 

MT1F, MT1M and MT1X genes was correlated with the 

expression of the MT1G gene (Pearson coefficient >0.5) 

(Figure 8A). The associations between the above genes 

and MT1G expression were shown in Figure 8B–8D. 

 

 
 

Figure 2. Characterization of single-cell RNA-seq profiles. (A) The clustering result of 2011 MSCs using the UMAP nonlinear 
dimensional reduction method colored by tissue origin. (B) MT1G was obviously more highly expressed in tumor tissues than in normal 
tissues. (C) In contrast to the primary tumor tissues, MT1G was obviously more highly expressed in metastatic tumor tissues.  
(D) Quantification of MT1G IHC staining in OS tissues (n=13) and adjacent cancerous tissues (n=13). (E) High/low H score of MT1G ICH images. 
(ns, p >0.05; *p <0.05; **p <0.01; ***p <0.001). 
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ceRNA network 

 

We obtained 3 DELs from the TARGET database 

using limma, including LINC00271, CACNA1C-AS1 

and ITGB5-AS1. MiRcode websites were subsequently 

used to predict miRNAs that were highly consistent 

with the DELs. Furthermore, we identified mRNAs 

targeted by the miRNAs through a series of databases 

and then constructed a ceRNA network with DEGs 

(Figure 9A). 

 

 
 

Figure 3. Expression analysis for MT1G and coexpressed genes. (A) MT1G expression in the GSE33382 cohort. (B) MT1G expression in 
the TARGET cohort. (C) The median expression level of MT1G in OS samples in the GSE33382 data set was used to divide patients into 
high/low expression groups, and the significant DEGs between the two groups were displayed in the form of a heatmap. (D) The median 
MT1G expression value of OS samples in the TARGET data set was used to sort the patients into high/low expression groups, and the 
significant DEGs between the two groups were displayed in the form of a heatmap. (E) Venn diagram of the intersection of upregulated DEGs 
in the GEO and TARGET datasets. (F) Venn diagram of the intersection of downregulated DEGs in the GEO and TARGET datasets. (ns, p >0.05; 
*p <0.05; **p <0.01; ***p <0.001). 
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Validating the prognostic value of MT1G expression 

in OS 

 

The results of survival analysis in different MT1G 

expression groups showed that high expression of 

MT1G was associated with poor prognosis and 

increased risk of death in OS patients (Figure 9B, 9C). 

The MT1G high expression group had a shorter 

survival time than the MT1G low expression group 

(Figure 9D). Time-related ROC curves showed that the 

expression level of MT1G could predict the survival 

times of OS patients. The area under the curve values 

were 0.756, 0.627, and 0.627 for 1-year, 3-year, and  

5-year survival, respectively (Figure 9E). In the 

validation cohort, OS patients with high MT1G 

expression had significantly lower 3-year survival and 

1-year recurrence rates than those who had low MT1G 

expression (Figure 9F, 9G). 

 

 
 

Figure 4. GO and KEGG enrichment analysis in the GEO cohort. (A) The bubble graph package was applied to visualize the results of 
KEGG enrichment analysis; the bubble size represented the number of enriched genes, and the color represented the enrichment ratio in the 
GSE33382 data set. (B) The bar graph for GO enrichment analysis; length represented significance in the GSE33382 data set. (C) A functional 
enrichment network based on KEGG analysis of the GSE33382 data set. (D) A functional enrichment network based on GO analysis of the 
GSE33382 data set. 
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Figure 5. GO and KEGG enrichment analyses in the TARGET cohort. (A) The bubble graph package was applied to visualize the results 
of KEGG enrichment analysis; the bubble size represented the number of enriched genes, and the color represented the enrichment ratio in 
the TARGET data set. (B) The bar graph for GO enrichment analysis; length represented significance in the TARGET data set. (C) A functional 
enrichment network based on KEGG analysis of the TARGET data set. (D) A functional enrichment network based on GO analysis of the 
TARGET data set. 
 

 
 

Figure 6. GSEA enrichment analysis. (A) GSEA enrichment analysis in the GEO cohort. (B) GSEA enrichment analysis in the TARGET 
cohort. 
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Figure 7. PPI and hub gene cluster network construction. (A) A PPI network from the GSE33382 data set. (B) Seven hub gene clusters 
obtained by the MCODE clustering algorithm from the GSE33382 data set. (C) A PPI network from the TARGET data set. (D) Seven hub gene 
clusters obtained by the MCODE clustering algorithm from the TARGET data set. 

8163



www.aging-us.com 10 AGING 

DISCUSSION 
 

OS is a primary bone cancer commonly found in long 

bones of children and adolescents [23]. OS is 

characterized by its high malignancy, leading to irregular 

bone growth and an impaired immune response in 

patients. OS cells mainly metastasize to the lungs and 

liver. Currently, the main treatment modalities for OS 

comprise preoperative chemotherapy, surgical resection, 

and postoperative chemotherapy. Regrettably, the above 

treatment strategies demonstrate effectiveness only in 

patients with localized OS, whereas those with advanced 

or metastatic OS often encounter chemotherapy 

resistance, leading to unfavorable treatment outcomes 

and a grim prognosis [24]. The overall five-year survival 

rate is approximately 65% for patients with local OS and 

only 20% for patients with metastatic OS [25]. The 

challenging nature of OS treatment arises from its 

impact on diverse patient populations and the complex 

genetic alterations involved [26]. 

 

Metallothioneins (MTs) are intracellular cysteine-rich 

proteins characterized by low molecular weight. 

Previous studies have demonstrated their association 

with aggressive phenotypes and treatment resistance in 

various cancers. Among MTs, MT1 has been shown to 

affect tumor growth. For example, Wang Y et al. 

showed that MT1G can inhibit proliferation and 

invasion or induce apoptosis [27]. The effects of 

MT1G differ among different cancers. Therefore, we 

focused on analyzing its biological function in OS in 

this study. 

 

MT1G exhibited high expression in both situ BMSCs 

and metastatic bone metastases, and high expression was 

associated with a poor prognosis. Previous studies have 

 

 
 

Figure 8. Expression analysis of MT1G-related genes. (A) A gene expression-related heatmap of the 12 common DEGs between GEO 
and TARGET datasets. (B–D) Expression correlations between MT1F, MT1M and MT1X and MT1G were shown as scatter plots. p <0.05 was 
set for significance. 

8164



www.aging-us.com 11 AGING 

indicated that MT1G is involved in sorafenib resistance 

through the inhibition of a novel form of regulated cell 

death known as ferroptosis [20]. MT1G-overexpressing 

cells showed a significant reduction in cell death when 

exposed to cytotoxins such as endostatin [28]. Therefore, 

we speculate that MT1G may be a potential therapeutic 

target based on its role in MSCs. In our study, we found 

that MT1G is enriched in certain cancer pathways as 

well as cytokine signaling pathways, with a typical 

representative being the PI3K-Akt signaling pathway, 

which is a pro-mitotic signaling pathway [29], and it is 

also associated with angiogenesis [30]. 

We searched for genes co-expressed with MT1G to 

determine the expression pattern of MT1G in OS. We 

found that the expression of MT1F and MT1X genes is 

positively correlated with the expression of the MT1G 

gene. Studies have shown that MT1F is associated with 

poor clinical outcomes in non-small cell lung cancer 

[31]. In thyroid cancer, compared to malignant cells of 

the primary tumor, the characteristic of lymph node 

metastatic cells is the upregulation of MT1X and MT1G 

[32]. These findings also suggest the potential value of 

genes co-expressed with MT1G, which could be used 

for clinical prognosis. 

 

 
 

Figure 9. MT1G-related ceRNA network construction and survival analysis. (A) A ceRNA network: blue diamond, lncRNAs; green 

triangle, miRNAs; red round, mRNAs. (B) Scatter plot of the expression of MT1G and OS patients’ survival time. (C) The KM curves of the high- 
and low-MT1G expression groups (D) Heatmap of the expression of MT1G and OS patients’ survival time. (E) Time-dependent ROC curve of 
MT1G expression in predicting OS overall survival. (F) Three-year survival of 13 OS patients with high or low MT1G expression. (G) One-year 
recurrence of 13 OS patients with high or low MT1G expression. (ns, p >0.05; *p <0.05; **p <0.01; ***p <0.001). 
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Effective novel biomarkers are of great help in selecting 

treatment strategies for OS [33]. We found that high 

expression of MT1G is associated with poor prognosis 

and increased risk of death in OS patients, and ROC 

curve analysis showed that the expression level of 

MT1G can predict the survival time of OS patients. This 

was also validated in the validation cohort. In 

conclusion, this study confirms the prognostic value of 

MT1G in OS. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figure 

 

 

 

 

 
 

Supplementary Figure 1. Processing of single-cell RNA-seq data. (A) The characteristic variance diagram of the gene symbols. Each 
spot represented a gene. Red spots represented highly variable genes with significant differences across cells. (B) Principal component 
sorting elbow graph based on the percentage of variance explained by each one. (C) Cluster analysis across each component. The colors 
ranging from purple to golden yellow represented the expression levels of correlated genes from low to high. (D) Correlation analysis of the 
most altered genes in each component. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1–10. 

 

Supplementary Table 1. The differentially expressed genes in GSE33382 data set. 

Supplementary Table 2. The differentially expressed genes in TARGET data set. 

Supplementary Table 3. The results of KEGG analysis in GSE33382 data set. 

Supplementary Table 4. The results of GO analysis (Biological Process) in GSE33382 data set. 

Supplementary Table 5. The results of GO analysis (Cellular Component) in GSE33382 data set. 

Supplementary Table 6. The results of GO analysis (Molecular Function) in GSE33382 data set. 

Supplementary Table 7. The results of KEGG analysis in TARGET data set. 

Supplementary Table 8. The results of GO analysis (Biological Process) in TARGET data set. 

Supplementary Table 9. The results of GO analysis (Cellular Component) in TARGET data set. 

Supplementary Table 10. The results of GO analysis (Molecular Function) in TARGET data set. 
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