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ABSTRACT

Background: LRRC59 is a leucine-rich repeats-containing protein located in the endoplasmic reticulum (ER), it
serves as a prognostic marker in several cancers. However, there has been no systematic analysis of its role in
the tumor immune microenvironment, nor its predictive value of prognosis and immunotherapy response in
different cancers.

Methods: A comprehensive pan-cancer analysis of LRRC59 was conducted from various databases to elucidate
the associations between its expression and the prognosis of cancer, genetic alterations, tumor metabolism,
and tumor immunity. Additionally, further functional assays were performed in hepatocellular carcinoma (HCC)
to study its biological role in regulating cell proliferation, migration, apoptosis, cell cycle arrest, and sensitivity
to immunotherapy.

Results: The pan-cancer analysis reveals a significant upregulation of LRRC59 in pan-cancer, and its
overexpression is correlated with unfavorable prognosis in cancer patients. LRRC59 is negatively correlated
with immune cell infiltration, tumor purity estimation, and immune checkpoint genes. Finally, the validation in
HCC demonstrates LRRC59 is significantly overexpressed in cancer tissue and cell lines, and its knockdown
inhibits cell proliferation and migration, promotes cell apoptosis, induces cell cycle arrest, and enhances the
sensitivity to immunotherapy in HCC cells.

Conclusions: LRRC59 emerges as a novel potential prognostic biomarker across malignancies, offering promise
for anti-cancer drugs and immunotherapy.

INTRODUCTION improvement, particularly for patients who experience

post-operative recurrence or cancer metastasis [2].
Cancer represents a foremost public health Immunotherapy is an emerging cancer treatment
concern and stands as one of the leading causes of approach with huge potential applications, but it still
human mortality [1]. Despite substantial advances in needs to overcome the accompanying side effects [3].
medical science, the treatment of cancer still requires Previous studies have indicated that tumor mutational
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burden (TMB), immune cell infiltration proportions,
and PD-1/PD-L1 expression are well known predictors
of cancer immunotherapy response [4]. Nonetheless,
these molecular markers have certain limitations in
predicting immunotherapy responses in cancer patients
[5]. Therefore, there is an urgent need to explore novel
biomarkers for assessing responses to these immuno-
therapeutic approaches, this exploration can aid in
the development of more effective immunotherapies,
ultimately improving clinical outcomes for cancer
patients.

Leucine Rich Repeat Containing 59 (LRRC59) is
a protein rich in leucine repeats located in the
endoplasmic reticulum and mitochondrial nucleus
[6]. It is closely associated with protein misfolding,
ER stress, and protein ubiquitination [7]. LRRC59
acts as an intracellular companion protein to FGF1,
it interacts with the receptor of FGF1 through its
cytoplasmic domain, facilitating the nuclear entry of
FGF1 and subsequently inhibiting apoptosis [8, 9].
Similarly, LRRC59 interacts with CIP2A and mediates
its nuclear translocation, which promotes deregulation
of the cell cycle and increases cancerous phenotypes in
prostate cancer [10]. LRRC59 has also been shown in
some studies to be significantly upregulated in several
cancer tissues and to be related to a poor prognosis
[7, 11-15]. Nevertheless, the potential mechanism
underlying its antitumor function related to tumor
immunity and metabolism remain unclear.

In this study, we conducted a comprehensive analysis
of LRRC59 in pan-cancer, detecting its expression
and the associations with prognosis, TMB, tumor
metabolism, and chemotherapy sensitivity. Additionally,
we studied the connection between LRRC59 and
immune infiltration, immune-related antigens, and
immune checkpoint genes. Further, we validated the
biological functions of LRRC59 in hepatocellular
carcinoma (HCC). Finally, we established a predictive
model based on LRRC59-related genes in HCC, and
its accuracy and reliability were validated through
external datasets. Our findings assess the role of
LRRC59 in tumor immunity, providing valuable
insights for its potential as a novel target in tumor
immunotherapy.

MATERIALS AND METHODS
Data acquisition and differential analysis

The expression of LRRC59 in human cancers
was comprehensively analyzed using the TIMER2

expression of LRRC59 in normal human tissues
were explored using the Harmonizome3 database
(https://maayanlab.cloud/Harmonizome). The pan-
cancer dataset from the UCSC Xena database
(https://xena.ucsc.edu/) and the TCGA-LIHC dataset
from the GDC database (https://portal.gdc.cancer.gov/),
the LIRI-JP dataset from the ICGC database
(https://dcc.icgc.org/), as well as immunohistochemistry
data for LRRC59 in HCC patients from the HPA
database (https://www.proteinatlas.org/) were acquired
and analyzed in this study.

Prognostic analysis of LRRC59 in pan-cancer

We employed the GEPIA2 database to analyze the
correlation between LRRC59 expression and pan-
cancer prognosis, including Overall Survival (OS) and
Disease-Free Survival (DFS). Additionally, we utilized
the Sangerbox (http://sangerbox.com/) to investigate
the association of LRRC59 expression with Disease-
Specific Survival (DSS) and Progression-Free Survival
(PFS) in pan-cancer. The median expression of LRRC59
was used as the grouping cutoff.

Drugs sensitivity analysis

The CellMiner database (https://discover.nci.nih.gov/
cellminer/home.do) was used to obtain RNA expression
data for cancer cell lines as well as drug sensitivity
data. Clinically tested and FDA-approved drug data
were selected for analysis. The correlation analysis was
performed using the Spearman method. Missing values in
the drug data were imputed using the “impute” package.

Genetic alterations analysis in pan-cancer

The cBioPortal database (https://www.cbioportal.org/)
were utilized to analyze the mutation frequency
and genetic alterations of LRRC59 in various cancers.
The TIMER2 database was employed to further
confirm mutation frequency alterations. The Sangerbox
was used for correlation analysis between LRRC59
expression and Human TMB, Mutant-Allele Tumor
Heterogeneity (MATH), and Microsatellite Instability
(MSI) in pan-cancer. Somatic mutation data related to
TCGA-LIHC and ICGC-LIRI datasets were obtained
from GDC and ICGC databases, and mutation analysis
was conducted using the “maftools” package [16].

Enrichment analysis

LRRC59 interacting genes were obtained from the
STRING database (https://cn.string-db.org/), Gene

(http://timer.comp-genomics.org), GEPIA2  (http:// Ontology (GO) and Kyoto Encyclopedia of Genes and
gepia2.cancer-pku.cn), and UALCAN (https:/ Genomes (KEGG) enrichment analyses were conducted
ualcan.path.uab.edu) databases. Additionally, the using Metascape database (https://metascape.org). The
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Hallmark gene sets were acquired from MSigDB
database (https://www.gsea-msigdb.org/), and the score
of each Hallmark pathway in each in the HCC sample
were calculated based on the “GSVA” package [17].

Clustering and differential analysis

Based on the most significantly enriched Gene Ontology
Biological Processes (GO-BP) pathways composed of
LRRC59 and its interacting genes obtained from the
MSigDB database, clustering analysis were performed
on the HCC dataset using the “ConsensusClusterPlus”
package [18]. Differential analysis between various
clusters was conducted using the “limma” package [19],
where genes with logFoldChange>1 and adjusted p-
value<0.05 were considered to be statistically different.
Next GSEA enrichment analysis was performed using
the “clusterProfiler” package [20].

Construction of HCC prediction model

Based on the clustered genes mentioned above, univariate
Cox regression analysis on the TCGA-LIHC dataset
was first performed (with survival time greater than
0). Next, three machine learning algorithms (LASSO,
randomForest, Xgboost) were employed for further
gene selection. Finally, multivariate Cox regression
analysis was used to determine the final modeling
genes. The accuracy of the model was validated in the
ICGC-LIRI dataset.

Immune infiltration estimation and prediction of
immunotherapy outcomes

The correlation between LRRC59 expression and
immune cell infiltration, tumor purity estimation, and
immune checkpoint expression in various cancers was
analyzed using the TIMER2 database and Sangerbox.
11 immune therapy cohorts were obtained from the
GEO database (https://www.ncbi.nlm.nih.gov/geo/) and
analyzed for the differences in LRRC59 expression
among different response groups, as well as its predictive
accuracy. The “IOBR” package was utilized to analyze
the differences in immune cell infiltration and tumor
purity estimation among different subtypes in the HCC
dataset [21]. Additionally, The TIDE online website
(http://tide.dfci.harvard.edu/) was used to evaluate the
response of different HCC subtypes to immunotherapy,
and the “Submap” algorithm was used to assess
the response of each subtype to TACE treatment
(GSE104580) and Sorafenib treatment (GSE109211) [22].

Cell culture and transfection

The cell lines (LO2, HuH-7, Hep-G2, JHH-5, SNU-387,
and SUN-449) were obtained from Xiangya Medical

College Cell Bank (Changsha, China), and were cultured
according to previously reported methods [23]. ShRNAs
were acquired from Genechem (Shanghai, China), and
cell transfection was carried out following recommended
procedures. The shRNA sequences are as follows:

ShLRRC59#1, 5’-CCTGGATCTGTCTGTCTTGTAAT
AA-3’;

ShLRRC59#2, 5’-GCAGTTAAAGCAGTGCAAA-3’;
ShNC, 5’-AATACGGCGATGTGTCAGG-3’.

Real-time quantitative PCR

The PrimeScript RT Reagent Kit (TaKaRa, Shiga,
Japan) was employed for cDNA synthesis. SYBR
Premix ExTaq (TaKaRa, Japan) was used for gPCR.
The mRNA primers were as follows:

LRRC59, Forward 5’-TGACTACTCTACCGTCGGAT
TT-3,

Reverse 5’-TTCAGGTCCAACCACTTCAGG-3,

Actin, Forward 5’~ACGCCAACACAGTGCTGTCTG-3,
Reverse 5’-GGCCGGACTCGTCATACTCC-3".

Western blot, CCK-8, ELIS, clone formation assay,
wound healing, and transwell assays

The procedures for the above experiments have been
described in detail in a previous study [23]. The following
antibodies were used: LRRC59 (1:1000; Proteintech,
Rosemont, IL, USA), Actin (1:5000, Proteintech), BCL-2
(1:1000; Proteintech), BAX (1:1000; Proteintech).

Cell cycle analysis and apoptosis detection

Cell cycle analysis was conducted using the Cell Cycle
Analysis Kit (BD Biosciences, Shanghai, China) and
measured according to its protocol. In brief, 1x108
stable transfected cells were fixed in 70% ethanol for
24 hours, then washed twice with PBS, and stained
with propidium iodide (PI) in the dark for 30 minutes,
finally subjected to flow cytometric detection. To detect
apoptosis, the Annexin V-FITC Apoptosis Detection
Kit (BD Pharmingen, La Jolla, CA, USA) was used.
Briefly, 1x10° stable transfected cells were suspended
in 200 pl binding buffer containing 5 pl Annexin
V-FITC and 10 ul PI stain, incubated the cells for
30 minutes in the dark, and finally flow cytometric
detection was performed.

ProcartaPlex multiple immunoassays and T cell-
mediated tumor cell-killing assays

Cell culture supernatants were collected and centrifuged
for detecting the multiple cytokines and chemokines
using the Human Cytokine and Chemokine 34-Plex
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ProcartaPlex Panel 1A kit and Luminex detection
platform (Thermo Fisher Scientific, Waltham, MA, USA)
according to manufacturer’s instruction. T cell was
extracted from the peripheral blood of healthy donors
who gave written informed consent, Dynabeads™
Untouched™ Human CD8 T Cells Kit (Thermo Fisher
Scientific, Waltham, MA, USA) was used to extract
the T cells, and the detailed steps are performed based
on the recommended protocol. 1x106 HCC cells were
seeded in 12-well plate overnight, then co-culture with
T cells for 48h, wash the cell with PBS twice and then
stain the left cells with crystal violet, finally a microplate
reader was used to detect OD values at 570 nm.

Statistical analysis

All data analyses in this study were conducted using R
(version 4.2.1) and GraphPad Prism 9. The t test was
used for normal distribution, the Wilcoxon rank sum
test was used for non-normal distribution, and the
Kruskal-Wallis was used for comparison between two
or more groups of data. Univariate Cox proportional
hazard regression was utilized to examine the relevance
between PCD index and overall survival, while
multivariate Cox regression was employed to evaluate
the independent prognostic significance of PCD index
compared to other clinical parameters. A two-way
ANOVA test was used to determine the effect of
LRRC59 and T cell on cell survival. p<0.05 indicates a
statistical difference.

Availability of data and material

The datasets generated and/or analyzed during the
current study are available from the corresponding
author upon reasonable request.

RESULTS
LRRC59 is overexpressed in pan-cancers

Analysis from the Harmonizome3 database indicated
that LRRC59 can be detected in human normal
tissues (Supplementary Figure 1). Then analysis from
the TIMER2 database revealed that LRRC59 was
significantly upregulated in multiple cancers compared
to the adjacent normal tissues, including UCEC,
STAD, PRAD, LUAD, LUSC, LIHC, KIRC, KIRP,
ESCA, GBM, HNSC, CESC, CHOL, COAD, BLCA,
BRCA, only in KICH, PCPG and THCA, LRRC59
was downregulated (Figure 1A). As some cancers
lacked corresponding adjacent normal tissue data in
the TCGA dataset, we analyzed LRRC59’s expression
using the GEPIA2 database for a comprehensive
exploration. The results showed that LRRC59 was
significantly upregulated in DLBC, LGG, OV, SARC,

SKCM, TGCT, THYM, UCS, only LAML showed
higher expression in adjacent normal tissues compared
to the corresponding cancer tissues (Figure 1B).
Pathological staging data about the cancers showed
differential expression of LRRC59 in ACC, BLCA,
ESCA, KICH, LIHC, LUAD, PAAD, THCA and UCS
(Figure 1C). Analysis from the UALCAN database
demonstrated that LRRC59 protein levels was elevated
in BRCA, OV, COAD, KIRC, UCEC, LUAD, LUSC,
HNSC, GBM and LIHC than in normal tissues (Figure
1D). The full names of all cancer abbreviations are
listed in Table 1.

We analyzed the discriminative ability of LRRC59
for tumor samples using the TCGA pan-cancer dataset
provided by the UCSC Xena database as well, the
results showed that the diagnostic AUC value of
LRRC59 exceeded 0.5 in 19 cancers and exceeded 0.9
in 4 cancers (Supplementary Figure 2). In summary,
LRRC59 is significantly upregulated in most cancers
and demonstrates high diagnostic efficacy.

Elevated LRRC59 expression correlates with poor
prognosis and chemoresistance in multiple cancers

Analysis from the GEPIA2 database revealed that
high expression of LRRC59 was associated with
shorter OS in 11 cancer types, including ACC, BLCA,
HNSC, KICH, KIRP, LGG, LIHC, LUAD, MESO,
SKCM, and UVM. Only in COAD, patients with
high LRRC59 expression had longer OS (Figure 2A).
Moreover, patients with high LRRC59 expression had
shorter DFS in ACC, CESC, LIHC, LUSC, PAAD and
UVM, but longer DFS only in LAML (Figure 2A).
Similar findings were obtained from the analysis using
Sangerbox, indicating that high LRRC59 expression
was closely related to shorter DSS and PFS in various
cancers (Figure 2B, 2C). In summary, high LRRC59
expression serves as an effective prognostic marker
for poor outcomes in multiple cancers. The analysis
of drug sensitivity demonstrated that among the
top 16 drugs most correlated with LRRC59 expression,
14 drugs showed a positive correlation with 1C50
values, indicating that these drugs may be more
ineffective in patients with high LRRC59 expression,
only Vinorelbine and Kahalide F exhibited a negative
correlation with 1C50 values (Supplementary Figure 3).

Mutation landscape of LRRC59 in various cancers

Analysis of the TCGA pan-cancer dataset in the
cBioPortal database revealed genetic alterations of
LRRC59 in multiple cancers. The highest alteration
frequency was observed in UCS, followed by BRCA
and MESO, and the most common type of genetic
alteration was “amplification” (Figure 3A). Consistent
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GEPIA2 databases. (C) The expression of LRRC59 in different pathological stages of pan-cancer. (D) Protein expression levels of LRRC59 in

Figure 1. LRRC59 is overexpressed in cancer tissues. (A, B) The expression of LRRC59 in pan-cancer was analyzed in the TIMER2 and
pan-cancer.
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Table 1. The abbreviations of different cancer types.

Cancer type

Abbreviation

Adrenocortical Cancer
Bladder Cancer

Breast Cancer

Cervical Cancer

Bile Duct Cancer
Colon Cancer

Large B-cell Lymphoma
Esophageal Cancer
Glioblastoma

Head and Neck Cancer
Kidney Chromophobe

Kidney Clear Cell Carcinoma

Kidney Papillary Cell Carcinoma

Acute Myeloid Leukemia
Lower Grade Glioma
Liver Cancer

Lung Adenocarcinoma

Lung Squamous Cell Carcinoma

Mesothelioma
Ovarian Cancer
Pancreatic Cancer

Pheochromocytoma and Paraganglioma

Prostate Cancer
Rectal Cancer
Sarcoma

Melanoma

Stomach Cancer
Testicular Cancer
Thyroid Cancer
Thymoma
Endometrioid Cancer
Uterine Carcinosarcoma
Ocular melanomas

ACC
BLCA
BRCA
CESC
CHOL
COAD
DLBC
ESCA
GBM
HNSC
KICH
KIRC
KIRP
LAML

LGG
LIHC
LUAD
LUSC
MESO

oV
PAAD
PCPG
PRAD
READ
SARC
SKCM
STAD
TGCT
THCA
THYM
UCEC

ucCs

UVM

with these findings, TIMER2 database also showed
genetic mutations of LRRC59 in various cancers, with
READ exhibiting the highest mutation rate, followed
by UCEC and BRCA (Figure 3B). A lollipop chart was
used to visualize all mutation sites of LRRC59, with
missense mutations being the most common mutation
sites (Figure 3C). Survival analysis demonstrated that
patients with genetic alterations in LRRC59 had longer
DFS and DSS compared to those without genetic
alterations (Figure 3D-3E). Additionally, they also
exhibited longer OS and PFS (Figure 3F, 3G).

The levels of TMB, MSI, and MATH are considered
closely related to the therapeutic response of cancer

patients [24]. Thus, the correlation between
LRRC59 expression and these factors were analyzed
using Sangerbox. The results showed that LRRC59
expression was positively correlated with TMB in
SARC, STAD, ACC, UCS, LUAD, LGG, UCEC,
BRCA, PAAD, THYM, BLCA, and KIRC, while
negatively correlated with TMB in THCA, KIRP, and
CESC (Figure 3H). it was also positively correlated
with MATH in BLCA, SARC, LUSC, ESCA, LUAD,
and BRCA, but negatively correlated with DLBC
(Figure 3l). Furthermore, LRRC59 expression was
positively correlated with MSI in UVM, UCEC, ESCA,
STAD, SARC, KIRC, COAD, BLCA, and CESC, while
a negative correlation with DLBC (Figure 3J).
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LRRC59 is associated with pan-cancer immune
infiltration and immunotherapy

The correlation between LRRC59 expression and
immune cell infiltration in pan-cancer were analyzed
using the CIBERSORT algorithm provided by the
TIMER2 database, the results indicated that LRRC59
expression was positively correlated with neutrophils,
resting mast cells, and MO macrophages in most
cancers, while it was negatively correlated with memory
B cells, activated mast cells, and activated NK cells
(Figure 4A). The tumor microenvironment is complex,
and we used Sangerbox to analyze the immune and
stromal compositions in pan-cancer. The analysis
results showed that LRRC59 expression was negatively
correlated with ESTIMATE Score in most cancers,
indicating a positive correlation with tumor purity in
pan-cancer (Figure 4B).

Targeting immune checkpoints has shown promising
results in some cancers [25]. Therefore, the correlation
between LRRC59 and common immune checkpoints,
including CTLA-4, TIM-3, LAG-3, PDCD1, and TIGIT
were analyzed in our project. The results revealed that

Overall Survival

Disease Free Survival

Percent survival

LRRC59 expression was positively correlated with TIM-
3 and TIGIT expression, while negatively correlated with
LAG-3 and PDCDL (Figure 4C). For patients with high
expression of LRRC59, immunotherapy targeting TIM-3
and TIGIT may be more effective. We then analyzed
the correlation between LRRC59 and corresponding
checkpoints in 11 immunotherapy cohorts, as well as the
expression differences of LRRC59 among different
immunotherapy groups. It showed that the AUC values
of LRRC59 in predicting immunotherapy response
exceeded 0.5 in 6 immunotherapy cohorts, in the
IMvigor210 cohort (BLCA), the AUC value was 0.580,
which meant LRRC59 expression was relatively higher
in the immunotherapy response group (CR/PR). In the
GSE91061 cohort (Melanomas), the AUC value was
0.349, which meant LRRC59 expression was higher in the
immunotherapy resistance group (PD/SD) (Figure 4D).

Poor prognosis
expression

in HCC with high LRRC59

20 genes that interact with LRRC59 were obtained from
the STRING database (Supplementary Figure 4A).
Enrichment analysis showed that the most relevant

Disease Free Survival Disease Free Survival
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Tumor type HR HR(95%CI) p.value
TCGA-ACC 2454 2.45(1.39,4.34) = 0.002
TCGA-BLCA 1.481 1.48(1.13,1.95) = 0.005
TCGA-HNSC 1.494 1.49(1.10,2.03) = 0.010
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Figure 2. High expression of LRRC59 indicates a poor prognosis for pan-cancer

DFS, OS, DSS and PFS.
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biological processes (BP) of LRRC59 and its
interacting genes were the ER-associated degradation
pathway (ERAD) and negative regulation of translation
(Supplementary Figure 4B), the most relevant
molecular functions (MF) were carbohydrate binding
(Supplementary Figure 4C), the most relevant cellular
components (CC) were rough ER (Supplementary
Figure 4D). The most relevant KEGG pathway
was Protein processing in the ER (Supplementary
Figure 4E). The above enrichment analysis results
indicate that LRRC59 may play an important role in
protein synthesis and degradation. Given that the liver
contains large number of enzymes responsible for
the metabolism, and is an important site for protein

synthesis in the human body [26], we speculate that
LRRC59 dysfunction may play a crucial role in the
progression of HCC.

The results from the HPA database showed weak
expression of LRRC59 in normal liver tissue, while it
was strongly expressed in HCC (Supplementary Figure
5A). In the TCGA-LIHC dataset, paired expression
analysis revealed that the expression of LRRC59 in
cancer tissues is elevated significantly (Supplementary
Figure 5B). Survival analysis and prediction showed
that patients with high LRRC59 expression had shorter
survival times in liver cancer (Supplementary Figure
5C, 5D). Similar conclusions were drawn from the
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Figure 3. Mutational landscape of LRRC59 in pan-cancer. (A, B) Genetic alterations of LRRC59 in pan-cancer were analyzed in the
cBioPortal and TIMER2 databases. (C) Visualization of LRRC59 mutation sites in pan-cancer. (D—G) Analysis of the LRRC59 gene alterations on
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ICGC-LIRI dataset (Figure 5E-5G). A total of 108
ER-related degradation pathway component genes were
obtained from the MSigDB database (Supplementary
Table 1), and then screened in the TCGA-LIHC dataset

through univariate Cox regression analysis, three machine
learning algorithms, and multivariate Cox regression
analysis, finally two genes, HM13 and MAN1A1, were
obtained (Supplementary Figure 5H-5M). The risk score
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of each sample was calculated based on the sum
of the products of the multivariate Cox regression
coefficient and gene expression. The results showed
that the prediction model based on the two genes has
relatively accurate prediction performance in both
the TCGA-LIHC and ICGC-LIRI datasets, their AUC

consensus matrix k=3

values for survival prediction in 1, 2, and 3 years all
exceeded 0.6 (Supplementary Figure 5N-5S).

HCC datasets were clustered based on the ERAD
genes, and the differences in LRRC59 expression and
clinical characteristics of various HCC subtypes were
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Figure 5. The prognosis of HCC subtypes with LRRC59 overexpression is poor. (A—C) The TCGA-LIHC dataset was clustered and
subtyped, and the relationship between LRRC59 expression and prognosis in each subtype was analyzed. (D—F) The ICGC-LIRI dataset was
clustered and subtyped, and the relationship between LRRC59 expression and prognosis in each subtype was analyzed. (G, H) Visualization of
clinical characteristics of each HCC subtype. (1, J) Clinical enrichment analysis of mutations in each HCC subtypes.
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investigated. In both TCGA-LIHC and ICGC-LIRI
datasets, the subtype with high LRRC59 expression
had poor prognosis (Figure 5A-5F). The alluvial
diagram revealed that patients with clusterl had the
highest proportion of pathological grade G4 in the
TCGA-LIHC dataset (Figure 5G), and patients with
cluster3 had the highest mortality rate in the ICGC-
LIRI dataset, and these individuals were concentrated
in advanced stages of cancer (stage 11-1V) (Figure 5H).
Mutation clinical enrichment analysis was performed
on the three subtypes in the TCGA-LIHC dataset,
and it showed that the subtype with high LRRC59
expression was most related to TP53 mutations (Figure
51), and the subtype with high LRRC59 expression
was most associated with SYNE1 mutations in the
ICGC-LIRI dataset (Figure 5J).

Cell cycle regulation in high LRRC59-expressing
HCC

The pathway scores for each subtype in the ICGC-
LIRI dataset were calculated based on the 50 Hallmark
pathway gene sets provided by the MSigDB database,
the results showed that there were 30 pathways among
each subtype in total (Figure 6A). In the HALLMARK
G2M CHECKPOINT pathway, Cluster3 had the highest
score, while Clusterl had the lowest, indicating a
positive correlation between LRRC59 and the G2M
CHECKPOINT pathway (Supplementary Figure 6A).
The subtype with high LRRC59 expression in the
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ICGC-LIRI dataset was Cluster3, which had the poorest
prognosis, while Clusterl had the lowest LRRC59
expression level and the best prognosis. Therefore, we
conducted differential analysis and GSEA enrichment
analysis between the two groups. The results showed
that Cluster3 was associated with DNA replication
processes, while Clusterl was associated with metabolic
pathways such as xenobiotic metabolic process, mono-
oxygenase activity (Figure 6B—6D). Further KEGG
enrichment analysis was performed separately for
upregulated and downregulated expressed genes, it
indicated that Cluster3 was most closely associated
with cell cycle pathway (Figure 6E), while Clusterl
was closely associated with Metabolism of xenobiotics
by cytochrome P450 (Figure 6F).

LRRC59

Poor immunotherapeutic efficacy in

overexpression HCC

The eight immune cell infiltration algorithms of the
“lOBR” package were used to analyze the differences
in immune cell infiltration between subtypes in the
ICGC-LIRI dataset. The results showed that there are
various differences in immune cell infiltration levels
among the three subtypes (Figure 7A). Specifically,
the CIBERSORT analysis showed that Dendritic
resting cells and T regulatory cells (Tregs) had higher
infiltration levels in Cluster3, while Monocytes had
higher infiltration levels in Clusterl. This is consistent
with the previous analysis based on TCGA data about

C, Cluster1, Cluster3
i f
i i
. » ow
s ! ‘ stable
z 1 L O down
3 i i
e o gt i
g ,!~ o
T s L
1
p—— (2.
| i
Ot (139%)
logFC.
D :
g
2 e NES
5 o 2 g 2 GSEA
5 2 § 8 s 5 [ co-ep
& ggﬁgg - 1 | GO-MF
5 c e 3 @
. §s8s8§d g 33 3 G0-co
sz2§E84s522 23 > 8 € £
85 2 OS82 Zc>208Ff EQ s 0
S EEEEEEREEEE %
c 53538328 8B8:82838%£2 <23
c 2585 §ctzg832a8s8 E22 -
,gugstzumggmém‘-‘; e 5 8
2 53 £ 3o B2 2 58 e 6 a 83
2 & 3 & & T E v © 9 ]
2 £ 0098 888 5% 8 5 5 & £ &
55 3£ £ 8 g35 238 82732 -2
153 2 T o 8 ¥ 2 3 ® ¢ ¢ @ g €
S 9 9 5 2P o= 832 8 s 8 R8O g
£33 ¢ 8 §d o< 228528 8 3
Z £ F 6 § 2 £ 2 28 8 % £ E 2 a8 -3
G EE R 35 % %0 E % 865 8= 3L 3

Cluster1

-_--_

Cluster1 - KEGG

Cluster3
GSEA

E F

Cluster3 - KEGG

15a00990: Metabolism of xenobiotcs by cytochvrome PASO
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immune cell infiltration estimates in various cancers
(Supplementary Figure 6B). Tumor purity analysis
demonstrated that Cluster3 had lower stromal scores,
immune scores, and ESTIMATE scores, indicating that
the tumor purity is higher, which is also consistent with
the previous analysis (Figure 7B—7E). According to the
data provided by the TIDE online tool, Cluster3 in the
ICGC-LIRI dataset had higher TIDE scores and lower
MSI scores, indicating that Cluster3 may not respond
well to immunotherapy, while Clusterl may be more
sensitive to immunotherapy (Figure 7F-71). Similarly,
the subtype with high LRRC59 expression had the
highest TIDE scores and Exclusion scores indicating a
poor response to immunotherapy in the TCGA-LIHC
dataset (Figure 7J-7M).

Additionally, the “Submap” algorithm was used to
predict the efficacy of TACE and Sorafenib treatments
for different subtypes of HCC. The results showed that
in the ICGC-LIRI dataset, Cluster3 was associated
with insensitivity to TACE treatment, while Clusterl
was associated with sensitivity to TACE treatment
(Supplementary Figure 7A). Clusterl was also
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associated with insensitivity to Sorafenib treatment
(Supplementary Figure 7B). Analysis in the TCGA-
LIHC dataset revealed that HCC with low LRRC59
expression were associated with sensitivity to TACE
treatment (Supplementary Figure 7C), and insensitivity
to Sorafenib treatment (Supplementary Figure 7D).

LRRC59  knockdown
proliferation and migration

inhibits HCC  cells

To further verify the biological role of LRRC59 in
HCC, some experiments in vitro were performed. First,
the mRNA protein of LRRC59 were detected in normal
liver cell and HCC cell lines, the results indicated
that its expression was upregulated in HCC cells
compared to LO2 (Figure 8A-8C). Among these HCC
cell lines, SNU-387 and SNU-449 exhibited the highest
LRRC59 expression. Therefore, they were selected
for subsequent experiments. Then LRRC59 was knock-
down and verified by both gPCR and western blot in
SNU-387 and SNU-449 (Figure 8D-8I). Functional
assays including CCK-8 and colony formation assays
revealed that LRRC59 knockdown undermined cell

Cluster3

Figure 7. Immune infiltration and therapeutic analysis of HCC subtypes. (A) Analysis of immune cell infiltration in HCC subtypes.
(B—E) Estimation of tumor purity for HCC subtypes. (F-1) Analysis of the effect of immunotherapy on HCC subtypes in the ICGC-LIRI dataset.
(J-M) Analysis of the effect of immunotherapy on HCC subtypes in the TCGA-LIHC dataset.
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viability (Figure 8J-8M), the scratch assays and
transwell assays demonstrated that LRRC59 knockdown
impaired cell migration ability (Figure 8N-8Q).

LRRC59 knockdown induces cell cycle arrest and
apoptosis in HCC cells

The previous bioinformatics analysis showed
a positive correlation between LRRC59 and cell
cycle regulation. Therefore, we used flow cytometry

to analyze the role of LRRC59 on the cell
cycle. The results showed that LRRC59 knockdown
in SNU-387 and SNU-449 induced GO/G1 arrest
(Figure 9A-9D). Moreover, LRRC59 knockdown also
promoted apoptosis in the HCC cells (Figure 9E-9H).
Western blot results also showed that downregulated
LRRC59 resulted in an increase in the expression of
the pro-apoptotic protein Bax and a decrease in the
expression of the anti-apoptotic protein Bcl-2 (Figure
91-9L).
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Figure 9. LRRC59 knockdown induced cell cycle arrest and apoptosis in HCC cells. (A-D) Flow cytometry was used to detect the role
of LRRC59 on cell cycle arrest. (E-H) Flow cytometry was used to detect the role of LRRC59 on cell apoptosis. (I-L) Western blot showed the
expression of apoptosis-related markers in SNU-387 and SNU-449.
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LRRC59 knockdown enhances
sensitivity in HCC cells

immunotherapy

Based on the previous immunoinformatics analysis,
patients with high LRRC59 expression may have a
poorer response to immunotherapy (Figure 7). We
further validated it using in the HCC cells. First,
ProcartaPlex multiple immunoassays between LRRC59
knockdown and the negative control groups in SNU-
387 was performed to detect the chemokines and
cytokines, and it showed that CCL2, CCL3, CCL4,
CXCL1, CXCL10 and CXCL12 were significantly
increased when LRRC59 was knockdown (Figure
10A). Moreover, the results of ELISA indicated that
the protein level of these chemokines were obviously
higher as well (Figure 10B, 10C). Finally, T cell-
mediated tumor cell-killing assay was performed to
detected the role of LRRC59 in attenuating the efficacy
of immunotherapy, the results showed that LRRC59
knockdown enhances the efficacy of immunotherapy
strongly (Figure 10D-10G). Taken together, these
results suggested that targeting LRRC59 may benefit
patients from immunotherapy.

DISCUSSION

LRRC59 is a tail-anchored protein located to the
endoplasmic reticulum and the nuclear envelope, with

SNU-387

—————— Em Con

shCon

0.5

shLRRC59#2 shLRRC59#1

Cluster
M shCon
M shLRRC59

T cells

B

a transmembrane domain near its C-terminus [27]. It
targets the ER membrane after translation and directly
interacts with mRNA translation factors [28]. LRRC59
has recently been discovered to play an important
role in regulating mRNA translation of secreted or
membrane-encoded proteins through the SRP pathway
[27, 28]. LRRC59 promotes cancer progression by
regulating the nuclear transport of exogenous FGF1,
and accelerates cancer cells proliferation and metastasis
in various cancers [9, 29]. LRRC59 does not affect the
translocation of FGF1 to the cytoplasm, but rather
facilitates the import of cytoplasmic FGF1 to the
nucleus through interactions with Kpns, coupled with
LRRC59 movement along the ER and nuclear envelope
membranes [9]. Moreover, LRRC59 in the ER may
also be involved in protein ubiquitination, though
the specific mechanism remains to be elucidated [7].
LRRC59 appears to be a potential biomarker in certain
cancers, however, no study has performed an in-depth
pan-cancer analysis of LRRC59 until now. In this study,
we conducted a comprehensive bioinformatics analysis
of LRRC59 using multiple public databases, aiming
to systematically determine its expression patterns,
prognostic value, and potential functions in pan-cancer.

Some studies have revealed that LRRC59 was

overexpressed in several cancers and promoted tumor
progression [7, 11, 12]. Consistent with these studies,

C
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Figure 10. LRRC59 knockdown rendered HCC cells more sensitive to immunotherapy. (A) Heatmap of various cytokines and
chemokines detected by ProcartaPlex multiple immunoassays between LRRC59 knockdown and the negative control groups in SNU387 cell
culture supernatants. (B, C) The levels of some chemokines detected using ELISA between LRRC59 knockdown and the negative control
groups in SNU-387 and SNU-449. (D-G) T cell-mediated tumor cell-killing assay between LRRC59 knockdown and negative control groups in

SNU-387 and SNU-449.
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our findings demonstrated significant overexpression of
LRRC59 in most cancers compared to the corresponding
normal tissues. Moreover, the expression levels of
LRRC59 showed a positive correlation with clinical
pathological stages in ACC, BLCA, ESCA, KICH,
LIHC, LUAD, PAAD, THCA and UCS. And our
prognosis analysis also revealed a negative correlation
between LRRC59 expression levels and the prognosis of
cancer patients in various types of cancer. Furthermore,
our drug sensitivity analysis suggested that LRRC59 may
reduce the sensitivity of cancer cells to chemotherapy
drugs. Therefore, LRRC59 holds promise as a novel
biomarker for pan-cancer diagnosis and prognosis.

The tumor immune microenvironment (TIME)
constitutes a crucial component of the tumor micro-
environment (TME) and is closely associated with
tumor occurrence, development, metastasis, and drug
resistance [30]. Tumor immunotherapy has advanced
significantly in recent years. However, treatment
efficacy still needs to be improved, necessitating the
urgent identification of new therapeutic targets [31].
Our analysis of LRRC59 in relation to pan-cancer
immune infiltration and immunotherapy reveals a
positive correlation between LRRC59 expression and
TIM-3 and TIGIT, while a negative correlation with
LAG-3 and PDCD1. Immunotherapy targeting TIM-3
and TIGIT may be able to overcome immunotherapy
resistance caused by LRRC59 overexpression.

Researches have indicated that LRRC59’s involvement
in ER stress. The unfolded protein response (UPR)
triggered by ER stress stands as a pivotal signaling
pathway overseeing cellular adaptation to unfavorable
microenvironments [32]. This pathway assumes a vital
role in various cellular processes, such as tumor cell
survival, and the maintenance of protein homeostasis
[33]. Our enrichment analysis results revealed that
LRRC59 was an important gene involved in protein
synthesis and degradation within cancer cells. Because
the liver is the most essential organ for protein
synthesis in the body, amino acids absorbed from the
digestive tract undergo processes like protein synthesis,
deamination, and transamination in the liver, then the
synthesized proteins enter the bloodstream to meet the
demands of organs and tissues throughout the body,
so it hints LRRC59 may play a critical role in the liver.
Therefore, we chose HCC cells as the study object to
further verify the biological function of LRRC59. Firstly,
we used bioinformatics methods to find a positive
correlation between LRRC59 expression and dendritic
resting cell, as well as T regulatory cell in HCC, which
meant that HCC patients with LRRC59 overexpression
may be poor responsive to immunotherapy [34]. On the
other hand, our in vitro experimental results confirmed
that LRRC59 was overexpressed in HCC tissues and

cells, which played a crucial role in promoting
HCC cell proliferation, migration, and resistance to
immunotherapy. Targeting LRRC59 may inhibit HCC
progression and improve the efficacy of immunotherapy.

Although our study illustrates the multiple roles of
LRRC59 in pan-cancer, it does have some limitations.
Firstly, it remains uncertain how LRRC59 affects the
efficacy of immunotherapy by modulating immune
processes, although our results indicate that LRRC59
leads to immunotherapy resistance. Secondly, while
our study may serve as a reference for future research,
we did not conduct in-depth experiments to delve
into the biological functional processes and molecular
mechanisms about LRRC59 in pan-cancer.

Overall, we revealed that LRRC59 exhibits abnormal
expression in cancer tissues and holds high diagnostic
and prognostic value in this study. Additionally, we
elucidated the role of LRRC59 in human cancer
progression and treatment resistance through drug
sensitivity analysis, enrichment analysis, mutation
analysis, and immune analysis. We further validated
these findings with a series of in vitro experiments in
HCC. In summary, our research suggests that LRRC59
may serve as a potential novel prognostic marker and
therapeutic target in pan-cancer.
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Supplementary Figure 1. The expression of LRRC59 in human normal tissues.
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Supplementary Figure 2. The diagnostic accuracy of LRRC59 in various human tumors.
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Supplementary Figure 3. Correlation analysis between LRRC59 expression and drug sensitivity.
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Supplementary Figure 4. The enrichment analysis of LRRC59 and its interaction genes. (A) LRRC59 and its 20 interacting genes
from the STRING database. (B—E) The enrichment analysis of LRRC59 and its interaction genes.
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Supplementary Figure 5. The expression and prognosis of LRRC59 in HCC. (A) Immunohistochemical results of LRRC59 in liver
normal tissues and HCC tissues. (B—D) LRRC59 paired expression analysis, prognosis analysis, and survival prediction analysis in TCGA-LIHC
dataset. (E-G) LRRC59 expression analysis, prognosis analysis, and survival prediction analysis in ICGC-LIRI dataset. (H-M) Univariate Cox
analysis, three machine learning algorithms, and multivariate Cox analysis were used in the TCGA-LIHC dataset to screen genes for
subsequent modeled. (N-P) A predictive model was built in the TCGA-LIHC dataset and tested for the prognostic accuracy. (Q-S) A predictive
model was built in the ICGC-LIRI dataset and tested for the prognostic accuracy.
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Supplementary Figure 6. Hallmark genomic score and immune cell infiltration differences among the three HCC subtypes.
(A) Hallmark genomic score differences among the three HCC subtypes. (B) Differences in immune cell infiltration among the three HCC

subtypes.
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Supplementary Figure 7. The sensitivity to TACE and Sorafenib treatment of HCC subtypes. (A, B) Prediction of HCC subtypes and
sensitivity to TACE and Sorafenib treatment in the ICGC-LIRI dataset. (C, D) Prediction of HCC subtypes and sensitivity to TACE and Sorafenib

treatment in the TCGA-LIHC dataset.
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Supplementary Table
Please browse Full Text version to see the data of Supplementary Table 1.

Supplementary Table 1. The genes of GOBP_ERAD_PATHWAY.
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