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INTRODUCTION 
 

Osteoporosis (OP), as a prevalent skeletal disorder, is 

featured with loss of bone mass and structural 

alterations, rendering bones more susceptible to 
fractures and associated complications, such as pain, 

deformity, and heightened mortality risk [1–3]. 

Postmenopausal women, accounting for approximately 

50% of individuals, are particularly vulnerable to OP-

related fractures [4]. Current therapeutic strategies 

encompass a spectrum of interventions, including 

calcium, vitamin D, teriparatide, denosumab, and 

bisphosphonates [5]; however, prolonged administration 

of these agents may precipitate adverse reactions, 

including accelerated bone loss and heightened 
susceptibility to jaw osteonecrosis, femur fractures, and 

multiple vertebral fractures experiencing recompression 

[6]. Consequently, effective clinical management of OP 
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ABSTRACT 
 

Disulfidptosis, a newly recognized cell death triggered by disulfide stress, has garnered attention for its 
potential role in osteoporosis (OP) pathogenesis. Although sulfide-related proteins are reported to regulate the 
balance of bone metabolism in OP, the precise involvement of disulfidptosis regulators remains elusive. Herein, 
leveraging the GSE56815 dataset, we conducted an analysis to delineate disulfidptosis-associated diagnostic 
clusters and immune landscapes in OP. Subsequently, vertebral bone tissues obtained from OP patients and 
controls were subjected to RNA sequencing (RNA-seq) for the validation of key disulfidptosis gene expression. 
Our analysis unveiled seven significant disulfidptosis regulators, including FLNA, ACTB, PRDX1, SLC7A11, NUBPL, 
OXSM, and RAC1, distinguishing OP samples from controls. Furthermore, employing a random forest model, we 
identified four diagnostic disulfidptosis regulators including FLNA, SLC7A11, NUBPL, and RAC1 potentially 
predictive of OP risk. A nomogram model integrating these four regulators was constructed and validated using 
the GSE35956 dataset, demonstrating promising utility in clinical decision-making, as affirmed by decision curve 
analysis. Subsequent consensus clustering analysis stratified OP samples into two different disulfidptosis 
subgroups (clusters A and B) using significant disulfidptosis regulators, with cluster B exhibiting higher 
disulfidptosis scores and implicating monocyte immunity, closely linked to osteoclastogenesis. Notably, RNA-
seq analysis corroborated the expression patterns of two disulfidptosis modulators, PRDX1 and OXSM, 
consistent with bioinformatics predictions. Collectively, our study sheds light on disulfidptosis patterns, offering 
potential markers and immunotherapeutic avenues for future OP management. 
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remains elusive [7], posing substantial challenges to 

healthcare systems and society at large [8]. Given the 

detrimental impact of OP on health, quality of life, and 

economic burden, early identification of high-risk 

individuals assumes paramount importance. Mounting 

evidence underscores the multifaceted nature of OP, 

emphasized by its considerable heterogeneity and 

genetic variability [9]. Accordingly, early risk 

stratification guided by genetic predispositions holds 

considerable promise in augmenting OP control efforts. 

 

Disulfidptosis, a recently discovered cell death resulted 

from disulfide stress, emerges particularly under 

conditions of glucose deprivation, wherein cells 

exhibiting heightened SLC7A11 expression and 

aberrant accumulation of disulfide and cystine 

components undergo rapid demise due to NADPH 

consumption-induced disulfide stress [10]. This 

distinctive mode of cell death implicates a myriad of 

disulfide-regulatory markers, including FLNA, FLNB, 

SLC7A11, ACTB, MYH9, SLC3A2, TLN1, OXSM, 

PRDX1, LRPPRC, NUBPL, RPN1, NCKAP1, 

NDUFS1, RAC1, WAVE2, NDUFA11, and GYS1 

[10]. Prior investigations have underscored the potential 

of sulfide-regulatory biomarkers as viable targets for 

diagnosis and therapeutic intervention in OP [11]. 

Subsequent studies have elucidated the involvement of 

the sulfide quinone reductase-like gene in modulating 

osteoblast differentiation [12], while highlighting 

disulfide’s suppressive effect on osteoclast 

differentiation via the NF-κB/NFATc1 signalling 

pathway, thereby mitigating inflammatory osteolysis 

[13]. Notably, the emergence of disulfidptosis-related 

ribophorin I (RPN1) is reported to be a therapeutic 

target and diagnostic biomarker for OP, particularly in 

the context of kaempferol intervention [14]. These 

collective findings prompt speculation on the pivotal 

role of disulfidptosis in the pathological progress of OP 

through the modulation of disulfide stress-related 

protein expression. Nevertheless, the precise 

contributions of disulfidptosis modulators to OP 

pathogenesis remain elusive. 

 

Utilizing the GSE56815 dataset [15], we investigated the 

relevance of disulfidptosis regulators in delineating OP 

subtypes and identifying potential diagnostic biomarkers. 

A predictive model for OP susceptibility was devised, 

integrating seven putative disulfidptosis regulators 

(FLNA, ACTB, PRDX1, SLC7A11, NUBPL, OXSM, 

and RAC1), demonstrating utility in clinical practice. 

Validation of these disulfidptosis regulators was 

conducted via RNA sequencing (RNA-seq), confirming 

expression patterns consistent with bioinformatics 
predictions. Furthermore, our analysis unveiled two 

distinct disulfidptosis patterns, exhibiting significant 

associations with many immune cells like monocytes. 

These findings underscore the potential of disulfidptosis 

patterns as diagnostic markers for OP, offering insights 

into tailored immunotherapeutic interventions. 

Methodological approaches employed in this study align 

with previous published literature [16–18]. The flow chart 

of research process is described in Figure 1. 

 

MATERIALS AND METHODS 
 

Sample data retrieval for OP analysis 

 

Utilizing the GEO data repository (http://www.ncbi. 

nlm.nih.gov/geo/), we accessed data pertaining to 

monocytes extracted from whole blood specimens of 

OP patients. The search parameters encompassed terms 

such as ‘osteoporosis’, ‘BMD’, ‘gene expression’, and 

‘microarray’. Selection criteria included datasets 

comprising a minimum of 60 samples, with at least 30 

cases each in the control and OP cohorts, alongside 

availability of downloadable series matrix files and raw 

data. Ultimately, we opted for the GSE56815 dataset 

[15]. Within this dataset, we have pinpointed 40 

samples each in the OP and control groups deemed 

eligible for further analysis. 

 

Data collection 

 

The conversion of microarray probes into symbols was 

achieved in the R software (v4.1.2), utilizing the 

annotation package obtained from the Bioconductor 

website(http://bioconductor.org/). Subsequently, the 

dataset underwent quantile normalization to ensure 

uniformity across samples, comprising 40 control and 

40 OP cases. Utilizing the Limma R package, distinct 

disulfidptosis regulators within the dataset were 

identified through comparative analysis between control 

and OP cohorts, employing significance cutoff of |log2 

fold change (FC)| > 0 and P < 0.05 [19]. Furthermore, 

the clusterProfiler R package facilitated the enrichment 

analyses of GO and KEGG to investigate potential 

mechanisms of action associated with disulfidptosis 

regulators in OP. 

 

Model establishment 

 

In our investigation of OP occurrence, we devised two 

models of support vector machine (SVM) and random 

forest (RF) as testing frameworks, employing various 

methodologies including ROC curve, reverse 

cumulative residual distribution, and residual box plots 

[17]. The RandomForest package for R environments 

was utilized to construct the RF model, selecting 

putative disulfidptosis mediators based on significance 

scores (Mean Decrease Gini) [16]. For the SVM model, 

the parameter n denoted disulfidptosis gene number, 

with every data point depicted as a singular position 
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situated within an n-dimensional realm. Subsequently, 

an optimal hyperplane was identified to effectively 

segregate the OP and control groups [20]. Furthermore, 

we devised a nomogram signature utilizing the R plugin 

rms, facilitating OP prediction based on selected 

candidate disulfidptosis regulators. To validate our 

model, we employed the GSE35956 dataset [21], 

comprising 5 OP samples and 5 controls subjected to 

analysis. Calibration curves were adopted to gauge the 

alignment between prediction values and actual 

outcomes. Additionally, clinical impact curve was 

constructed through decision curve analysis (DCA), 

assessing the utility of model-based decisions in patient 

management [16]. 

 

Subtype classification 

 

Utilizing consensus clustering with resampling, every 

element and its corresponding subgroup number were 

determined with validation confirming the cluster 

coherence [16]. The ConsensusClusterPlus package for 

R environments was employed to unveil different 

disulfidptosis subtypes according to significant 

disulfidptosis regulators [22]. 

 

GO enrichment analysis of DEGs 

 

Employing the Limma package for R environments, we 

discerned differentially expressed genes (DEGs) 

between disulfidptosis clusters adopting adjusted P < 

0.05 and |log2 FC| > 0.5 as thresholds. Subsequent GO 

enrichment analysis, performed by the R plugin 

clusterProfiler, elucidated the potential involvement of 

DEGs in OP pathogenesis [23]. 

 

Disulfidptosis score assessment 

 

Disulfidptosis scores for individual samples were 

computed through principal component analysis (PCA) 

quantifying disulfidptosis patterns. The evaluative 

formula utilized for calculating the disulfidptosis score 

was disulfidptosis score = PC1i, where PC1 represents 

principal component 1 and i denotes crucial disulfidptosis 

gene expression [24]. 

 

 
 

Figure 1. Flowchart of the study design. 
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Assessment of immune cell abundance  

 

Immune cell infiltration in OP cases was evaluated via 

single-sample gene set enrichment analysis (ssGSEA). 

Initially, ssGSEA determined gene expression levels in 

samples, generating a ranking based on expression. 

Subsequently, the expression levels of key regulators of 

disulfidptosis were assessed, and their cumulative 

expression served to quantify immune cell populations 

within each sample [25]. 

 

RNA-seq analysis of vertebral bone samples from 

the OP and control groups to verify differential 

expression of disulfidptosis genes 

 

Vertebral bone tissue samples were collected from 

individuals diagnosed with osteoporosis (OP) and 

control participants undergoing surgical treatment in the 

First Affiliated Hospital of Guangzhou University of 

Chinese Medicine. RNA-seq analysis was then 

employed to explore differential expressions of 

disulfidptosis-related genes between the two groups. 

Notably, no significant difference was noted in age, 

body mass index, serum phosphorus, serum alkaline 

phosphatase, and serum magnesium levels between the 

two groups. However, serum calcium levels, lumbar 

spine (L1–L4) T-score, and bone mineral density were 

significantly lower in the OP group in comparison to the 

control group (P < 0.05). Total RNA samples were 

collected from three OP patients and three control 

participants utilizing Trizol reagent. These RNA 

samples underwent agarose gel electrophoresis, 

Nanodrop quality inspection and quantification. The 

mRNA enrichment was performed using oligo magnetic 

beads, followed by library establishment for Illumina 

sequencing (Kapa Biosystems, Woburn, MA, USA). 

Library quality was evaluated, and quantification was 

conducted by quantitative polymerase chain reaction.  

 

Subsequently, libraries from different samples were 

pooled based on quantitative results and final data for 

sequencing. DEGs in the dataset were screened by 

analyzing differences between control and OP 

samples adopting the Limma R package. Then, 

disulfidptosis modulators were identified and their 

expression profiles were constructed from the data. 

The screening thresholds used to detect disulfidptosis 

DEGs were set at |log2FC| > 1 and P < 0.05.  

 

Statistical analysis 

 

The analysis of linear regression was utilized to assess 

the relationships between crucial disulfidptosis 
regulators. For bioinformatics analysis, group-wise 

comparisons were conducted using the Kruskal–

Wallis test, while corrected t-tests were employed to 

analyze RNA-seq data. The parametric analysis was 

conducted using two-tailed tests, with statistical 

threshold set at P < 0.05.  

 

RESULTS 
 

Screening of 16 disulfidptosis regulators in OP 

 

In total, 16 regulators associated with disulfidptosis 

were identified by analyzing gene expression profiles 

from both control and OP cases. From this analysis, 

seven distinct regulators (FLNA, ACTB, PRDX1, 

SLC7A11, NUBPL, OXSM, and RAC1) emerged, 

depicted in a heat map and box plot (Figure 2A, 2B). 

Notably, ACTB, FLNA, and NUBPL showed reduced 

expression levels, while PRDX1, SLC7A11, OXSM, 

and RAC1 exhibited increased expression in OP cases 

compared to controls (Figure 2C–2I). Additionally, 

GO analysis highlighted significant enrichment in 

biological process (tissue homeostasis), cellular 

components (glutamatergic synapses and actin 

filaments), and molecular function (L-glutamate 

transmembrane transporter activity) (Figure 2J). 

Furthermore, regulation of actin cytoskeleton and 

ferroptosis pathways emerged as the main enriched 

pathways according to KEGG analysis (Figure 2K). 

Detailed information regarding the GO and KEGG 

enrichment analyses can be found in Supplementary 

Tables 1, 2. 

 

Correlations among disulfidptosis regulators in OP 

 

In OP samples, there were significantly positive 

associations observed in the gene expressions of 

ACTB–FLNA, ACTB–RAC1, and PRDX1–OXSM 

(Figure 3A–3C). Conversely, significantly negative 

correlations were noted in the gene expressions of 

ACTB–SLC7A11, FLNA–SLC7A11, ACTB–OXSM, 

PRDX1–ACTB, RAC1–NUBPL, PRDX1–FLNA, and 

FLNA–OXSM (Figure 3D–3J). These observations 

underscore distinct correlations among various 

disulfidptosis modulators in OP. 

 

Establishment of RF and SVM models 

 

As depicted in Figure 4A, 4B, the RF model exhibited 

the smaller residuals, indicating its superior performance 

over the SVM model. Therefore, we utilized the RF 

model to forecast the occurrence of OP. ROC curve 

analysis revealed that the RF model outperformed the 

SVM model in terms of accuracy (Figure 4C). 

Consequently, we established an RF model to screen 

candidate disulfidptosis mediators for establishing a 

nomogram model [16]. Subsequently, the seven 

significant disulfidptosis regulators were ranked based 

on importance scores (mean decrease Gini), and four 
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regulators with scores > 6 (FLNA, SLC7A11, NUBPL, 

and RAC1) were selected as candidates (Figure 4D). 

 

Nomogram model construction 

 

We established a nomogram model utilizing the four 

nominated disulfidptosis regulators with the R plugin 

(rms) to forecast OP outcomes (Figure 5A). To validate 

this model, we utilized the GSE35956 dataset for 

further verification. The ROC analysis demonstrated 

notable AUC values, indicating a high level of 

diagnostic accuracy for this signature (Figure 5B). 

Additionally, the nomogram model exhibited favourable 

prediction accuracy as evidenced by calibration curves 

(Figure 5C). Notably, the DCA plot revealed that the 

red line continuously surpassed the black and gray lines 

across the entire probability range from 0 to 1, 

suggesting potential benefits for OP patients through 

decisions informed by the nomogram model (Figure 

5D). Furthermore, the nomogram model displayed a 

reliable ability to predict outcomes, as demonstrated by 

Figure 5E. 

 

 
 

Figure 2. Identification of 16 disulfidptosis modulators in OP. (A) Expression heat map of 16 disulfidptosis modulators in OP cases and 
controls. (B) Differential expression box plot of 16 disulfidptosis modulators identified between OP cases and controls. (C–I) Differential 
expression box plots of seven significant disulfidptosis modulators identified between OP cases and controls. (J, K) GO and KEGG enrichment 
analysis based on seven significant disulfidptosis modulators. *P < 0.05, **P < 0.01, ***P < 0.001. 
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Figure 3. Correlations among disulfidptosis modulators in OP (A–J). In OP cases, there were significantly positive correlations in gene 

expression levels of ACTB–FLNA, ACTB–RAC1, and PRDX1–OXSM (A–C); there were significantly negative correlations in gene expression 
levels of ACTB–SLC7A11, FLNA–SLC7A11, ACTB–OXSM, PRDX1–ACTB, RAC1–NUBPL, PRDX1–FLNA, and FLNA–OXSM (D–J). 

 

 
 

Figure 4. Establishment of RF and SVM models. (A) Reverse cumulative distribution constructed to display the residual distributions of 
RF and SVM models. (B) Box plot constructed to display the residual distributions of RF and SVM models. (C) ROC curves show the accuracies 
of the RF and SVM models. (D) Importance scores of seven disulfidptosis modulators based on the RF model. 
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Identification of two different disulfidptosis clusters 

 

Through the utilization of ConsensusClusterPlus, we 

identified two distinct disulfidptosis clusters, denoted 

as clusters A and B, according to the expression 

profiles of the seven disulfidptosis regulators (Figure 

6A–6D). Notably, cluster A encompassed 27 samples, 

while cluster B comprised 13 samples. Differential 

analysis of the gene expressions in the seven 

disulfidptosis modulators between these clusters 

revealed clear distinctions as depicted on heat maps 

and box plots. Specifically, cluster B demonstrated 

higher expression levels of FLNA, ACTB, and RAC1, 

whereas cluster A exhibited elevated expression levels 

of PRDX1 and OXSM. However, no significant 

differences were observed in the gene expressions of 

SLC7A11 and NUBPL between the two clusters 

(Figure 6E, 6F). PCA corroborated the discriminatory 

power of the seven disulfidptosis regulators in 

distinguishing between the two disulfidptosis clusters 

(Figure 6G). Subsequently, we identified 127 DEGs 

associated with disulfidptosis between the two 

clusters. To elucidate the functional roles of these 

DEGs in OP, we conducted GO enrichment analysis 

(Figure 6H), revealing enrichment terms such as 

regulation of actin cytoskeleton organization (GO: 

0032956), regulation of actin filament-based process 

(GO: 0032970), cell-substrate junction (GO: 

0030055), and actin binding (GO:0003779). The 

information containing the GO enrichment results was 

available in Supplementary Table 3. 

 

Subsequently, we proceeded to investigate the 

associations between the seven pivotal disulfidptosis 

modulators and immune cells by utilizing ssGSEA to 

measure the abundance of immune cells in OP samples. 

 

 
 

Figure 5. Establishment of the nomogram model. (A) A nomogram model was established based on four candidate disulfidptosis 

modulators. (B) The ROC result of our proposed signature in validation dataset GSE35956. (C) A calibration curve was utilised to evaluate the 
predictive accuracy of the nomogram model. (D) Decisions based on this nomogram model may be beneficial for clinical management of 
patients with OP. (E) A clinical impact curve was used to assess the clinical impact of the nomogram model. 
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Positive associations were noted among FLNA 

expression and several immune cell subsets (Figure 

7A). Next, differences in immune cell infiltration were 

further explored between patients with high and low 

expression levels of FLNA. Remarkably, individuals 

with high FLNA expression displayed heightened 

immune cell infiltration in comparison to those with low 

FLNA expression (Figure 7B). Cluster B emerged to be 

more strongly correlated with OP, given its association 

with immature dendritic cells, monocytes, and T 

follicular helper cells, which are closely involved in 

osteoclast differentiation. Conversely, cluster A was 

associated with activated CD8+ T cells and type 2 T 

helper cells (Figure 7C). 

 

 
 

Figure 6. Consensus clustering of seven significant disulfidptosis modulators in OP. (A–D) Consensus matrices of seven significant 
disulfidptosis modulators for k = 2–5. (E) Expression heat map of seven significant disulfidptosis modulators in clusters A and B.  
(F) Differential expression box plots of seven significant disulfidptosis modulators in clusters A and B. (G) Principal component analysis of the 
expression profiles of seven significant disulfidptosis modulators showing substantial differences in transcriptomes between the two 
disulfidptosis patterns. (H) GO enrichment analysis was performed to explore potential mechanisms underlying the effects of 127 
disulfidptosis-related DEGs on the occurrence and development of OP. **P < 0.01, ***P < 0.001. 
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Disulfidptosis gene cluster construction  

 

To delineate disulfidptosis patterns, we employed a 

consensus clustering technique to categorize OP 

samples into distinct genetic subtypes according to 

127 disulfidptosis-associated DEGs. The analysis 

unveiled two distinct disulfidptosis gene clusters, 

denoted as gene clusters A and B, which aligned with 

the disulfidptosis clusters previously identified 

(Figure 8A–8D). Expression profiles of the 127 

disulfidptosis-related DEGs in gene clusters A and B 

are described in Figure 8E. Furthermore, the levels of 

immune cell infiltration and the gene expressions of 

the seven vital disulfidptosis regulators in gene 

clusters A and B were also similar to the 

disulfidptosis patterns (Figure 8F, 8G), validating the 

precision of the consensus clustering method. 

Notably, cluster B and gene cluster B showed higher 

disulfidptosis scores in comparison to cluster A and 

gene cluster A (Figure 8H, 8I). 

 

 
 

Figure 7. Single-sample gene set enrichment analysis. (A) Correlations between immune cell infiltration and seven significant 

disulfidptosis modulators. (B) Differences in abundance of infiltrating immune cells between high- and low-FLNA protein expression groups. 
(C) Differential immune cell infiltration between cluster A and cluster B. *P < 0.05, ***P < 0.001. 
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Role of disulfidptosis clusters in OP identification 

 

The associations among disulfidptosis patterns, 

disulfidptosis scores, and disulfidptosis gene patterns 

are presented in Figure 9A. To explore the associations 

between OP and disulfidptosis patterns, we investigated 

correlations among disulfidptosis patterns and the 

expression levels of IL17RA, NFKB2, TP53, and 

RXRA, which are closely linked to osteoclast 

differentiation. Notably, higher expression levels of 

IL17RA, NFKB2, TP53, and RXRA were noted in 

cluster B and gene cluster B compared to cluster A and 

gene cluster A, suggesting a strong association of 

cluster B and gene cluster B with OP characterized by 

osteoclast differentiation (Figure 9B, 9C). 

 

RNA-seq-based verification of important 

disulfidptosis regulators 

 

After meticulous filtering, we identified two essential 

disulfidptosis modulators, PRDX1 and OXSM, which 

were illustrated via an expression heat map and volcano 

plot (Figure 10A, 10B). Notably, the disulfidptosis 

genes OXSM and PRDX1 exhibited significantly 

elevated expression levels in OP patients compared to 

controls (Figure 10C, 10D), validating the predictions 

generated from bioinformatics analyses.  

 

DISCUSSION 
 

OP is a prevalent musculoskeletal disorder marked by 

bone-related symptoms [26]. Previous studies have 

demonstrated that sulfide-related proteins can regulate 

the balance of bone metabolism in OP, indicating a 

potential involvement of disulfidptosis in the 

pathological process of OP [11–13]. However, it 

remains unclear whether disulfidptosis regulators play 

crucial roles in OP. The present study explored the roles 

of disulfidptosis regulators in OP pathology. 

 

In this study, we utilized RF and SVM models to create 

a gene signature associated with disulfidptosis, 

employing the seven significant disulfidptosis 

regulators. The RF model operates as a learning

 

 
 

Figure 8. Consensus clustering of 127 disulfidptosis-associated DEGs in OP. (A–D) Consensus matrices of 127 disulfidptosis-

associated DEGs for k = 2–5. (E) Expression heat map of 127 disulfidptosis-associated DEGs in gene clusters A and B. (F) Differential 
expression box plots of seven significant disulfidptosis modulators in gene clusters A and B. (G) Differential immune cell infiltration between 
gene clusters A and B. (H) Differences in disulfidptosis scores between cluster A and cluster B. (I) Differences in disulfidptosis scores between 
gene clusters A and B. *P < 0.05, ***P < 0.001. 
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algorithm by assembling independent decision trees 

derived from random samples. Each decision tree 

undergoes independent learning and prediction, with the 

final result being the average of all trees [27, 28]. On 

the other hand, the SVM model acts as a discriminative 

classifier, trained on labelled samples to classify test 

samples using the output of an optimal hyperplane [29]. 

In comparison to the SVM model, we observed that the 

RF model had higher AUC value and smaller residual, 

making it the most suitable testing model. 

Subsequently, the established RF model predicted the 

occurrence of OP, highlighting seven significant 

disulfidptosis regulators with differential expression 

between OP and control samples (namely, SLC7A11, 

FLNA, ACTB, PRDX1, NUBPL, OXSM, and RAC1) 

as potential diagnostic markers. Furthermore, we 

developed a nomogram model consisting of four 

potential disulfidptosis regulators (SLC7A11, FLNA, 

NUBPL, and RAC1) with significance scores > 6, based 

on DCA analysis of clinical benefits for OP patients. 

 

Under circumstances of glucose deprivation, SLC7A11, 

also recognized as xCT, facilitates cystine intake and 

fosters disulfidptosis [10]. The upregulation of SLC7A11 

in vitro has been demonstrated to significantly impede 

osteoblast differentiation of mesenchymal stem cells and 

dampen bone formation in vivo [30]. Additionally, 

SLC7A11 serves as an epigenetic cofactor that disrupts 

osteoclastogenesis [31]. OP is characterized by excessive 

osteoclast activity, and hindering osteoclast differentiation 

effectively shields against OP [32]. Previous study has 

revealed that NFATc1-induced upregulation of SLC7A11 

triggers targetable sensitivity to thioredoxin reductase 1 

(TXNRD1) inhibitors during osteoclastogenesis, 

potentially leading to the selective elimination of 

osteoclast precursors through intracellular cystine 

accumulation and subsequent disulfidptosis [33]. As a 

small GTPase, RAC1 (Ras-related C3 botulinum toxin 

substrate 1) is upregulated to activate disulfidptosis [10]. 

During osteoclast differentiation, RAC1 undergoes 

significant upregulation; its knockdown suppresses 

osteoclast differentiation and monocyte apoptosis [34]. 

PRDX1 (peroxiredoxin 1) is a known modulator of 

reactive oxygen species that regulates oxidative stress and 

BMP signalling-driven osteogenesis [35]. OXSM 

(mitochondrial 3-oxoacyl-ACP synthase) reportedly 

targets miR338-3p [36], which has important functions in 

regulating bone homeostasis in OP [37]. The present 

study confirmed that these genes—SLC7A11, RAC1, 

PRDX1 and OXSM—encoding disulfidptosis activators 

exhibited higher expression levels in OP samples, thereby 

activating disulfidptosis processes in OP. 

 

 
 

Figure 9. Roles of disulfidptosis patterns in distinguishing OP. (A) Sankey diagram showing relationships among disulfidptosis 

patterns, disulfidptosis gene patterns, and disulfidptosis scores. (B) Differential expression levels of osteoclast differentiation-related genes 
between cluster A and cluster B. (C) Differential expression levels of osteoclast differentiation-related genes between gene cluster A and gene 
cluster B. ***P < 0.001. 
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Actin cytoskeleton proteins exhibit high susceptibility 

to disulfide stress; abnormal disulfide bonding between 

actin cytoskeleton proteins has the potential to induce 

the collapse of the actin network and initiate 

disulfidptosis [10]. The actin cytoskeleton proteins, 

FLNA (filamin-A) and ACTB (actin), possess 

numerous cysteine sites that form disulfide bonds under 

conditions of glucose starvation; Alongside the NUBPL 

(nucleotide binding protein-like) factor associated with 

mitochondrial oxidative phosphorylation, these proteins 

act as disulfidptosis modulators, synergizing with 

glucose starvation to trigger disulfidptosis [10]. 

Previous research has shown that inactivation of ACTB 

blocks osteogenic differentiation and proliferation [38]. 

Evidence suggests that FLNA is involved in negatively 

regulating osteogenesis and positively modulating 

osteoclastogenesis [39]. Loss of NUBPL function 

triggers mitochondrial dysfunction [40], which could 

disrupt both bone formation and resorption [41]. 

Importantly, the present study confirmed that the 

disulfidptosis regulators ACTB, FLNA, and NUBPL 

exhibited lower expression levels in OP samples, thus 

influencing disulfidptosis processes in OP. In general, 

the seven potential disulfidptosis regulators screened in 

this study may play crucial roles in OP onset and 

progression. 

 

There is mounting evidence indicating the significance 

of monocyte osteoclastogenesis in the pathogenesis of 

OP [42]. Our study revealed that cluster A was 

associated with activated CD8+ T cell and type 2 T 

helper cell immunity, while cluster B was related to 

immature dendritic cell, monocyte, and T follicular 

helper cell immunity, which are closely associated with 

osteoclastogenesis; these findings suggest that cluster B 

is more closely associated with OP (Figure 7C). 

Monocytes play a pivotal role in maintaining immuno-

logical homeostasis and preventing the onset of OP 

[43]. Monocytes differentiate into multinucleated 

osteoclasts, thereby regulating osteoclastogenesis in 

bone metabolism [44]. RXRA, IL17RA, NFKB2, and 

TP53 are closely linked to osteoclastogenesis. RXRA 

plays a pivotal role in the vitamin D pathway, which 

participates in regulating osteoclastogenesis in the 

context of bone homeostasis [45]. The immunological 

and skeletal systems share numerous regulatory 

components, including the IL-17a receptor (IL17RA); 

the deletion of IL17RA reduces the number of 

 

 
 

Figure 10. RNA-seq validation of significant disulfidptosis modulators. (A) Expression heat map and (B) volcano plot of vertebral 

bone tissues from patients with OP and controls, assessed by RNA-seq. (C) The disulfidptosis modulator OXSM exhibited increased expression 
levels in OP samples compared with controls. (D) The disulfidptosis modulator PRDX1 exhibited increased expression levels in OP samples 
compared with controls. All results are expressed as means ± standard deviations. **P < 0.01, ***P < 0.001. 
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osteoclast precursors and increases bone mass [46]. 

Osteoclastogenesis is negatively regulated by NFKB2 

(p100); its blockade may prevent inflammation-mediated 

bone loss and bone deterioration in OP [47]. TP53 acts as 

a novel modulator of osteoblast-dependent osteo-

clastogenesis [48]. In this study, we identified two 

disulfidptosis clusters (clusters A and B) using the seven 

significant disulfidptosis modulators; we also identified 

two different disulfidptosis gene clusters (gene clusters A 

and B) based on 127 disulfidptosis-associated DEGs. 

Cluster B was verified to have a close association with 

monocyte immunity and elevated levels in gene 

expressions of RXRA, IL17RA, NFKB2, and TP53, 

indicating its association with osteoclastogenesis. 

Additionally, PCA was employed to calculate the 

disulfidptosis scores, thereby enabling the quantification 

of disulfidptosis signatures. Notably, cluster B and gene 

cluster B demonstrated higher disulfidptosis scores 

compared to cluster A and gene cluster A. 

 

The RNA-seq analysis revealed significantly increased 

expression levels of the disulfidptosis genes OXSM and 

PRDX1 in OP patients in comparison to controls 

(Figure 10). These findings validate the involvement of 

these disulfidptosis modulators in OP and bring insights 

on their role in OP etiology, offering support for the 

hypothesis that disulfidptosis regulators play a vital role 

in OP progression. These disulfidptosis modulators may 

represent promising therapeutic targets for efforts to 

balance bone formation and resorption in OP. To date, 

this study firstly establishes a diagnostic cluster and an 

immunological landscape associated with disulfidptosis 

in OP. However, the in-depth mechanisms by which 

disulfidptosis regulators influence OP-related pathways 

and immune microenvironment require further 

experimental validation.  

 

CONCLUSIONS 
 

In this study, we examined seven diagnostic 

disulfidptosis regulators and established a nomogram 

model with accurate prediction of OP incidence. By 

utilizing these vital disulfidptosis genes, two 

disulfidptosis signatures were identified, indicating that 

cluster B and gene cluster B may be more closely 

related to OP. To our knowledge, this research firstly 

elucidates a diagnostic cluster and an immunological 

landscape connected with disulfidptosis in OP. 
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Supplementary Table 1. The detailed information of GO enrichment analysis in Figure 2J. 

ONTOLOGY ID Description p-value p.adjust 

BP GO:0070527 platelet aggregation 1.04E-06 0.000432302 

BP GO:0034109 homotypic cell-cell adhesion 2.72E-06 0.000432302 

BP GO:0007596 blood coagulation 3.46E-06 0.000432302 

BP GO:0007599 hemostasis 3.66E-06 0.000432302 

BP GO:0050817 coagulation 3.71E-06 0.000432302 

BP GO:0051668 localization within membrane 1.67E-05 0.001535649 

BP GO:0030168 platelet activation 1.84E-05 0.001535649 

BP GO:0001894 tissue homeostasis 5.99E-05 0.004364239 

BP GO:0034329 cell junction assembly 7.16E-05 0.004635332 

BP GO:1900026 
positive regulation of substrate 

adhesion-dependent cell spreading 
7.98E-05 0.004649556 

CC GO:0098978 glutamatergic synapse 0.000182539 0.004467089 

CC GO:0005925 focal adhesion 0.000283152 0.004467089 

CC GO:0005924 cell-substrate adherens junction 0.000289373 0.004467089 

CC GO:0030055 cell-substrate junction 0.000297806 0.004467089 

CC GO:0042470 melanosome 0.00059076 0.005301481 

CC GO:0048770 pigment granule 0.00059076 0.005301481 

CC GO:0005884 actin filament 0.000647536 0.005301481 

CC GO:0030863 cortical cytoskeleton 0.000706864 0.005301481 

CC GO:0044448 cell cortex part 0.001763774 0.011758497 

CC GO:0036464 cytoplasmic ribonucleoprotein granule 0.002332005 0.013992032 

MF GO:0030957 Tat protein binding 0.003949442 0.043175984 

MF GO:0004312 fatty acid synthase activity 0.00434365 0.043175984 

MF GO:0031996 thioesterase binding 0.00434365 0.043175984 

MF GO:0099186 structural constituent of postsynapse 0.00434365 0.043175984 

MF GO:0005313 
L-glutamate transmembrane 

transporter activity 
0.005525471 0.043175984 

MF GO:0015172 
acidic amino acid transmembrane 

transporter activity 
0.005525471 0.043175984 

MF GO:0050998 nitric-oxide synthase binding 0.005525471 0.043175984 

MF GO:0017160 Ral GTPase binding 0.005919144 0.043175984 

MF GO:0072349 
modified amino acid transmembrane 

transporter activity 
0.005919144 0.043175984 

MF GO:0098918 structural constituent of synapse 0.00670609 0.043175984 
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Supplementary Table 2. The detailed information of KEGG 
enrichment analysis in Figure 2K. 

Term p-value p.adjust 

Focal adhesion 3.40E-05 0.001225119 

Proteoglycans in cancer 3.60E-05 0.001225119 

Salmonella infection 6.43E-05 0.00145771 

Viral myocarditis 1.84E-04 0.003129081 

Adherens junction 2.58E-04 0.003438715 

Bacterial invasion of epithelial cells 3.03E-04 0.003438715 

Leukocyte transendothelial migration 6.64E-04 0.006448343 

Yersinia infection 9.56E-04 0.007437068 

Fluid shear stress and atherosclerosis 9.84E-04 0.007437068 

Phagosome 0.00117522 0.007991495 

Tight junction 0.001449643 0.008961432 

Neutrophil extracellular trap formation 0.001808145 0.010246156 

Pathogenic Escherichia coli infection 0.001962254 0.010264096 

Rap1 signaling pathway 0.002225638 0.01081024 

Regulation of actin cytoskeleton 0.002395654 0.010860298 

Shigellosis 0.00303791 0.012911117 

MAPK signaling pathway 0.004307241 0.017228962 

Fatty acid biosynthesis 0.006283878 0.023369719 

Amyotrophic lateral sclerosis 0.006529775 0.023369719 

Ferroptosis 0.014264049 0.048497766 
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Supplementary Table 3. The detailed information of GO enrichment analysis in Figure 6H. 

ONTOLOGY ID Description p-value p.adjust 

BP GO:0019221 cytokine-mediated signaling pathway 4.02E-08 0.000115189 

BP GO:0030099 myeloid cell differentiation 1.13E-07 0.000162544 

BP GO:0032970 regulation of actin filament-based process 1.21E-06 0.00116027 

BP GO:0046824 
positive regulation of nucleocytoplasmic 

transport 
2.42E-06 0.001442425 

BP GO:0032956 regulation of actin cytoskeleton organization 2.52E-06 0.001442425 

BP GO:1903706 regulation of hemopoiesis 3.25E-06 0.001542839 

CC GO:0005925 focal adhesion 7.45E-09 1.22E-06 

CC GO:0030055 cell-substrate junction 9.42E-09 1.22E-06 

CC GO:0070820 tertiary granule 8.85E-06 0.000763914 

CC GO:0101002 ficolin-1-rich granule 2.12E-05 0.001374605 

CC GO:0034774 secretory granule lumen 0.000190749 0.007136597 

CC GO:0060205 cytoplasmic vesicle lumen 0.000204362 0.007136597 

MF GO:0061629 
RNA polymerase II-specific DNA-binding 

transcription factor binding 
4.26E-06 0.001141206 

MF GO:0003779 actin binding 6.29E-06 0.001141206 

MF GO:0016922 nuclear receptor binding 4.47E-05 0.003936513 

MF GO:0140297 DNA-binding transcription factor binding 5.51E-05 0.003936513 

MF GO:0019903 protein phosphatase binding 5.80E-05 0.003936513 

MF GO:0045296 cadherin binding 6.51E-05 0.003936513 
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