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INTRODUCTION 
 

Glioblastoma Multiforme (GBM) is among the  

most aggressive and fatal brain cancers, known for  

its rapid proliferation and diffuse infiltration into 

surrounding brain tissue [1]. Despite advancements  

in neuro-oncology, the prognosis for GBM remains 
dire, with median survival rates typically less than  

15 months post-diagnosis [2–4]. The complexity of 

GBM pathogenesis, alongside its resilience against 

conventional therapeutic regimens, underscores the 

critical need for novel diagnostic and therapeutic 

approaches [5]. 

 

Metabolomics, the extensive study of small molecules 

within biological systems, stands at the forefront of 

this challenge, offering promising potential to decipher 
the altered metabolic pathways associated with cancer 

phenotypes [6, 7]. Plasma metabolites, as downstream 

products of genetic, enzymatic, and cellular processes, 
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ABSTRACT 
 

Background: Glioblastoma Multiforme (GBM) is one of the most aggressive and fatal brain cancers. The study of 
metabolites could be crucial for understanding GBM’s biology and reveal new treatment strategies. 
Methods: The GWAS data for GBM were sourced from the FinnGen database. A total of 1400 plasma 
metabolites were collected from the GWAS Catalog dataset. The cerebrospinal fluid (CSF) metabolites data 
were collected from subsets of participants in the WADRC and WRAP studies. We utilized the inverse 
variance weighting (IVW) method as the primary tool to explore the causal relationship between 
metabolites in plasma and CSF and glioblastoma, ensuring the exclusion of instances with horizontal 
pleiotropy. Additionally, four supplementary analytical methods were applied to reinforce our findings. 
Aberrant results were identified and omitted based on the outcomes of the leave-one-out sensitivity 
analysis. Conclusively, a reverse Mendelian Randomization analysis was also conducted to further 
substantiate our results. 
Results: The study identified 69 plasma metabolites associated with GBM. Of these, 40 metabolites 
demonstrated a significant positive causal relationship with GBM, while 29 exhibited a significant negative 
causal association. Notably, Trimethylamine N-oxide (TMAO) levels in plasma, not CSF, were found to be a 
significant exposure factor for GBM (OR = 3.1627, 95% CI = (1.6347, 6.1189), P = 0.0006). The study did not find 
a reverse causal relationship between GBM and plasma TMAO levels. 
Conclusions: This research has identified 69 plasma metabolites potentially associated with the incidence of 
GBM, among which TMAO stands out as a promising candidate for an early detectable biomarker for GBM. 
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reflect the dynamic state of GBM’s pathophysiology and 

therefore hold promise for revealing new facets of its 

biology [8–10]. The identification and in-depth analysis 

of these metabolites could unveil novel biomarkers  

that not only deepen our understanding of GBM’s 

underpinnings but also pave the way for targeted 

treatment strategies. In parallel, cerebrospinal fluid 

(CSF) presents a distinctive lens into the brain’s internal 

environment, potentially yielding critical insights into 

metabolic changes uniquely pertinent to neurological 

pathology [11–13]. Given its intimate association with 

the brain’s extracellular space, CSF metabolomic 

analysis could offer a more direct evaluation of  

the biochemical environment that influences GBM’s 

progression [14, 15]. 

 

To fully leverage the insights offered by metabolomics, 

the integration of genomic data from Genome- 

Wide Association Studies (GWAS) is essential [16]. 

GWAS provides a broad spectrum for identifying 

genetic variants that influence disease susceptibility and 

progression, including GBM [17–19]. By integrating 

GWAS findings with observed metabolic changes  

in both plasma and CSF, we can construct a more 

detailed portrait of GBM’s pathogenesis. Utilizing this 

integrated approach, Mendelian Randomization (MR) 

analysis serves as a robust tool for deducing causality 

from observational data [20, 21]. MR utilizes genetic 

variants as instrumental variables to map the cause-

effect trajectories between plasma metabolites and 

GBM, effectively bypassing the confounding variables 

that often confound observational studies [22, 23]. 

 

Therefore, this study is dedicated to investigating  

1,400 plasma metabolites intricately connected to 

GBM’s emergence and development. By pinpointing 

metabolites that hold a significant causal link to GBM, 

we seek to understand their biological significance and 

their viability as biomarkers or therapeutic agents. 

Moreover, we aim to corroborate these findings within 

CSF metabolites, enriching our comprehension of the 

metabolic framework of GBM. Through MR analysis, 

our research strives to shed light on the metabolic 

processes that could be instrumental in GBM’s 

oncogenesis and progression, ultimately contributing to 

the development of potential clinical interventions for 

this formidable ailment. 
 

MATERIALS AND METHODS 
 

Study design 

 

Our approach was firmly rooted in adhering to the 

fundamental tenets of MR analysis. Firstly, we ensured 

a robust association exists between genetic variants  

and the exposure. Secondly, we ascertained that these 

genetic variants are not associated with potential 

confounding factors. Finally, we confirmed that the 

impact of genetic variants on the outcome is mediated 

exclusively through the exposure, without the influence 

of alternative biological pathways. Additionally, to 

reinforce the validity of our findings, a reverse MR 

analysis was conducted, leveraging significant results 

from the initial MR analysis to enhance the robustness 

of the outcomes. 

 

The study’s specific design and methodology are 

comprehensively illustrated in Figure 1. In our 

Mendelian Randomization analysis study, we employed 

the application of the Inverse Variance Weighted (IVW) 

method as our primary tool for analyzing a wide  

array of 1,400 plasma metabolites. The objective was  

to identify those metabolites that act as potential 

exposure factors influencing the pathogenesis of GBM. 

Following this initial identification, we delved deeper to 

ascertain the most significant causal relationships 

between these plasma metabolites and GBM, focusing 

on determining the extent of their impact on GBM 

development. A critical component of our study 

involved examining the possibility of reverse causation 

– whether the presence of GBM could influence  

the levels of these key plasma metabolites, thereby

 

 
 

Figure 1. The whole MR study design. 
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exploring the bidirectional nature of their interactions. 

The investigation was further extended to include CSF, 

aiming to identify and compare the causal relationships 

of similar metabolites within CSF with GBM. 

 

GWAS data sources of GBM 

 

For our study, the GWAS dataset specific to 

Glioblastoma Multiforme was sourced from the 

FinnGen database (https://www.finngen.fi). The dataset 

originated from a detailed GWAS conducted on a 

cohort of European descent, comprising 243 individuals 

diagnosed with GBM, contrasted against a control 

group of 287,137 participants. In this comprehensive 

analysis, approximately 16.38 million genetic variants 

were meticulously examined. Each variant underwent 

rigorous quality control measures and was processed 

using advanced imputation methods. 

 

Plasma metabolites GWAS data collection 

 

The collection of GWAS data for 1,400 plasma 

metabolites was conducted through a comprehensive 

approach, utilizing several datasets [24]. We sourced 

the GWAS summary statistics from the GWAS  

Catalog, available at EBI GWAS Catalog. This included 

a wide array of studies, categorized under specific 

accession numbers: GCST90199621 to GCST90201020 

for European GWASs and GCST90201021 to GCST 

90204063 for non-European GWASs. In addition to 

these aggregated statistics, individual-level data for 

certain metabolites were obtained from the Canadian 

Longitudinal Study on Aging (CLSA), accessible at 

CLSA, where the data availability was contingent upon 

meeting stringent criteria for accessing de-identified 

CLSA data. This was in adherence to ethical standards 

and data privacy regulations. To further ensure the 

accuracy and pertinence of our metabolite analysis,  

we cross-referenced our findings with the Human 

Metabolome Database (HMDB). The assembly of these 

extensive and diverse range of GWAS data forms  

the bedrock of our rigorous Mendelian Randomization 

analysis, focusing on exploring the relationships between 

plasma metabolites and GBM. 

 

CSF metabolites GWAS data collection 

 

Our research utilized GWAS summary datasets 

(https://gwas.mrcieu.ac.uk) focusing on cerebrospinal 

fluid metabolites. These datasets were derived from a 

subset of participants in the Wisconsin Alzheimer’s 

Disease Research Center (WADRC) and the Wisconsin 

Registry for Alzheimer’s Prevention (WRAP) studies. 
In these studies, CSF samples were collected via  

lumbar punctures (LPs). The collection and storage 

protocols for these samples were uniform across both 

studies, as described in prior publication [25]. The 

procedure involved collecting fasting CSF samples from 

participants in the morning, which were then mixed, 

centrifuged, aliquoted, and stored at −80°C. Metabolon 

performed an untargeted metabolomics analysis of  

these samples using Ultrahigh Performance Liquid 

Chromatography-Tandem Mass Spectrometry (UPLC-

MS/MS), processing samples from both WADRC and 

WRAP on the same platform for consistency. In this 

analysis, 412 metabolites were quantified, with 354 

identified and 58 of unknown structural identity. The 

study included 689 participants in total, with 532  

from WADRC and 168 from WRAP, each providing 

unique CSF samples for metabolite analysis. The 

WADRC participants were selected based on criteria 

such as being aged ≥ 45, having decisional capacity,  

and the ability to fast for 12 hours. Exclusion criteria 

encompassed a history of specific medical conditions 

like kidney dysfunction, congestive heart failure,  

major neurologic disorders (excluding dementia), and 

others. This study was a part of the Generations of 

WRAP (GROW) study and received approval from the 

University of Wisconsin Health Sciences Institutional 

Review Board. 

 

Instrumental variable selection 
 

In line with established methodologies in contemporary 

research, we selected instrumental variables (IVs) for 

each plasma, CSF metabolites, and GBM using a 

significance threshold of 1 × 10−5. The SNP clumping 

process, instrumental in reducing linkage disequilibrium 

(LD), was carried out utilizing PLINK software. This 

step involved setting an LD r2 threshold of less than 0.1 

within a 500 kilobase (kb) window, referencing data from 

the 1000 Genomes Project, which is a methodological 

choice that reflects a careful consideration of the trade-

offs between specificity, sensitivity, and computational 

feasibility in the context of genetic association studies. 

To evaluate the effectiveness of each IV, we calculated 

both the proportion of phenotypic variation explained 

(PVE) and the F statistic, with a focus on excluding 

weak instruments that could potentially skew the 

analysis. This study retained suitable IVs for further 

analysis, following the removal of those with F statistics 

falling below 10. 

 

Mendelian Randomization analysis 

 

In our study, statistical analyses were performed  

using the R programming environment, specifically 

employing the “TwoSampleMR” package (version 

0.5.7). This package facilitated the application of 
several MR methodologies, encompassing IVW, 

weighted median, mode-based estimation, MR-Egger, 

Simple mode, and Weighted mode approaches. These 
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methods were pivotal in establishing the causal 

relationships between identified exposures and 

outcomes. To evaluate the heterogeneity among 

instrumental variables (IVs), we utilized Cochran’s  

Q statistic alongside its corresponding p-values. Where 

significant heterogeneity was identified, we opted  

for a random-effects model within the IVW method  

to accommodate variability across different IVs. The 

MR-Egger regression method was integral in assessing 

the presence of horizontal pleiotropy, with a focus  

on the intercept; a non-zero value was indicative of 

such pleiotropy. Additionally, we employed the MR-

PRESSO technique for the identification and exclusion 

of outliers potentially exhibiting horizontal pleiotropy. 

Our analytical process also included the generation of 

scatter and funnel plots. These visual representations 

were crucial in verifying the consistency and robustness 

of our causal findings, thereby enhancing the reliability 

of our conclusions drawn from the MR analyses. 

 

RESULTS 
 

Mendelian Randomization analysis of 1,400 plasma 

metabolites’ impact on GBM 

 

In this study, we conducted a comprehensive MR 

analysis, focusing on 1,400 plasma metabolites as 

exposure factors. The analysis primarily utilized  

the IVW method, rigorously adjusting for linkage 

disequilibrium and potential confounders. Our objective 

was to elucidate metabolites critically involved in the 

pathogenesis and progression of GBM. As delineated  

in Table 1, among 69 plasma metabolites showing 

potential causal associations with GBM (p < 0.05), 

Trimethylamine N-oxide levels were identified as the 

most significant factor potentially exacerbating GBM 

progression (OR = 3.1627, 95% CI = (1.6347, 6.1189), 

P = 0.0006). Following in significance was Erucate 

(22:1n9), exhibiting an OR of 2.7360 and a 95% CI 

from 1.4258 to 5.2502 (P = 0.0025). On the contrary, 

Cysteine S-sulfate levels appeared to demonstrate a 

notable protective effect, with an OR of 0.4536 and 

a 95% CI of (0.2461, 0.8359) (P = 0.0113).  

 

Further investigation into the causal association 

between Trimethylamine N-oxide levels and GBM 

 

Considering the significant positive causal relationship 

identified between plasma Trimethylamine N-oxide 

levels and the development of GBM, we conducted a 

detailed examination of this association. To encompass 

a broader set of instrumental variables (IVs), we 

employed a relaxed significance threshold of p < 1 × 

10−5. This adjustment led to the inclusion of 15 single 

nucleotide polymorphisms (SNPs) in our analysis. 

Utilizing the IVW method, complemented by the 

Weighted median approach, our findings affirm a 

significant causal relationship between Trimethylamine 

N-oxide levels and GBM, as evidenced by the P-values 

below the threshold of 0.05 (Figure 2A, 2B, and 

Supplementary Table 1). Moreover, our analyses did 

not detect any evidence of heterogeneity or horizontal 

pleiotropy, further substantiating the robustness of our 

results (Supplementary Table 1). To rigorously evaluate 

the robustness of our MR findings, we performed 

heterogeneity tests and conducted a leave-one-out 

sensitivity analysis. The MR-Egger intercept test, as 

depicted in Figure 2C, was utilized to assess the 

presence of horizontal pleiotropy among the instrumental 

variables. The results indicated by the intercept close to 

zero and the low I² statistic suggest that there is no 

significant horizontal pleiotropy affecting our MR 

analysis. Figure 2D illustrates the results from the 

leave-one-out sensitivity analysis. We observed that the 

omission of no single SNP resulted in a substantial 

change in the overall causal estimate. The consistency 

of the effect estimates across this analysis further 

confirms the stability and reliability of our main 

findings, indicating that our MR analysis is not driven 

by any single SNP and that the association between 

plasma Trimethylamine N-oxide levels and GBM is not 

an artifact of any individual genetic variant used as an 

instrument. These analyses strengthen the evidence for  

a causal relationship between plasma Trimethylamine 

N-oxide levels and GBM progression. 

 
Investigating the causal effect of GBM on plasma 

Trimethylamine N-oxide levels 

 
In a subsequent investigation to determine the potential 

influence of GBM on plasma Trimethylamine N-oxide 

levels, we conducted a reverse MR analysis. By setting 

a significance threshold of p < 1 × 10−5, we obtained  

8 SNPs as instrumental variables for our reverse MR 

framework. Utilizing the Inverse Variance Weighted 

method in conjunction with four additional MR 

methodologies, it did not show a significant causal 

impact of GBM on plasma Trimethylamine N-oxide 

levels, with all P-values exceeding the 0.05 threshold 

(Figure 3A and Supplementary Table 2). Additionally, 

in the reverse analysis where GBM was posited as the 

exposure and plasma Trimethylamine N-oxide levels  

as the outcome, we found no substantial evidence of 

heterogeneity or horizontal pleiotropy (Supplementary 

Table 2). The collective insights from our MR analyses 

firmly suggest the absence of a causal relationship 

between GBM as an exposure factor and plasma 

Trimethylamine N-oxide levels as an outcome. This 

comprehensive approach underlines the one-directional 

nature of the association, where plasma Trimethylamine 

N-oxide levels potentially influence GBM risk but not 

vice versa (Figure 3A–3D). 
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Table 1. Results of two-sample Mendelian Randomization analysis assessing the impact of 1,400 plasma 
metabolites on GBM, primarily utilizing inverse variance weighted methods. 

ID ReportedTrait Sample Ancestry OR 95L OR 95H OR p-value 

GCST90199920 Trimethylamine n-oxide levels 8218  European 3.1627  1.6347  6.1189  0.0006  

GCST90200284 Erucate (22:1n9) levels 8208  European 2.7360  1.4258  5.2502  0.0025  

GCST90200662 X-25790 levels 8221  European 2.4867  1.2349  5.0074  0.0107  

GCST90200528 X-17146 levels 7778  European 2.2010  1.2886  3.7595  0.0039  

GCST90199677 3-methyl-2-oxobutyrate levels 8254  European 2.1938  1.2298  3.9136  0.0078  

GCST90200173 Glutamine conjugate of C6H10O2 (2) levels 8233  European 2.1883  1.1261  4.2523  0.0209  

GCST90199765 4-hydroxyhippurate levels 8259  European 2.1799  1.2588  3.7750  0.0054  

GCST90199658 Alpha-hydroxyisocaproate levels 8250  European 2.1198  1.2361  3.6351  0.0063  

GCST90200843 
Adenosine 5′-monophosphate (AMP) to flavin 

adenine dinucleotide (FAD) ratio 
6188  European 2.0472  1.2128  3.4558  0.0073  

GCST90200060 
1-(1-enyl-palmitoyl)-2-linoleoyl-GPC (p-16:0/18:2) 

levels 
8260  European 1.9522  1.1441  3.3311  0.0141  

GCST90199985 Methyl-4-hydroxybenzoate sulfate levels 8285  European 1.8924  1.1424  3.1347  0.0133  

GCST90199831 1-stearoyl-2-oleoyl-GPE (18:0/18:1) levels 8273  European 1.8317  1.2630  2.6567  0.0014  

GCST90199988 Tyramine O-sulfate levels 7254  European 1.8267  1.1027  3.0262  0.0193  

GCST90200037 1-stearoyl-2-linoleoyl-gpc (18:0/18:2) levels 8231  European 1.7909  1.1086  2.8933  0.0173  

GCST90199865 2-hydroxyglutarate levels 7769  European 1.7890  1.1744  2.7254  0.0068  

GCST90200328 3-methoxytyrosine levels 8258  European 1.7788  1.1579  2.7326  0.0086  

GCST90200968 Phosphate to 5-oxoproline ratio 8217  European 1.7612  1.2374  2.5069  0.0017  

GCST90200140 Carotene diol (2) levels 8196  European 1.7488  1.1078  2.7607  0.0164  

GCST90200807 Carnitine to ergothioneine ratio 8110  European 1.7001  1.0482  2.7575  0.0315  

GCST90200454 Kynurenate levels 8241  European 1.6522  1.1387  2.3973  0.0082  

GCST90199664 Phenyllactate (PLA) levels in elite athletes 8235  European 1.6438  1.0680  2.5301  0.0239  

GCST90200080 1-palmitoyl-2-oleoyl-GPI (16:0/18:1) levels 8123  European 1.6274  1.0701  2.4749  0.0228  

GCST90200281 Phosphoethanolamine levels 8253  European 1.6239  1.0747  2.4537  0.0213  

GCST90200371 3-(4-hydroxyphenyl)lactate levels 8259  European 1.6192  1.0070  2.6035  0.0467  

GCST90200883 Phosphate to acetoacetate ratio 6791  European 1.6149  1.0585  2.4639  0.0262  

GCST90200198 2-hydroxysebacate levels 7865  European 1.6146  1.0041  2.5964  0.0481  

GCST90199794 1-oleoyl-GPE (18:1) levels 8283  European 1.6144  1.0319  2.5256  0.0359  

GCST90200967 Phosphate to urate ratio 8204  European 1.5890  1.0299  2.4517  0.0364  

GCST90200346 4-acetaminophen sulfate levels 4197  European 1.5413  1.0477  2.2674  0.0280  

GCST90199732 1-stearoyl-gpc (18:0) levels 8240  European 1.5352  1.0478  2.2493  0.0278  

GCST90199673 DHEAS levels 8228  European 1.5243  1.0470  2.2192  0.0278  

GCST90200331 1-palmitoyl-2-oleoyl-GPE (16:0/18:1) levels 8262  European 1.5240  1.1272  2.0603  0.0062  

GCST90200839 Adenosine 5′-diphosphate (ADP) to aspartate ratio 4563  European 1.4796  1.0996  1.9909  0.0097  

GCST90199772 1-stearoyl-GPE (18:0) levels 8270  European 1.4644  1.0411  2.0597  0.0284  

GCST90200144 Dihomo-linoleoylcarnitine (C20:2) levels 7887  European 1.4366  1.0226  2.0181  0.0367  

GCST90200082 1-oleoyl-2-linoleoyl-GPE (18:1/18:2) levels 8205  European 1.4132  1.0659  1.8736  0.0162  

GCST90200603 X-23641 levels 6673  European 1.3989  1.0215  1.9157  0.0364  

GCST90200039 1-stearoyl-2-linoleoyl-GPE (18:0/18:2) levels 8241  European 1.3935  1.0262  1.8923  0.0335  

GCST90199844 1-palmitoyl-2-linoleoyl-GPE (16:0/18:2) levels 8266  European 1.3276  1.0248  1.7199  0.0319  

GCST90200054 1-palmitoyl-2-arachidonoyl-GPE (16:0/20:4) levels 8257  European 1.3265  1.0027  1.7549  0.0478  

GCST90199660 1,2-dipalmitoyl-gpc (16:0/16:0) levels 8264  European 0.7126  0.5125  0.9910  0.0440  

GCST90200014 3beta-hydroxy-5-cholestenoate levels 8259  European 0.6775  0.4642  0.9887  0.0435  

GCST90200608 X-22162 levels 8249  European 0.6746  0.4729  0.9623  0.0299  

GCST90200799 Spermidine to adenosine 5′-diphosphate (ADP) ratio 4195  European 0.6723  0.4520  0.9999  0.0500  
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GCST90200078 1-myristoyl-2-arachidonoyl-GPC (14:0/20:4) levels 8264  European 0.6607  0.4567  0.9560  0.0279  

GCST90200788 5-oxoproline to citrate ratio 8256  European 0.6537  0.4380  0.9757  0.0375  

GCST90200500 X-12816 levels 5190  European 0.6478  0.4604  0.9115  0.0127  

GCST90199912 N-oleoyltaurine levels 7375  European 0.6441  0.4257  0.9744  0.0373  

GCST90199888 Cinnamoylglycine levels 7824  European 0.6357  0.4048  0.9985  0.0492  

GCST90200116 Ceramide (d18:1/14:0, d16:1/16:0) levels 7270  European 0.6217  0.4184  0.9240  0.0187  

GCST90200935 Carnitine to propionylcarnitine (C3) ratio 8185  European 0.6215  0.4062  0.9510  0.0284  

GCST90200802 Histidine to pyruvate ratio 8241  European 0.6157  0.4144  0.9147  0.0163  

GCST90200090 Dihomo-linolenoyl-choline levels 6954  European 0.6141  0.3777  0.9985  0.0493  

GCST90200873 Cortisol to 4-cholesten-3-one ratio 7027  European 0.6097  0.3801  0.9780  0.0402  

GCST90200349 Eicosapentaenoate (EPA; 20:5n3) levels 8257  European 0.6053  0.4108  0.8919  0.0111  

GCST90200620 X-24243 levels 7540  European 0.5927  0.3570  0.9841  0.0432  

GCST90200874 Cysteinylglycine to taurine ratio 8193  European 0.5869  0.3684  0.9349  0.0249  

GCST90199983 
5alpha-androstan-3alpha,17beta-diol monosulfate (2) 

levels 
5920  European 0.5756  0.3590  0.9227  0.0218  

GCST90200846 Phenylalanine to phosphate ratio 8294  European 0.5740  0.3537  0.9315  0.0246  

GCST90200978 Caffeine to paraxanthine ratio 7873  European 0.5389  0.3489  0.8324  0.0053  

GCST90200483 X-12216 levels 8181  European 0.5330  0.3296  0.8618  0.0103  

GCST90200100 Perfluorooctanesulfonate (PFOS) levels 8218  European 0.5296  0.3460  0.8107  0.0034  

GCST90200944 Alpha-ketoglutarate to pyruvate ratio 8272  European 0.5290  0.2813  0.9950  0.0482  

GCST90199801 Hydroquinone sulfate levels 7682  European 0.5164  0.2932  0.9095  0.0221  

GCST90200367 3-Hydroxybutyrate levels 8292  European 0.5109  0.2641  0.9884  0.0461  

GCST90200043 
1-palmitoyl-2-docosahexaenoyl-gpc (16:0/22:6) 

levels 
8256  European 0.4961  0.3083  0.7982  0.0039  

GCST90200727 
Adenosine 3′,5′-cyclic monophosphate (cAMP) to 

taurocholate ratio 
6329  European 0.4906  0.2794  0.8617  0.0132  

GCST90200221 Glycoursodeoxycholic acid sulfate (1) levels 6622  European 0.4882  0.3176  0.7506  0.0011  

GCST90199671 Cysteine s-sulfate levels 8229  European 0.4536  0.2461  0.8359  0.0113  

 

Exploration of cerebrospinal fluid Trimethylamine 

N-oxide levels in GBM causality 

 

In an extension of our investigation into potential causal 

factors for GBM, we explored whether Trimethylamine 

N-oxide levels in CSF could also serve as an 

influencing factor for the development and progression 

of GBM. Utilizing the ebi-a-GCST90026279 dataset, 

we analyzed 291 European CSF samples. A significance 

threshold of p < 1 × 10−5 allowed us to identify 56 SNPs 

as instrumental variables for CSF Trimethylamine N-

oxide Levels. Our analysis, employing the Inverse 

Variance Weighted method alongside four additional 

MR methodologies, did not demonstrate a significant 

causal effect of Trimethylamine N-oxide levels in  

CSF on GBM. All P-values were above the 0.05 

threshold, indicating no statistically significant causal 

relationship (Figure 4A, 4B and Supplementary Table 

3). Furthermore, we observed no substantial evidence of 

heterogeneity or horizontal pleiotropy in these analyses 

(Supplementary Table 3 and Figure 4C, 4D). These 

collective findings from our MR analyses imply that 

there is no causal link between Trimethylamine N-oxide 

levels in CSF as an exposure factor and GBM as an 

outcome. 

DISCUSSION 
 

The findings of this study represent a potential 

advancement in our understanding of the metabolic 

processes involved in GBM pathogenesis. Our 

Mendelian Randomization analysis of 1,400 plasma 

metabolites has identified 69 kinds of metabolites that 

appear to be associated with the risk and progression of 

GBM, most notably TMAO levels. This metabolite’s 

positive association with GBM development indicates 

its potential role in the pathophysiological mechanisms 

underlying this malignancy. 
 

TMAO is an organic compound synthesized in the  

liver from trimethylamine (TMA), a byproduct of gut 

microbiota metabolism of nutrients dense in choline and 

carnitine, predominantly sourced from red meat, eggs, 

and dairy products [26]. The compound has come into 

scientific focus due to its associations with a variety of 

diseases, most notably cardiovascular disorders [27]. Its 

role in oncology is gaining interest, as emerging studies 

suggest potential mechanisms by which TMAO may 

influence cancer progression [9, 28, 29]. The promotion 

of inflammation, a recognized hallmark of cancer, has 

been considered to be associated with elevated levels  
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of TMAO [30, 31]. Chronic inflammation is known to 

play a role in the initiation and advancement of  

tumor development [32, 33]. Furthermore, TMAO is 

thought to modulate immune responses, potentially 

impacting the body’s capacity to combat tumor cells  

[30]. Additionally, TMAO may affect cellular signaling 

pathways that are crucial for cell proliferation and 

survival [34], as well as contribute to oxidative stress 

[35], which can lead to enhanced tumor growth [34]. 

Nevertheless, the exact mechanisms by which TMAO 

may influence cancer pathogenesis, including that  

of GBM or other solid tumors, remain inadequately 

 

 
 

Figure 2. The causal association between plasma Trimethylamine N-oxide and GBM. (A). Forest plot illustrating ORs and 95% CIs 
for the association, with individual SNPs represented by black squares and their CIs by horizontal lines; the pooled OR is indicated by a red 
line. (B) Scatter plot showing SNP effects on TMAO levels versus GBM risk, with lines for different MR methods showing the causal 
relationship’s direction and strength. (C) MR-Egger intercept test assessing horizontal pleiotropy, where the x-axis intercept value indicates 
pleiotropy presence, and the I² statistic on the y-axis shows instrumental variable heterogeneity; a vertical blue line shows the null 
intercept, suggesting no pleiotropy. (D) Leave-one-out sensitivity analysis indicating the stability of the causal estimate across SNPs, with a 
consistent overall estimate shown by a red line, suggesting no individual SNP significantly alters the MR estimate. 
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defined. TMAO’s impact may be direct, through 

interactions with tumor cells, or indirect, by altering the 

tumor microenvironment or systemic metabolism. 

 

The association between TMAO and GBM identified in 

this study suggests its potential utility as a non-invasive 

biomarker for early detection or monitoring of disease 

progression, which could be particularly beneficial  

in clinical settings where current primary diagnostic 

methods are invasive. Our findings suggest that dietary 

modifications to reduce TMAO production—a strategy 

potentially involving decreased consumption of red 

 

 
 

Figure 3. Analysis of GBM Impact on plasma Trimethylamine N-oxide levels via reverse MR. (A). Forest plot for the reverse MR 
analysis of GBM’s effect on Trimethylamine N-oxide levels. (B) This scatter plot maps the SNP effects on GBM against their effects on 
plasma Trimethylamine N-oxide levels, applying various MR methods. (C) Displayed is the MR-Egger intercept test for the reverse MR 
analysis. The proximity of the intercept to the zero line and the lack of deviation indicates no evidence of horizontal pleiotropy in the 
analysis. (D) The leave-one-out sensitivity analysis for the reverse MR is shown here, demonstrating the effect size stability when each SNP 
is sequentially excluded. 
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meat and other choline- or carnitine-rich foods—could 

be a viable approach to reducing GBM risk. This 

dietary advice aligns with current recommendations 

for the prevention of cardiovascular diseases and  

other conditions associated with high TMAO levels 

[26]. 

 

Importantly, our further research suggests a uni-

directional relationship where elevated TMAO levels 

might contribute to the risk or progression of GBM, but 

the presence of GBM does not, in turn, affect TMAO 

levels. These findings indicate that while TMAO may 

play a role in the pathogenesis of GBM, the disease’s 

progression does not seem to exert a reciprocal effect  

on systemic TMAO levels. The findings reinforce the 

potential of plasma TMAO levels as a biomarker for 

GBM risk assessment. However, TMAO levels may not 

reflect disease progression or therapeutic response, as 

GBM does not appear to influence these levels. In 

addition, it also lacks a significant causal relationship 

between TMAO levels in CSF and the development of 

GBM. 

 

 
 

Figure 4. Mendelian Randomization analysis of CSF Trimethylamine N-oxide levels and GBM. (A) The forest plot displays the 

estimated effects of individual SNPs of CSF Trimethylamine N-oxide levels on the risk of GBM. (B) The scatter plot maps the effects of SNPs on 
Trimethylamine N-oxide levels in CSF against their influence on GBM. (C) The MR-Egger intercept test for pleiotropy indicates the intercepts 
near zero, implying no significant horizontal pleiotropy that would undermine the validity of the instrumental variables used. (D) A leave-one-
out sensitivity analysis shows stability in the causal estimation; removing individual SNPs does not alter the overall inference, as indicated by 
the clustering around the null line, underscoring the non-causal relationship between CSF Trimethylamine N-oxide levels and GBM. 
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The discrepancy between the role of TMAO levels  

in CSF and plasma in relation to GBM can be 

attributed to several factors. CSF and plasma have 

distinct biochemical compositions and serve different 

physiological functions [36]. Plasma is involved in 

systemic circulation and reflects metabolic processes 

occurring throughout the body [37]. In contrast, CSF is 

more localized to the brain and spinal cord, indicating 

that the metabolic environment in the brain might  

be distinct from systemic circulation [38], and thus  

the levels of TMAO in CSF and plasma could be 

influenced by different factors. Furthermore, the 

Blood-Brain Barrier (BBB) plays a crucial role in 

separating the brain’s microenvironment from the 

systemic circulation [39–41]. It is highly selective in 

what it allows to pass through [41]. This barrier could 

mean that while elevated TMAO levels in plasma 

might influence GBM risk or progression, these effects 

do not necessarily translate to similar alterations in 

CSF TMAO levels. In addition, the production and 

metabolism of TMAO are primarily located in the liver 

and influenced by gut microbiota [42–44]. Given the 

liver’s systemic connection and the BBB’s selective 

permeability, this could result in differing impacts  

of TMAO on GBM [45]. The findings suggest that 

systemic metabolic changes (reflected in plasma) might 

play a more significant role in GBM’s pathogenesis 

than localized metabolic alterations within the brain or 

spinal cord (reflected in CSF) [46]. In addition, the 

findings reinforce the potential of blood biomarkers, 

TMAO, in GBM risk assessment and early detection, 

which could be more accessible and less invasive than 

biomarkers in CSF. 

 

Our study, while providing valuable insights into the 

association between TMAO levels and GBM, faces 

several limitations. The analysis is based on data from a 

specific population, which may not accurately represent 

the diverse genetic, dietary, and environmental factors 

influencing TMAO levels and GBM risk across different 

demographic groups, thus limiting the generalizability 

of our findings. Additionally, our study does not delve 

into the underlying biological mechanisms by which 

TMAO might influence GBM pathogenesis. Lastly, it is 

imperative to conduct extensive, multi-center validation 

studies to ascertain TMAO’s efficacy across varied 

demographics, thereby establishing its sensitivity, 

specificity, and predictive value for GBM. Developing 

standardized measurement protocols for TMAO, 

including reference ranges and assay reproducibility, is 

essential. Identifying the optimal clinical context for 

TMAO measurement—be it for screening, differential 

diagnosis, or monitoring—is crucial. Clinical trials will 
further evaluate TMAO’s integration into diagnostic 

and therapeutic regimes, assessing its contribution  

to patient outcomes. Challenges such as dietary and 

microbiome influences on TMAO levels necessitate 

comprehensive adjustments in studies, while the 

precision of TMAO measurement techniques must  

be continuously advanced and validated. Moreover, 

increasing clinician awareness and understanding of 

TMAO’s biomarker potential through education and 

consensus building is vital, alongside assessing the  

cost-effectiveness of TMAO testing for practical 

applicability. Transitioning TMAO from a research 

biomarker to a clinical tool encompasses tackling 

scientific, technical, and logistical hurdles, necessitating 

collaborative and iterative efforts to harness its full 

potential in enhancing GBM patient care and outcomes. 

 

In conclusion, our extensive analysis of 1,400 plasma 

metabolites has successfully identified 69 metabolites 

that are associated with GBM. Our findings highlight 

the potential of plasma metabolites, particularly TMAO, 

as biomarkers for GBM, offering a promising avenue 

for early detection and risk assessment. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Tables 
 

Supplementary Table 1. Two-sample MR analysis results of Trimethylamine N-oxide levels on GBM, including 
heterogeneity test and horizontal pleiotropy test. 

Method nsnp b se p-val lo_ci up_ci or or_lci95 or_uci95 
heterogeneity_ 

Q_p-val 

pleiotropy-

p-val 

MR Egger 15  1.5187  0.8595  0.1007  −0.1659  3.2033  4.5662  0.8471  24.6140  0.5742   

Weighted 

median 
15  0.9542  0.4695  0.0421  0.0340  1.8743  2.5965  1.0346  6.5163    

Inverse variance 

weighted 
15  1.1514  0.3367  0.0006  0.4915  1.8114  3.1627  1.6347  6.1189  0.1853  0.4306  

Simple mode 15  1.0580  0.7415  0.1755  −0.3953  2.5113  2.8805  0.6735  12.3205    

Weighted mode 15  0.9992  0.6643  0.1548  −0.3028  2.3012  2.7161  0.7388  9.9859    

 

 

Supplementary Table 2. Two-sample MR analysis results of GBM on Trimethylamine N-oxide levels. 

Method nsnp b se p-val lo_ci up_ci or or_lci95 or_uci95 
heterogeneity_ 

Q_p-val 

pleiotropy-

p-val 

MR Egger 8  −0.0029  0.0349  0.9361  −0.0713  0.0654  0.9971  0.9312  1.0676  0.6968   

Weighted median 8  −0.0149  0.0199  0.4539  −0.0539  0.0241  0.9852  0.9475  1.0244    

Inverse variance 

weighted 
8  −0.0217  0.0151  0.1502  −0.0514  0.0079  0.9785  0.9499  1.0079  0.7553  0.5711  

Simple mode 8  −0.0181  0.0253  0.4981  −0.0676  0.0315  0.9821  0.9346  1.0320    

Weighted mode 8  −0.0161  0.0230  0.5058  −0.0611  0.0289  0.9840  0.9407  1.0293    

 

 

Supplementary Table 3. Two-sample MR analysis results of Trimethylamine N-oxide levels in CSF on GBM. 

Method nsnp b se p-val lo_ci up_ci or or_lci95 or_uci95 
heterogeneity_ 

Q_p-val 

pleiotropy-

p-val 

MR Egger 56 0.2287  0.4165  0.5852  −0.5876  1.0449  1.2569  0.5557  2.8431  0.0626   

Weighted median 56 0.2024  0.3155  0.5212  −0.4160  0.8207  1.2243  0.6597  2.2721    

Inverse variance 

weighted 
56 0.1868  0.2304  0.4175  −0.2648  0.6384  1.2054  0.7674  1.8934  0.0745  0.9040  

Simple mode 56 −0.8097  0.7073  0.2573  −2.1960  0.5767  0.4450  0.1112  1.7801    

Weighted mode 56 0.1891  0.5442  0.7295  −0.8774  1.2557  1.2082  0.4159  3.5103    
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