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INTRODUCTION 
 

Renal cell carcinoma is a frequent genitourinary cancer 

that claims the lives of around 170,000 people annually. 

Clear cell renal cell carcinoma (ccRCC), which accounts 

for around 80% of cases, is RCC’s most prevalent 

histological form [1]. Metastasis is typically already 

established at the time of diagnosis since renal clear  

cell carcinoma is asymptomatic. Recurrence after 

nephrectomy is frequent, and surgical excision of  

RCC metastases is likewise challenging. Furthermore, 

insensitivity to chemotherapy and radiation distinguishes 

ccRCC from other urologic malignancies [2]. Due to  

its high immunogenicity, ccRCC may respond favorably 

to immunotherapy. Immunotherapy has undoubtedly 

made significant progress in the treatment of ccRCC, 

although individual differences still affect treatment 

outcomes [3]. Clinical prognostic models have recently 

been developed to successfully predict recurrence-free 

survival time in renal cancer [4]. In addition, Jialin Meng 

et al. analyzed the predictive value of cell division cycle-

related proteins in patients with clear cell renal cell 

carcinoma [5]. Because of the heterogeneity of ccRCC 

patients, however, we urgently need to develop accurate, 

comprehensive risk models, stratify patients, and design 

personalized treatment options in terms of prognosis 

prediction and drug selection. 

 
Telomerase is the enzyme that causes telomere 

elongation in cells. It lengthens telomeres and increases 
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ABSTRACT 
 

Objective: To investigate whether telomerase-associated lncRNA expression affects the prognosis and anti-
tumor immunity of patients with renal clear cell carcinoma (ccRCC). 
Methods: A series of analyses were performed to establish a prognostic risk model and validate its accuracy. 
Immune-related analyses were performed to assess further the association between immune status, tumor 
microenvironment, and prognostic risk models. 
Results: Eight telomerase-associated lncRNAs associated with prognosis were identified and applied to 
establish a prognostic risk model. Overall survival was higher in the low-risk group. 
Conclusion: The established prognostic risk model has a good predictive ability for the prognosis of ccRCC 
patients and provides a new possible therapeutic target for ccRCC. 
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the number of cell divisions by adding telomeric  

DNA to the ends of eukaryotic cells’ chromosomes  

and replacing telomeres lost during DNA replication 

[6]. Telomerase is essential to preserve genomic 

integrity, telomere stability, and continued proliferative 

potential [7]. Normal human tissues and tumors exhibit 

reactivated telomerase activity, which may play a role 

in developing malignant transformation [8]. Almost  

all cancers have tumorigenic properties regulated by 

telomeres and telomerase. These characteristics include 

resistance to cell death, activation of invasion and 

metastasis, avoidance of growth inhibitors, genomic 

instability, maintenance of proliferative signals, induction 

of angiogenesis and immune regulation, and maintenance 

of proliferative signals [9]. Telomere control is, therefore, 

crucial to the development of tumors. Furthermore,  

it has been demonstrated that the telomere length of 

tumor cells is a reliable indicator of patient survival and 

therapeutic response [10, 11]. 

 

Long non-coding RNAs, or lncRNAs, are RNAs  

longer than 200 bp that do not code for proteins. They  

regulate immunological responses, including immune cell 

infiltration, antigen recognition, antigen exposure, and 

tumor development [12]. By altering gene transcription 

and post-transcription, lncRNAs contribute to distinct 

aspects of carcinogenesis and metastasis [13–15]. 

Androgen receptors have been reported to be able to alter 

TWIST1 nonsense-mediated decay via lncRNA-TANAR 

and promote vasculogenic mimicry (VM) in renal  

cell carcinoma (RCC) [16]. Long non-coding lncRNAs 

have been demonstrated to regulate telomerase-related 

pathways, which is essential for the early development of 

cancer [17]. Nevertheless, studies on TR-associated 

lncRNAs’ function in tumor immunity (TIME) and the 

prognosis of ccRCCs are still lacking. 

 

Therefore, to test the predictive value of the TRL model 

in predicting the prognosis of patients with colorectal 

cancer and their response to chemotherapy and 

immunotherapy, we carried out a thorough systematic 

study to identify TR-associated genes by weighted  

gene co-expression network analysis (WGCNA) and 

then establish a TRL model risk profile by LASSO 

regression. The findings of this study will provide fresh 

light on how TR affects ccRCC and contribute to 

improving ccRCC patients’ tailored treatments. Lastly, 

the in vitro signature lncRNA investigations prove the 

model’s dependability. 

 

MATERIALS AND METHODS 
 

Acquisition and processing of data 

 

The TCGA website (https://portal.gdc.cancer.gov/) 

provided RNA-seq data with FPKM normalization for 

renal clear cell carcinoma (TCGA-KIRC) along with 

related clinical and prognostic data; 613 patients’ 

lncRNA expression and survival time data were also 

retrieved. In total, 507 patients who had been followed  

up for more than 30 days met the inclusion criteria. 

Patients were randomly split into two groups: a test group 

(n = 253) and a training group (n = 256). A complete set 

of 298 genes associated with TR was downloaded from 

the GeneCards website (https://www.genecards.org). 

 

Screening of differential genes 

 

First, we eliminated all telomerase genes (TRs) having  

a correlation value less than 7. Following previously 

described procedures [18], we further preprocessed the 

data using the limma program at false discovery rate 

(FDR) < 0.05 and | log2 fold change (FC) | > 1. We then 

chose 210 differentially expressed TRs for additional 

analysis. As per the earlier explanation [19], ccRCC-

related modules were found using the WGCNA package 

(version 1.61). In short, a scale-free topology criterion 

was used to compute soft thresholds. A minimum module 

size of thirty genes was established by selecting the best 

soft threshold. The dynamic tree cut recognition module 

was utilized to set the MEDissThres parameter to 0.25. 

 

Construction and validation of TR-associated 

lncRNA risk models 

 

Data from CcRCC patients were randomized 1:1 to the 

training or test sets. A risk model for TR-associated 

lncRNAs was built using the training set, and the risk 

model was validated using the test set and the entire set. 

Using univariate Cox regression analysis, TR-related 

lncRNAs linked to the prognosis of renal carcinoma were 

found. Using multiple Cox regression analysis and the 

LASSO Cox regression technique, a prognostic risk 

model based on optimum lncRNAs was created. Every 

person was given a risk score based on this risk model. 

The following is the calculation of risk scores: Risk score 

= Σi = 1nCoef (i) × Expr (i). Where Expr (i) denotes the 

normalized expression level for each lncRNA and Coef 

(i) denotes the regression coefficient for each lncRNA. 

The training set was split into low and high-risk groups 

based on the median risk score. To find out if there were 

any differences in overall survival between the two risk 

groups, we used K-M curves. We evaluated the accuracy 

of the risk model using the concordance index (C-index), 

produced receiver operating characteristic (ROC) curves 

for clinical features and prognostic models, and measured 

the area under the curve (AUC). 

 
PCA, functional enrichment analysis 

 
The geographic distribution of the two risk groups across 

four expression profiles—the total gene expression 
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profile, the telomerase gene expression profile, the 

telomerase-associated lncRNA expression profile, and six 

telomerase-associated lncRNA expression profiles in the 

risk model—was examined using principal component 

analysis (PCA). With the “ggplot2” software, we carried 

out a genome encyclopedia (KEGG) study. We found 

mRNAs that were strongly correlated with the lncRNAs 

above to explore the biological function of these eight 

lncRNAs in ccRCC. Sankey diagrams created and 

showed a co-expression network comprising lncRNAs 

and mRNAs. The threshold for the correlation coefficient 

was established at > 0.4 or < − 0.4, and a P-value of less 

than 0.001 was deemed statistically significant. 

 

Construction of nomograms 

 

To create nomogram survival maps that could predict 

the 1-year, 2-year, 3-year, and 5-year survival of ccRCC 

patients, we combined the risk score with age, sex, 

stage, and clinicopathological features of the M stage. 

We then used the calibration curve to determine 

whether the predicted survival rate was consistent with 

the actual survival rate. 

 
Predictive signature drug sensitivity analysis 

 

We assessed the contribution of predictive variables  

in predicting ccRCC treatment response using the  

Cancer Drug Sensitivity Genomics (GDSC) database. 

This publicly available resource compiles data on cancer 

cell drug sensitivity and molecular indicators of drug 

response [20]. GDSC2 gene expression profiles and 

related drug response information were obtained using the 

oncoPredict software [21]. The half maximum inhibitory 

concentration (IC50) of each medication in individuals 

with ccRCC was predicted using sensitivity ratings. 

 
Immune infiltrate level analysis 

 

Additionally, using the “gsa” software, ssGSEA was 

used to quantify immune cells and pathways between 

the two groups. The “GSVA” software package  

was utilized to compute the infiltration score of 16 

immune cells and the activation of 13 immune-related 

pathways by single-sample gene set enrichment analysis 

(ssGSEA) [22]. Lastly, the association between the risk 

score and immunological checkpoints was examined by 

identifying variations in gene expression levels between 

high-risk and low-risk groups. 

 
Cell culture 

 

We acquired human renal cell carcinoma cell lines 

(769-P, 786-O, ACHN, CAKI-1, OSRC2) and human 

tubular epithelial cells (HK2) from Purcell Life 

Technologies Co., Ltd. The cells were cultivated at 

37°C with 5% CO2 in a similar medium (Thermo Fisher 

Scientific, Inc.) supplemented with 10% fetal bovine 

serum (FBS; Gibco). 

 

RNA extraction and real-time quantitative PCR 

(RT-qPCR) analysis 

 

TRIzol® (Qiagen, Inc.) isolated total RNA from RCC 

cells and tissues. Thermo-Script Reverse Transcription 

Kit (Thermo Fisher Scientific, Inc.) synthesized cDNA 

by the reagent manufacturer’s instructions. Using a 

CFX96™ Real-Time PCR System (Bio-Rad Laboratories, 

Inc.) and SYBR Green reagent (Takara Bio, Inc.), ten μl 

reactions were put onto 96-well plates for qPCR. 95°C 

for 5 minutes, 95°C for 15 seconds, 60°C for 25 seconds, 

72°C for 30 seconds, and 40 cycles were the thermal 

cycling conditions. The 2−ΔΔCq technique was employed 

to calculate the relative gene expression levels [23]. A 

regulating gene for normalizing gene expression was 

beta-actin. Supplementary Table 1 lists the primers used 

in the real-time PCR acquired from Sangon Biotech 

(Shanghai, China). 

 

Proliferation and migration assay 

 

Twenty-four hours after transfection, the cells were 

evenly distributed in 96-well plates with five parallel 

replicate wells for each group, and ten μL CCK-8  

reagent was added on days 1, 2, and 3 to determine the 

absorbance at 450 and 630 nm, representing the cell 

growth rate. Renal cell carcinoma cells (5 × 104) 

transfected with AC002451.1 knockdown plasmid or 

negative control were added to the upper chamber of 

transwell plates containing 200 μL serum-free medium 

and 800 μL medium containing 10% fetal bovine serum. 

The lower chamber acts as an inducer. After 24 h, 

migrated cells were washed with PBS, fixed in methanol, 

and stained with 1% crystal violet, and non-migrated cells 

in the upper chamber were removed with a cotton swab. 

At least four randomly selected fields were observed and 

counted under a microscope (Olympus, Tokyo, Japan). 

 

Wound healing test 

 
Cells were incubated in 6-well plates. When the cells 

were cultured to 80% confluence, scratches were 

performed using a 200 μL pipette tip. Cells were 

washed with PBS and placed in the serum-deficient 

medium for 24 hours. The wound healing area was 

recorded at 0 and 24 hours using a microscope 

(Olympus, Tokyo, Japan). 

 

Statistical analysis 

 

GraphPad Prism 9.3.0, Perl software (version 5.3),  

and R software (version 4.0.3) were utilized. This  
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work used the LASSO method, PCA, ROC analysis, 

Kaplan-Meier method, univariate and multivariate Cox 

proportional hazards models, and WGCNA modular 

analysis. Furthermore, the ΔΔCT method was utilized  

to quantify the rt-qPCR results, and a Student’s t-test 

was employed for analysis. 

 

Data availability 

 

The datasets analysed during the current study are 

available in the TCGA website (https://portal.gdc. 

cancer.gov/) repository. 

RESULTS 
 

Functional modules identified by WGCNA analysis 
 

We screened 210 TR-associated DGEs (Figure 1A), 

adhering to the method illustrated in Figure 2.  

The selected DEGs were then applied to WGCNA. 

Using the genes’ expression data, the similarity matrix 

is first created by calculating the Pearson correlation 

coefficient between the two genes. Next, the similarity 

matrix is converted into an adjacency matrix, 

progressively transformed into a topology matrix that

 

 
 

Figure 1. WGCNA analysis of differentially expressed telomerase-associated genes. (A) 256 TR-related genes in ccRCC. Yellow 
dots indicate up-regulated genes and blue dots indicate down-regulated genes. (B) Cluster analysis of samples. (C) Gene dendrogram and 
module colors. (D) Cluster-based gene dendrogram. (E) Correlations of modules with clinical phenotypes. 
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describes the degree of association to identify the 

differences between the genes using TOM. A power  

of β = 5 was used as the soft threshold parameter to 

meet the scale-free topology (R2 > 0.9) (Figure 1B). A 

hierarchical clustering tree was built using 1-TOM as 

the distance for gene clustering and a cutoff value of 

0.25 (Figure 1C). Each module’s characteristic genes 

were determined, and adjacent modules were combined 

to create additional modules (Figure 1D). Ultimately, 

two gene modules were found (Figure 1E). The gray 

module showed a strong positive correlation with the 

scores on the clinicopathological index among them.  

As a result, 35 essential genes from the gray module 

were chosen for additional examination (Supplementary 

Table 2). 

 

Construction of prognostic risk models 

 

A total of 1892 lncRNAs linked to TRs with differential 

expression were screened (Supplementary Table 3). 

Further univariate Cox regression analysis yielded 99 

lncRNAs associated with ccRCC patient prognosis 

(Supplementary Table 4). To predict the prognosis of 

patients with ccRCC, we employed LASSO Cox 

regression to build prognostic models utilizing 

prognosis-related lncRNAs and 1000 10-fold cross-

validation (Figure 3A, 3B). The findings demonstrated 

that predictive characteristics were constructed using 

eight lncRNAs linked with TRs (AC069200.1, 

AC002451.1, LINC01711, ITPR1-DT, DLGAP1-AS2, 

AL162377.1, LINC01605, AC084876.1). Figure 3C 

displays the expression levels of eight lncRNAs in  

the expected signature. To see lncRNAs, we also used 

the R software tools gg alluvial and Cytoscape. The co-

expression network displayed results for 33 pairs of 

lncRNA-mRNAs (Figure 3D). Protective factors were 

AC002451.1, LINC01711, and AL162377.1, while risk 

factors included AC069200.1, ITPR1-DT, DLGAP1-

AS2, LINC01605, and AC084876.1 (Figure 3E). This  

is how the risk score was determined: Risk score is 

equivalent to the following: (0.30 × AC069200.1 

expression) + (−1.39 × AC002451.1 expression) + (−0.45 

× LINC01711 expression) + (0.66 × ITPR1-DT 

expression) + (0.48 × DLGAP1-AS2 expression) + 

(−1.05 × AL162377.1 expression) + (1.05 × LINC01605 

expression) + (0.73 × AC084876.1 expression). 

 

 
 

Figure 2. Step diagram of the study. Abbreviations: ccRCC: renal clear cell carcinoma; TCGA: Cancer Genome Atlas; DEGs: differentially 

expressed genes; lncRNAs: long non-coding RNAs; ROC: receiver operating characteristic; PCA: principal component analysis. 

9390



www.aging-us.com 6 AGING 

Association between prognosis and prognostic 

characteristics in ccRCC patients 

 

Each patient’s risk score was determined using the 

algorithm, and based on the median value, the patients 

were categorized as either high-risk or low-risk. The 

two groups’ overall survival times were compared  

using Kaplan-Meier analysis, and the findings indicated 

that the low-risk group’s OS was much shorter than  

the high-risk group’s (Figure 4A, P < 0.001). Figure 4B 

 

 
 

Figure 3. Screening, expression levels, and lncRNA-mRNA networks of eight TR-related lncRNAs in predicted signals. (A) Ten-

fold cross-validation error rate plots. (B) LASSO coefficient profiles of TR-related lncRNAs. (C) Expression levels of eight TR-related lncRNAs 
in ccRCC and normal tissues. (D) Co-expression networks of prognostic TR-related lncRNAs. (E) Multinomial plots of prognostic TR-related 
lncRNAs. Abbreviations: lncRNAs: long-chain non-coding; ccRCC: renal clear cell carcinoma. 
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displayed the difference in the risk score, and Figure 

4C showed that as the risk score increased, more 

deaths occurred. Univariate Cox regression analysis 

revealed that age, grade, stage, M stage, and risk score 

were significantly correlated with the OS of ccRCC 

patients (Figure 4D). Multivariate Cox regression 

analysis revealed that age, grade, stage, and risk score 

were independent predictors of OS of ccRCC patients 

(Figure 4E), indicating that the risk characteristics 

were independent risk factors for the prognosis of 

ccRCC patients. Compared to other clinicopathological 

characteristics, the risk score’s area under the curve 

(AUC = 0.783) was more predictive of a favorable 

outcome (Figure 4F). The 1-year, 3-year, and 5-year 

 

 
 

Figure 4. Correlation between predictive characteristics and prognosis of ccRCC patients. (A) Kaplan-Meier analysis of OS rate in 

patients with high and low risk. (B) Risk score distribution in patients with ccRCC. (C) The total number of patients with varying risk scores 
who died and survived. Red denotes the number of deaths, and blue is the number of survivors. (D) The univariate Cox regression analysis’s 
forest plot. (E) Multivariate Cox regression analysis’s forest plot. (F) Risk score and clinicopathological variable ROC curve. (G) The ROC 
curve and AUCs are used to estimate the survival rates of features after one, three, and five years. Abbreviations: ccRCC: renal clear cell 
carcinoma; OS: survival rate; ROC: receiver operating characteristic; AUC: area under the curve; T: tumor; M: metastasis. 

9392



www.aging-us.com 8 AGING 

survival AUCs had predictive solid ability. According 

to Figure 4G, the areas were 0.791, 0.783, and  

0.797, respectively. We evaluated the differences in 

clinicopathological variables between the high-risk and 

low-risk groups to rule out these variables’ influence, 

and we found no significant differences (Figure 5A). 

 

We created nomogram prediction maps combining 

clinicopathological characteristics and risk scores to 

further forecast the prognosis of patients with colorectal 

cancer (ccRCC). These maps were used to predict the 

patients’ 1-year, 3-year, and 5-year prognoses (Figure 

5B). For further evaluation, the accuracy of prognostic 

variables was assessed by calibration analysis and 

Hosmer-Lemeshow (HL) test. Consistent HL test 

statistics showed predictive probabilities for survival  

at 1 year (Figure 5C, P = 0.886), 3 years (Figure 5D,  

P = 0.546), and 5 years (Figure 5E, P = 0.580), 

signifying good calibration, indicating good model fit. 

 

Relationship between predictive characteristics and 

prognosis of different clinicopathologic parameters 

in ccRCC patients 

 

We carried out a subgroup analysis of survival in patients 

with varying ages, pathological kinds, grades, and M and 

N stages to examine the association between predictive 

indicators and prognosis in ccRCC patients under various 

clinicopathological variable classifications. According to 

the results, OS in the high-risk group was considerably 

worse than in the low-risk group (Figure 6), suggesting 

that the predictive features might be used to forecast the 

prognosis of patients with colorectal cancer under various 

clinicopathological conditions. 

 

Performing internal validation of predictive features 

 

We randomly split ccRCC patients into two groups to 

test the applicability of the prognostic signature based 

on the whole TCGA dataset. All high-risk patient 

groups in the training and validation groups had 

considerably lower overall survival rates, consistent 

with the findings across the board (Figure 7A–7C).  

The patients’ clinical manifestations were visible by 

examining the ROC curves of the two groups. The 

training group’s 1-, 3-, and 5-year survival rates had 

AUCs of 0.821, 0.855, and 0.850, respectively (Figure 

7D). The validation group’s 1-, 3-, and 5-year survival 

rates had AUCs of 0.762, 0.700, and 0.750, respectively 

(Figure 7D). 

 

Comparison of prognostic features based on gene 

expression in renal clear cell carcinoma 

 

Advances in big data and next-generation sequencing 

technology have led to the emergence of major machine 

 

 
 

Figure 5. Heatmap and nomogram construction and validation of the distribution of model signatures and clinicopathological 
variables. (A) Heatmap showing the distribution of clinicopathological factors and eight lncRNAs associated with prognostication. (B) For 

ccRCC patients, survival at 1, 3 and 5 years was predicted by nomogram survival in conjunction with risk scores and clinicopathological factors. 
(C–E) Calibration curves and Hosmer-Lemeshow test for the validation of the predicted probability of 1, 3, 5-year survival. Abbreviations: 
lncRNAs: long-chain non-coding RNAs; T: tumor size; M: metastasis; OS: overall survival; ccRCC: renal clear cell carcinoma. 
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learning-based prognostic and predictive gene expression 

signatures in recent years [24]. To compare performance 

with other signatures, we thoroughly searched ccRCC-

released signatures. Six signatures have been registered 

[25–30] (Supplementary Table 5). These characteristics 

include pyroptosis, iron death, RNA-binding  

protein, necroptosis, WNT, and drug-sensitive biological 

processes. Using the ccRCC’s time-dependent ROC, we 

looked at every model to forecast its predictive impacts. 

Other models are not as good as our TRL model. 

 

 
 

Figure 6. Kaplan-Meier survival curves of patients divided into high- and low-risk groups according to the ranking of 
different clinicopathological variables. (A, B) Age. (C, D) Gender. (E, F) Grade. (G, H) Stage. (I, J) T Stage. (K, L) M Stage. T, tumor size. 
M, distant metastasis. 
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Immune cell infiltration and functional analysis 

 

Upon conducting additional KEGG analysis, we 

discovered that genes associated with the prognostic 

signature risk model were abundant in signaling pathways 

related to immune response, p53 signaling pathways, 

VEGF, and α-linoleic acid metabolism (Figure 8A). We 

used ssGSEA to quantify enrichment scores for various 

immune cell subsets, related functions, or pathways to 

explore better the relationship between risk scores and 

immune cells and function (Figure 8). The findings 

demonstrated significant differences between patients in 

the high and low-risk groups in terms of activated 

dendritic cells (aDCs), CD8 + T cells, macrophages, mast 

cells, T helper cells, T follicular helper (Tfh), T helper 

type 1 (Th1), T helper type 2 (Th2), tumor-infiltrating 

lymphocytes (TIL), and regulatory T cells (Treg)  

(Figure 8C). The high-risk group had higher levels of 

 

 
 

Figure 7. Internal validation of OS prediction signatures based on internal datasets. Kaplan-Meier survival curves for the test and 
training groups. (A, B) Training and test groups’ survival duration and status. (C) Training and test groups’ distribution of total survival risk 
scores. (D) ROC curves and AUCs for patients in the training and test groups’ 1-, 3-, and 5-year survival rates. Abbreviations: ROC: receiver 
operating characteristic; AUC: area under the curve; OS: overall survival; TCGA: Cancer Genome Atlas. 
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antigen-presenting cell (APC) co-inhibition, APC co-

stimulation, chemokine receptor (CCR), checkpoint, 

cytolytic activity, pro- and para-inflammatory, T cell co-

inhibition, T cell co-stimulation, and immune function 

scores of type I IFN response, indicating active immune 

function. Subsequent investigation demonstrated that the 

immune checkpoint expressions of the two groups also 

differed (Figure 8D). 

We employed principal component analysis (PCA) to 

display the distribution of patients based on genome-wide, 

TR-related gene sets, TR-related lncRNAs, and predictive 

characteristics to visualize the spatial distribution of high-

risk and low-risk groups. The findings demonstrated that 

when predictive indicators were used to separate patients, 

patients in the high-risk group were dispersed over several 

quadrants (Figure 9A–9D). 

 

 
 

Figure 8. KEGG and immune infiltration analysis. (A) KEGG enrichment analysis. (B) 16 immune cell scores. (C) 13 immune-related 

function scores. (D) Expression of immune checkpoints in high- and low-risk populations. Abbreviations: KEGG: Kyoto Encyclopedia of 
Genes and Genomes ssGSEA; single-sample gene set enrichment analysis; aDCs: activated dendritic cells; iDCs: immature dendritic cells; 
NK: natural killer cells; pDCs: plasmacytoid dendritic cells; Tfh: T follicular helper cells; Th1: T helper type 1; Th2: T helper type 2; TIL: tumor-
infiltrating lymphocytes; Treg: T regulatory cells; APC: antigen-presenting cells; CCR: chemokine receptor; HLA: human leukocyte antigen; 
MHC: major histocompatibility complex; IFN: interferon. *p < 0.05; *p < 0.01; **p < 0.001; Abbreviation: ns: not significant. 

 

 
 

Figure 9. PCA profiles showed patient distribution based on (A) Genome-wide; (B) Telomerase-related genes; (C) Telomerase-related 

lncRNAs; and (D) Risk score. In the high- and low-risk groups, red and green dots were more strongly separated. 
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Predictive characteristics associated with ccRCC 

therapy 

 

The OncoPredict program was utilized to forecast high- 

and low-score drug sensitivity scores. The results 

showed a positive correlation between sensitivity  

scores and IC50 values of chemotherapeutic drugs.  

In the low-score group, dihydro rotenone, OF-1, and 

Wnt-C59 exhibited increased sensitivity (Figure 10A–

10C). The high-risk group showed increased sensitivity 

to afuresertib, cytarabine, and ERK6604 (Figure 10D–

10F). Examining specific chemotherapy regimens that 

are appropriate for people in the high- and low-risk 

categories is beneficial. 

 

Expression of risk model lncRNAs 

 

Further research was done on the expression  

of AC069200.1, AC002451.1, LINC01711, ITPR1- 

DT, DLGAP1-AS2, AL162377.1, LINC01605, and 

AC084876.1. Eight lncRNAs were tested for expression 

using human renal cell carcinoma cell lines (769-P, 

786-O, ACHN, CAKI-1, and OSRC2) and tubular 

epithelial cells (HK2). All eight lncRNAs were 

expressed differently in ccRCC cell lines compared to 

tubular epithelial cell lines, according to a quantitative 

real-time PCR (qRT-PCR) investigation (Figure 11A–

11H). These findings imply that eight lncRNAs might 

be significant in ccRCC. We further analyzed the 

correlation between these clinical variables and the  

risk scores of the eight lncRNAs based on the gene 

expression and corresponding clinical data obtained 

from the TCGA database. The findings indicated that 

the eight lncRNAs and risk scores were associated  

with age, gender, tumor stage, and grade (Supplement 

Figure 1). 

 

Assessment of biological function for AC002451.1 

 

We observed that AC002451.1 showed a significant 

difference between renal cancer and adjacent non-

cancerous tissues, and the expression level was the 

highest in the OSRC2 cell line, so we successfully 

interfered with AC002451.1 mRNA expression using 

siRNA technology in the OSRC2 cell line and 

confirmed it by RT-PCR (Figure 12A). CCK-8 assay 

results showed cell viability inhibited after silencing 

AC002451.1 expression (Figure 12B). To further 

understand the effect of AC002451.1, colony formation 

assays were also performed, and the results showed that 

the viability of renal cancer cells was significantly 

inhibited after AC002451.1 was knocked down by 

siRNA (Figure 12C). To further examine whether 

AC002451.1 affected renal clear cell carcinoma 

metastasis, we performed transwell assays to assess the 

migration and invasion of renal carcinoma cells. These 

 

 
 

Figure 10. Drug sensitivity analysis. (A–C) Predicted sensitivity scores Dihydrorotenone, OF-1, and Wnt-C59 were candidates for 
chemotherapy in patients with high-risk scores. (D–F) Afutib, Cytarabine, and ERK6604 were candidates for chemotherapy in patients with 
high-risk scores. *p < 0.05; *p < 0.01; *p < 0.0001. 
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results indicate that siRNA-mediated silencing of 

AC002451.1 suppressed invasion of renal clear cell 

carcinoma (Figure 12D, 12E). 
 

DISCUSSION 
 

The urothelial system of the renal parenchyma  

is affected by kidney renal clear cell carcinoma 

(KIRC), an illness with a highly complicated etiology. 

The majority of treatment for KIRC is surgery  

because the condition is typically resistant to both 

chemotherapy and radiation. Thirty percent of tumor 

patients will eventually develop metastases, even with 

early surgical intervention [31]. As bioinformatics 

technology develops, more biomarkers will be found 

and could be helpful as targets for ccRCC diagnosis 

and treatment. Although specific biomarkers can 

increase the prediction findings’ accuracy [32, 33], 

single molecular markers cannot match our standards 

for outcome prediction due to the heterogeneity of 

colorectal cancer (ccRCC) disease. Multivariate model 

building for cancer prognostic prediction has emerged 

as a significant area of scientific interest. 

It has been documented that cancer cells use 

telomerase or telomere-selective elongation (ALT) 

activation to preserve telomere length and accomplish 

immortality [34]. While most normal somatic tissues 

lack telomerase, most human malignancies express 

high quantities of this enzyme and have short 

telomeres [35, 36]. TERT plays a significant role in 

cancer formation, which is a limiting factor in the 

production of telomerase complexes in cancer cells 

[37]. The catalytic protein of telomerase RNP, hTERT, 

is a crucial step in generating telomerase activity [38]. 

Chromosome rearrangements at the TERT locus have 

been linked in several studies to the development of 

neuroblastoma [39–41]. Thyroid cancer, particularly 

papillary thyroid cancer patients with a poor prognosis, 

can also be caused by TERT promoter (TERTp) 

mutations in conjunction with BRAF mutations [42, 

43]. Additionally, it has been discovered that the 

TERT hypermethylation tumor region (THOR), which 

is linked to elevated TERT expression and accelerates 

the development of pancreatic and stomach tumors,  

is present in these diseases. According to one study, 

the risk of RCC may be related to the number of 

 

 
 

Figure 11. qRT-PCR was used to detect lncRNA expression levels in cancer cell risk models (HK2, 769-P, 786-O, ACHN, CAKI-
1, and OSRC2). (A) AC069200.1; (B) AC002451.1; (C) ITPR1-DT; (D) LINC01711; (E) AC084876.1; (F) DLGAP1-AS2; (G) AL162377.1; 

(H) LINC01605. *p < 0.05; *p < 0.01; *p < 0.001. 
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polymorphisms in tandem repeats in human telomerase 

reverse transcriptase (hTERT) MNS16A, rs2736098 

[44]. Telomerase’s function in different cancers has 

been the subject of countless investigations, although its 

significance in ccRCC is still unclear. Finding important 

telomerase-related molecular markers and investigating 

their function in the growth of ccRCCs may shed light 

on the biological characteristics of these cancers and 

suggest fresh, more potent treatment approaches. 

 

From the TCGA database, we extracted clinical and 

RNA-seq data from 72 standard samples and 539 

ccRCC samples. WGCNA modular analysis was used 

to identify module genes strongly correlated with 

patient clinicopathology. Cox and Lasso regression 

analyses were then used to select eight lncRNAs to 

establish a risk score model, which classified ccRCC 

patients into low- and high-risk groups based on the 

model’s risk score. PCA demonstrated that risk ratings 

may be used to separate patients into two groups. 

According to Kaplan-Meier survival analysis, patients 

in the high-risk group had a lower overall survival (OS) 

than those in the low-risk group. Moreover, scatter 

plots of survival status indicated a negative correlation 

between risk scores and survival. Univariate and 

multivariate Cox analyses demonstrated independent 

predictive risk factor status for the risk score. 

According to survival data, patients in the high-risk 

category have a terrible prognosis when compared to 

low-risk patients in various clinical groupings. These 

findings verified the predictive utility of this model 

throughout training, testing, and the whole TCGA 

cohort. Furthermore, we discovered that the risk score 

was connected to clinical traits, indicating that the 

model might be applied as a predictive and diagnostic 

tool. Our next step was to create a nomogram with risk 

scores to forecast the 1-, 3-better, and 5-year survival 

of patients with colorectal cancer. The nomogram’s 

ROC curve shows that its accuracy is relatively high. 

Differentially expressed genes in risk categories were 

shown to be considerably enriched in signaling 

pathways like P53 and immunology, according to 

functional enrichment analysis. Furthermore, there 

were notable differences in the activation of many 

immunological pathways between the high-risk and 

low-risk groups. It has been steadily demonstrated that 

lncRNA plays a role in tumor growth and functions  

as an immunotherapy predictor [45–47]. Thus, more 

research is required on the connection between 

immunotherapy and TR-associated lncRNAs. 

 

Tumor starts growth, and metastases are intimately 

linked to TME [48]. Long noncoding RNAs are a  

group of endogenous nonprotein-coding RNAs that  

regulate many cellular processes, including proliferation, 

differentiation, migration, and invasion. They also 

 

 
 

Figure 12. Assessment of biological function for AC002451.1. (A) RT-PCR validation following AC002451.1 knockdown in OSRC2 

cells. (B) CCK-8 assay was performed to determine the proliferation ability of OSRC2 cells after AC002451.1 knockdown. (C) A wound 
healing assay was used to assess the migration ability of cells following AC002451.1 knockdown. (D, E) Transwell assay was used to assess 
the migration ability of cell lines following AC002451.1 knockdown. *p < 0.05, *p < 0.01, **p < 0.001, *p < 0.0001. 
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participate in innate and adaptive immunity by 

mediating TME [49]. According to specific research, 

lncRNAs may have a role in controlling TME in ccRCC 

[50]. For instance, immune checkpoint expression and 

immune cell infiltration in ccRCC are believed to be 

related to lncRNA MIR155HG [51]. Furthermore, a 

growing number of irlncRNAs have been employed for 

significant and encouraging prognostic prediction in 

patients with colorectal cancer (ccRCC), including  

the possible therapeutic benefit of immunotherapy [52, 

53]. Pyroptosis is a special type of programmed cell 

death involved in tumorigenesis, progression, immune 

infiltration, and anti-tumor responses [54]. A recent 

study showed that ccRCC with different pyroptotic states 

showed significant heterogeneity at multiple levels, 

including functional status and tumour microenvironment 

[55]. However, this failed to reveal the role of 

pyroptosis-associated lncRNAs in regulating ccRCC 

immune regulation. Our GSEA results strongly 

correlated with tumor and immune-related pathways 

and high-risk patients. The high-risk group scored 

higher for CD8 + T cells, macrophages, Tfh cells, TILs, 

and Tregs, according to subsequent ssGSEA data. 

Research has demonstrated that a significant infiltration 

of CD8 + T cells is linked to a poor prognosis for  

BC patients [56, 57]. In advanced thyroid carcinoma,  

a high infiltration of tumor-associated macrophages  

is linked to a poor prognosis [58]. Patients with HCC  

who have a high infiltration of Tregs have a bad 

prognosis [59]. The high-risk group exhibited higher 

type I IFN response scores, lower antitumor immune 

capacity, and increased tumor immune cell infiltration. 

Consequently, a poor prognosis in high-risk groups  

may be caused by reduced antitumor immunity. 

According to our research, Sufuresertib, Cytarabine, and 

ERK6604 are standard chemotherapy drugs that may be 

sensitive to high-risk patients. This demonstrates that 

immunotherapy plus chemotherapy can be beneficial for 

high-risk groups, offering a foundation for accurate, 

individualized treatment of patients with colorectal 

cancer. 

 

Our research creates a risk model that can be used  

in clinical settings and highlights the significant role 

that telomerase-associated lncRNAs play in ccRCC. A 

series of correlation analyses were used to determine 

the clinical utility of the model, which classified 

ccRCC patients into several risk groups. Our study 

does, however, have a few drawbacks. Firstly, we 

employed only TCGA data for model creation and 

validation because no large cohorts containing gene 

expression and clinical information were found. As  

a result, assessing the risk model’s applicability in 
additional datasets was required. Furthermore, our study 

is based on a genomics-level single survey. Meng et  

al. [60] recently delineated the multi-body subtype 

(MoS) classification and proposed a multi-omics-

based ccRCC classification system scheme, promoting 

further biological understanding of ccRCC. Finally,  

to confirm the mechanism of action of these model 

genes in ccRCC, additional in vitro investigations are 

necessary because of the limitations of our current  

in vitro studies. 

 

CONCLUSION 
 
To sum up, the features of the TRL model can 

independently predict the prognosis of patients with 

colorectal cancer. They can also offer a potential 

method for choosing chemotherapeutic and anti-tumor 

immunotherapy medications. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figure 
 

 
 

Supplementary Figure 1. Correlation analysis between the model and clinical characteristics. (A) Correlation between 

AC069200.1 expression level and grade, stage, and T stage. (B) Relationship between ITPR1-DT expression level and Survival status, and, M 
stage. (C) Relationship between AC084876.1 expression level and age, gender, stage, Survival status, and grade. (D) Relationship between 
AL162377.1 expression level and gender, Survival status, tumor grade, T stage, M stage, and stage. (E) Correlation between DLGAP1-AS2 
expression level and Survival status, T stage, M stage, grade and stage. (F) Relationship between LINC00460 expression level and Survival 
status, T stage, M stage, grade and stage. (G) Relationship between LINC01605 expression level and Survival status, T stage, M stage, grade 
and stage. (H) Relationship between riskScore expression level and Survival status, T stage, M stage, grade and stage. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Table 3. 

 

Supplementary Table 1. Sequences of upstream and downstream primers of prognostic model genes. 

Primer Name Primer sequences (5′–3′) 
Fragment 

length  
(bp) 

Annealing 

temperature 
(℃) 

GC% 
Number 

of bases 

nmol/ 

OD 

AC069200.1-S CAAGGGCAAAGAAGGCACA 83 59.3 52.6 19 4.20  

AC069200.1-A AAGTCAGCCTCATTCCATACCC  59.9 50 22 4.43 

AC002451.1-S GTGGGAAGAACAGGGAAGAGG 208 60.1 57.1 21 3.73 

AC002451.1-A CAATGAGCAGGAATAGTAAGGGAG  59.6 45.8 24 3.33 

ITPR1-DT-S CAGTGTTTGCGGTCAAGGATT 210 60.1 47.6 21 4.40  

ITPR1-DT-A TATGGCAGATGCGGCAGTTT  61.5 50 20 4.58 

DLGAP1-AS2-S GACACAGACAAGACCCTTTCAATAA 181 59.24 40 25 3.43 

DLGAP1-AS2-A GACAGCATCGGGTCAAAGGA  60.04 55 20 4.22 

AL162377.1-S GTCTCCAGCAAGCGCAGTCA 113 62 60 20 4.69 

AL162377.1-A GTCGCAGAACCAGTGGCAAA  61.7 55 20 4.30  

AC084876.1-S ATGGTGCTGGATGGATTAGAGTT 294 59.6 43.5 23 3.84 

AC084876.1-A CATTGAATGGGTTTGCTACTGA  58 40.9 22 4.17 

LINC01711-S AGTTCGGGCAGCCATAGAGG 107 61.69 60 20 4.42 

LINC01711-A AGTGTTTCCAGCCATCAGGTT  59.85 47.62 21 4.58 

LINC01605-S CCGTTACAAACAGCCGACCTT 268 61.14 52.38 21 4.52 

LINC01605-A TGCAGGCTCCATTTCCAGAC  60.32 55 20 4.91 

H-GAPDH-S GGAAGCTTGTCATCAATGGAAATC 168 62.4 57.1 24 3.63 

H-GAPDH-A TGATGACCCTTTTGGCTCCC  62 55 20 5.25 

 

 

Supplementary Table 2. Grey module gene. 

Gene Module 

H19 grey 

MBD3 grey 

COL1A2 grey 

FOS grey 

BANF1 grey 

SPP1 grey 

H3C6 grey 

SIRT6 grey 

BCL7C grey 

COL1A1 grey 

H1-2 grey 

ASF1B grey 

HMG20B grey 

TNFRSF11B grey 

MXRA8 grey 

RUVBL2 grey 
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MMP9 grey 

H2AX grey 

CDT1 grey 

VDR grey 

MMP1 grey 

ZNHIT1 grey 

KAT2A grey 

JUN grey 

TIMP1 grey 

SIRT7 grey 

INO80C grey 

ACP5 grey 

INO80E grey 

H4C8 grey 

H4C9 grey 

SMARCD3 grey 

H2BC21 grey 

H3C10 grey 

H2BC12 grey 

 

Supplementary Table 3. 1892 lncRNAs associated with differentially expressed TR. 

 

Supplementary Table 4. 99 lncRNAs associated with the prognosis of ccRCC patients by univariate Cox 
regression analysis. 

Gene KM B SE HR HR.95L HR.95H p-value 

AL162458.1 1.56E-05 0.210649329 0.042290881 1.234479383 1.136281086 1.341164052 6.33E-07 

AC124319.1 8.17E-06 0.178505579 0.039318739 1.195429552 1.106766019 1.291195963 5.63E-06 

AC011462.4 7.40E-05 0.062837187 0.012284678 1.064853453 1.039520617 1.090803645 3.14E-07 

AC004034.1 8.17E-05 0.29921675 0.06189628 1.348801944 1.194708558 1.52277028 1.34E-06 

AC005785.1 7.93E-06 0.382610412 0.067190457 1.466106742 1.285206669 1.672469518 1.24E-08 

AC016773.1 1.44E-06 0.589056386 0.071679545 1.802286949 1.566066495 2.074138138 2.07E-16 

AC069200.1 1.12E-06 0.277641851 0.053350219 1.320013351 1.18895806 1.465514474 1.95E-07 

AC005387.1 4.02E-07 0.213552338 0.040016348 1.238068295 1.144676126 1.339080171 9.47E-08 

U52111.1 5.32E-06 0.314652283 0.062475652 1.369782931 1.211915608 1.548214467 4.74E-07 

AL354760.1 3.58E-05 0.406129335 0.060619349 1.500996671 1.33284745 1.690359242 2.09E-11 

TMEM92-AS1 2.29E-07 0.154742427 0.025593047 1.167357243 1.110245295 1.227407078 1.48E-09 

AC002451.1 7.34E-05 −1.074856004 0.215923 0.341346904 0.223564055 0.521182661 6.43E-07 

EMX2OS 3.10E-08 −0.028691561 0.004703093 0.971716133 0.962800115 0.980714719 1.06E-09 

AP002807.1 1.12E-05 0.124064217 0.020185807 1.132088568 1.088173673 1.177775715 7.94E-10 

AC009093.6 7.94E-05 0.273437337 0.061192657 1.314474987 1.165910041 1.481970677 7.88E-06 

AC008537.4 6.35E-06 0.285509542 0.061348181 1.33043977 1.179710793 1.500427049 3.26E-06 

AC006272.1 8.67E-06 0.375439593 0.090152948 1.45563116 1.219868496 1.736959418 3.12E-05 

RNF139-AS1 3.49E-05 0.553654627 0.101568316 1.739599 1.425588035 2.122776431 5.01E-08 

ZNF436-AS1 2.38E-05 0.138254947 0.031974331 1.148268261 1.078516419 1.222531224 1.53E-05 

VPS9D1-AS1 3.03E-05 0.163556805 0.026836948 1.177692252 1.117347254 1.241296325 1.10E-09 

AL158151.4 9.18E-07 0.221576207 0.035349238 1.248042354 1.164501355 1.337576561 3.65E-10 

AC008105.3 1.05E-05 0.053898891 0.010549385 1.055377889 1.033780506 1.077426477 3.24E-07 

AC010491.1 6.18E-06 0.527467098 0.088078403 1.694634525 1.425947636 2.013949251 2.12E-09 

AC018648.1 2.58E-08 0.277642344 0.043255186 1.320014002 1.212717534 1.436803638 1.37E-10 
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AL117379.1 4.60E-06 0.084364776 0.016167744 1.088025707 1.054088676 1.123055361 1.81E-07 

Z98200.1 2.36E-05 0.536254533 0.098985861 1.709591637 1.408106384 2.075626954 6.04E-08 

AC020907.4 1.06E-05 0.095496896 0.01839181 1.100205407 1.061252284 1.140588299 2.08E-07 

AC013731.1 8.54E-05 0.424310293 0.079343374 1.528535814 1.308393617 1.785717772 8.90E-08 

AC068722.2 2.94E-05 0.264053036 0.063322827 1.302197258 1.150207748 1.474270802 3.05E-05 

AL645940.1 1.03E-05 0.312454051 0.060635026 1.366775138 1.2136248 1.5392519 2.56E-07 

AC026401.3 2.49E-06 0.062432673 0.008074599 1.064422793 1.047709917 1.081402269 1.06E-14 

LINC01711 1.32E-06 0.060821859 0.007177486 1.062709585 1.047864459 1.077765023 2.37E-17 

LINC02352 3.10E-07 0.435087474 0.081576094 1.54509821 1.316795677 1.812983228 9.63E-08 

LINC02195 8.69E-06 0.193828964 0.034754691 1.213888646 1.133954433 1.299457547 2.45E-08 

AC023043.1 1.57E-07 0.171950091 0.037149885 1.187618559 1.104218289 1.277317949 3.68E-06 

ITPR1-DT 6.67E-05 0.092693182 0.023472447 1.097125066 1.047795078 1.1487775 7.85E-05 

MELTF-AS1 1.65E-07 0.075243743 0.009801118 1.078146909 1.057633542 1.099058144 1.63E-14 

AC048341.2 2.13E-06 0.035494384 0.006701962 1.036131829 1.022610611 1.049831828 1.18E-07 

AL139349.1 7.02E-05 0.030691141 0.006712181 1.031166969 1.017690157 1.044822249 4.82E-06 

LINC01004 7.57E-05 0.088421251 0.015737115 1.09244822 1.059266908 1.12666893 1.92E-08 

AC002398.1 6.04E-06 0.332912859 0.059003555 1.395025729 1.242677115 1.566051841 1.68E-08 

LINC00460 3.31E-06 0.092150886 0.012070184 1.096530261 1.070893943 1.122780291 2.27E-14 

AC002553.1 7.15E-05 0.098473252 0.024899793 1.103484888 1.050924816 1.158673654 7.66E-05 

IGBP1-AS1 7.00E-06 0.281076845 0.059635824 1.324555385 1.17844147 1.488785834 2.44E-06 

LINC01507 1.20E-08 −0.079784334 0.013819329 0.923315453 0.89864274 0.948665568 7.77E-09 

AC010864.1 1.14E-05 0.472209268 0.082001733 1.603532916 1.365456527 1.883119501 8.49E-09 

AC018809.1 2.32E-05 0.368251985 0.082955851 1.445206164 1.228337349 1.700364202 9.03E-06 

AL589669.1 2.09E-05 −0.020751385 0.004680204 0.979462443 0.970518886 0.988488418 9.26E-06 

AP006545.2 3.98E-05 0.546884916 0.084930784 1.72786219 1.462904201 2.040808787 1.20E-10 

AL035413.1 1.75E-07 −0.066156467 0.013003994 0.935984402 0.912430075 0.960146782 3.63E-07 

AC103706.1 3.41E-08 0.202888225 0.022953853 1.224935543 1.171048498 1.281302259 9.66E-19 

ASB16-AS1 5.46E-05 0.12168514 0.030855102 1.129398444 1.063122413 1.199806183 8.02E-05 

AL021707.6 7.77E-05 0.038771777 0.009458693 1.039533211 1.020439156 1.058984546 4.15E-05 

AC116407.2 7.24E-05 0.068924137 0.014139443 1.07135493 1.042072311 1.101460401 1.09E-06 

AC012645.4 6.58E-06 0.315272933 0.080400704 1.370633351 1.170803714 1.604569374 8.81E-05 

AC027796.4 9.20E-05 0.098299658 0.018795261 1.103293347 1.063389688 1.144694389 1.69E-07 

MHENCR 3.51E-05 0.019830846 0.004129878 1.020028783 1.011805575 1.028318824 1.57E-06 

SNHG3 6.69E-05 0.056756351 0.008006512 1.058397902 1.041918657 1.075137786 1.35E-12 

AC092757.3 2.78E-06 0.224063843 0.044451374 1.251150894 1.146760203 1.365044371 4.64E-07 

AL021392.1 6.09E-05 0.199257227 0.044761861 1.220495869 1.117982354 1.332409373 8.53E-06 

AL358472.3 4.42E-05 0.115429547 0.026660183 1.122355438 1.065214884 1.182561142 1.49E-05 

AC010973.2 6.67E-07 0.387708924 0.06563578 1.473600792 1.295718229 1.675903948 3.48E-09 

HOTAIRM1 7.06E-07 0.092726452 0.017803251 1.097161568 1.059537743 1.136121403 1.90E-07 

AC064836.3 1.57E-05 0.141773142 0.026058663 1.152315207 1.094939489 1.212697459 5.31E-08 

AL121782.1 5.31E-06 0.401472324 0.068288757 1.494022764 1.306861968 1.707987587 4.13E-09 

AC027373.1 1.55E-07 0.326770721 0.067972603 1.386483549 1.213546261 1.584065391 1.53E-06 

SNHG17 3.94E-07 0.132553085 0.021821792 1.141739623 1.093937047 1.191631065 1.24E-09 

AL035071.1 3.21E-06 0.048296868 0.010327677 1.049482167 1.028452241 1.070942116 2.92E-06 

AC005586.1 7.35E-06 0.077086034 0.014336941 1.080135001 1.050205801 1.110917135 7.58E-08 

AC156455.1 9.80E-05 0.048241692 0.008564606 1.049424262 1.03195532 1.067188918 1.77E-08 

AC025171.4 7.85E-07 0.083842226 0.01724214 1.087457308 1.051321824 1.124834821 1.16E-06 

AC008870.2 3.59E-06 0.226716622 0.041953878 1.254474327 1.155448444 1.361987068 6.52E-08 

DLGAP1-AS2 3.97E-09 0.182129981 0.019116793 1.199770132 1.155648612 1.245576167 1.62E-21 

EPB41L4A-DT 6.83E-10 −0.160609112 0.0243253 0.851624896 0.811974922 0.893211039 4.04E-11 

AC002070.1 1.31E-06 −0.198186226 0.035681387 0.820217093 0.764815646 0.879631691 2.79E-08 

AP000525.1 4.35E-05 0.142501009 0.023924273 1.153154245 1.100330177 1.208514263 2.58E-09 

NALT1 9.12E-05 0.133207099 0.028140911 1.142486582 1.081178801 1.207270795 2.21E-06 

AC063919.1 3.78E-06 −0.349475019 0.082976973 0.705058135 0.599231728 0.829573853 2.53E-05 

Z84485.1 2.40E-05 0.216111139 0.039012497 1.241240322 1.149869031 1.33987219 3.03E-08 

AL162377.1 5.59E-06 −0.577522832 0.107536573 0.561287048 0.454621242 0.692979389 7.85E-08 
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LINC01132 8.60E-05 −0.529654656 0.112342805 0.588808276 0.472440953 0.733838132 2.42E-06 

MCCC1-AS1 3.89E-05 0.18202817 0.040714941 1.199647988 1.107636374 1.299303029 7.79E-06 

AC080129.2 3.13E-06 0.581579037 0.094039263 1.788860879 1.487750829 2.150913433 6.23E-10 

SNHG4 8.25E-07 0.261468229 0.035446618 1.298835676 1.211663411 1.392279488 1.63E-13 

U91328.1 5.96E-05 −0.174572934 0.039619747 0.839815601 0.777068937 0.907628924 1.05E-05 

ZKSCAN2-DT 8.11E-05 0.145592751 0.030783279 1.156725017 1.088998681 1.228663347 2.25E-06 

CAHM 9.09E-05 0.195207797 0.03690409 1.215563551 1.130745455 1.306743918 1.23E-07 

AC087741.1 7.40E-05 0.159159837 0.037678445 1.172525345 1.089056192 1.262391871 2.40E-05 

AC007938.3 1.14E-07 0.352583554 0.067640889 1.422738526 1.246089001 1.624430447 1.86E-07 

AC015912.3 9.13E-09 0.152307839 0.022819704 1.164518665 1.113582217 1.217785001 2.48E-11 

AC011005.4 5.54E-05 0.155041758 0.037665168 1.167706721 1.084608816 1.257171217 3.85E-05 

U47924.3 1.22E-07 0.261372731 0.038892188 1.298711646 1.203393454 1.401579785 1.81E-11 

LINC01605 2.42E-06 0.138603255 0.018177388 1.148668282 1.10846506 1.190329645 2.44E-14 

AC020558.2 9.84E-05 0.163766989 0.03807404 1.17793981 1.093237242 1.269205021 1.70E-05 

CAPN10-DT 3.08E-05 0.231670537 0.049782649 1.260704305 1.143505265 1.389915197 3.26E-06 

AC108673.3 2.24E-05 0.066307305 0.011707291 1.068555039 1.04431528 1.093357431 1.48E-08 

AC084876.1 1.57E-07 0.512354035 0.074423507 1.669215966 1.442657129 1.931354226 5.81E-12 

AL355388.1 1.09E-07 0.365463538 0.053138466 1.441181896 1.298635449 1.599375142 6.09E-12 

AC092143.3 3.15E-05 0.392664019 0.074844243 1.480920744 1.278863762 1.714902177 1.55E-07 

 

Supplementary Table 5. Comparison of gene models published based on time-dependent ROC. 

Models 1 years 3 years 5 years P-value PMID 

Our model 0.791 0.783 0.797  P < 0.001 − 

Yufu Wang et al. [15] 0.715 0.693 0.732 P < 0.001 9286942 

Ding Wu et al. [16] 0.695 0.678 0.674 P < 0.001 9448526 

Qianwei Xing et al. [17] 0.724 0.716 0.714 P < 0.001 9162755 

Yijun Le et al. [18] 0.745 0.762 0.737 P < 0.001 10126632 

Lei Zhang et al. [19] 0.773 0.698 0.747 P < 0.001 10433381 

Jiyue Wu et al. [20] 0.734 0.720  0.757 P < 0.001 8237220 
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