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INTRODUCTION 
 

Osteoarthritis (OA) causes pain and disability in 

patients and increases the economic burden on the 

patients and society. The incidence of OA is on the rise 

owing to the increasing number of elderly and obese 

individuals worldwide [1, 2]. Recent studies estimate 

that the overall prevalence of osteoarthritis (hip and 

knee) is about 300 million worldwide and is the 11th 

leading cause of disability globally [3]. The etiologic 

cause of OA has shifted from aging to a multifactorial 

role, including genetic factors, gender, metabolic 

syndrome (obesity, hypertension, hyperglycemia, insulin 

resistance, and dyslipidemia), and diet [4]. In OA, the 

entire joint is affected by changes in the periarticular 

muscles, synovium, articular cartilage, ligaments, sub-

chondral bone, and joint capsule [5]. However,  

deeper insights into the pathogenesis of OA have 

revealed that this effect is not limited to wear-and-tear 

and degenerative diseases. The development of OA is 

complex, entailing both inflammatory and metabolic 

factors, and the pathogenesis may involve chondrocyte 

senescence, apoptosis, and active synovitis [6, 7]. 

 
As a novel type of programmed cell death that  

is distinguished from cellular autophagy, apoptosis, 

and necrosis, ferroptosis (or iron-dependent cell  

death) triggers the demise of cells by regulating  

their accumulation of iron-dependent lipid peroxides 

[8]. Ferroptosis has become a major strategy in the 

advancement of therapeutic drugs against cancer [9–11] 

and neurodegenerative, blood, and heart diseases [12]. 
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ABSTRACT 
 

Osteoarthritis (OA), a degenerative joint disease, involves synovial inflammation, subchondral bone erosion, 
and cartilage degeneration. Ferroptosis, a regulated non-apoptotic programmed cell death, is associated with 
various diseases. This study investigates ferroptosis-related molecular subtypes in OA to comprehend 
underlying mechanisms. The Gene Expression Omnibus datasets GSE206848, GSE55457, GSE55235, GSE77298 
and GSE82107 were used utilized. Unsupervised clustering identified the ferroptosis-related gene (FRG) 
subtypes, and their immune characteristics were assessed. FRG signatures were derived using LASSO and SVM-
RFE algorithms, forming models to evaluate OA’s ferroptosis-related immune features. Three FRG clusters were 
found to be immunologically heterogeneous, with cluster 1 displaying robust immune response. Models 
identified nine key signature genes via algorithms, demonstrating strong diagnostic and prognostic 
performance. Finally, qRT-PCR and Western blot validated these genes, offering consistent results. In addition, 
some of these genes may have implications as new therapeutic targets and can be used to guide clinical 
applications. 
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Moreover, ferroptosis appears at the intersection of 

infection, inflammation, and immunity [13].  

 

In articular cartilage, water makes up the largest 

component (>70%), with the remainder (~30%) being 

the extracellular matrix, which consists mainly of type 

II collagen and aggrecan. In a pathological state, 

chondrocytes produce a variety of matrix-degrading 

enzymes [e.g., a disintegrin and metalloproteinase  

with thrombospondin-like motifs (ADAMTS)] and 

inflammatory response proteins (e.g., cytokines) [14]. 

Yao et al. established a mouse model of OA by 

surgically introducing interleukin-1 beta (IL-1β)  

and ferrous ammonium citrate into the animals to 

mimic inflammation and iron overload, respectively. 

As a result, the chondrocytes in the OA model  

mice underwent iron degeneration. In another study, 

ferritinase-specific inhibitors were shown to decrease 

the expression of type II collagen and increase matrix 

metalloproteinase 13 (MMP13) expression in chondro-

cytes [15, 16]. However, the specific mechanisms 

underlying the pathology of OA and its relationship 

with ferroptosis remain unclear. 

 

Microarray and bioinformatics technologies have 

enabled the extensive genomic, transcriptomic, 

epigenomic, proteomic, and metabolomic profiling of 

OA [17–19]. As an interdisciplinary approach [20], 

bioinformatics based on systems biology and database 

mining has facilitated a better understanding of the 

molecular mechanisms behind many diseases [21, 22]. 

However, the molecular mechanisms underlying the 

involvement of ferroptosis in the pathogenesis of OA 

remain unclear. Therefore, further studies are needed 

to identify new and more reliable therapeutic targets 

and diagnostic biomarkers to elucidate the specific 

relationship between ferroptosis and OA.  

 

In this study, differentially expressed genes (DEGs) 

between samples from patients with OA and healthy 

controls were identified using gene expression and 

microarray experiments. Identification of the DEGs and 

immunophenotyped ferritin-related molecules should 

help us acquire more in-depth knowledge about the 

molecular mechanisms of OA. 

 

MATERIALS AND METHODS 
 

Microarray dataset search and collection  

 

The GSE206848, GSE55457, GSE55235, GSE77298, 

and GSE82107 datasets were downloaded from the 

Gene Expression Omnibus (GEO; http://www.ncbi.nlm. 

nih.gov/geo) database using the following search terms: 

(“osteoarthritis”[MeSH Terms] OR [All Fields]) AND 

“Homo sapiens”[porgn] AND (“gse”[Filter] AND 

“Expression profiling by array”[Filter]). The 

GSE206848, GSE55457, GSE55235, and GSE77298 

datasets (merged as the training set) contained 34 

normal and 68 arthritic tissue samples. The GSE82107 

dataset was used as the validation set. The GSE55457 

and GSE55235 datasets were sequenced on the GPL96 

platform of GEO, whereas the GSE206848 and 

GSE77298 datasets were sequenced on the GPL570 

platform, all with Homo sapiens as the reference 

organism (Supplementary Table 1). The experimental 

type for all datasets were array expression profiling, as 

detailed in Supplementary Materials (GEO datasets). 

The inSilicoMerging package in R/Bioconductor [23] 

was used to merge the datasets. Furthermore, the 

methods described by Johnson et al. [24] were used to 

remove batch effects and obtain the matrix. The FerrDb 

database [25] was used to identify ferroptosis-related 

genes (FRGs), whereupon 484 genes were singled out 

from the gene set after the removal of overlapping genes. 

 
Identification of differentially expressed ferroptosis-

related genes in osteoarthritis 

 

The probes in each dataset were converted into gene 

symbols according to the platform annotation file. In the 

case of multiple probes being mapped to the same gene 

symbol, their average value was used as the gene 

expression value. In total, expression profiles of 484 

FRGs in patients with OA were identified from the 

FerrDb database (http://www.zhounan.org/ferrdb/current). 

To obtain the FRGs, the limma package [26] in R was 

used to perform differential analysis between the OA 

and control samples, with the following significance 

thresholds: a p-value of less than 0.05 and a fold change 

of greater than 1.5. Subsequently, secondary gene 

correlation and functional enrichment analyses were 

performed on 139 FRGs (49 upregulated and 90 

downregulated genes). Volcano and heat maps of the 

DEGs were drawn using the ggplot2 [27] and pheatmap 

packages in R, respectively. 

 
Enrichment analysis 

 

Functional and pathway annotations of the 139 

differentially expressed FRGs in OA were performed 

through Gene Ontology (GO) and Kyoto Encyclopedia of 

Genes and Genomes (KEGG) enrichment analyses [28], 

respectively. The main domains in GO analysis are 

Biological Process (BP), Cellular Component (CC), and 

Molecular Function (MF). Using the GO and KEGG 

annotations from the org.Hs.eg.db (version 3.1.0) package 

in R and KEGG REST API (https://www.kegg.jp/kegg 

/rest/keggapi.html) as the background, the genes were 

mapped to the background set and enrichment analysis of 

the gene set was then performed using the clusterProfiler 

(version 3.14.3) package [29] in R. The gene set was 
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limited to a minimum of 5 and a maximum of 5000 genes, 

and a p-value of less than 0.05 and a false discovery rate 

of less than 0.25 were considered statistically significant. 

Bubble and circle plots were created.  

 

Machine learning-based screening of key genes and 

construction of diagnostic models 

 

A least absolute shrinkage and selection operator 

regression (LASSO) model based on the 139 FRGs was 

constructed using the glmnet (version 4.1.3) package 

[30]. The optimal lambda value was used to identify the 

key genes.  

 

Additionally, the SVM-RFE [31] algorithm with a 

linear kernel in the caret package of R, combined  

with 10-fold cross-validation, was used to obtain  

the optimal variables. Then, the number of genes 

corresponding to the largest cross-validation accuracy 

and the smallest error was chosen. The performance  

of several characteristic variables was evaluated using  

the RFE function in the caret package. To obtain the 

input variables for reconstructing the linear SVM 

model, the most accurate feature variables in the SVM 

analysis were chosen. Subsequently, the predictive 

ability of the newly constructed model was tested using 

the training and validation sets. The area under the 

receiver operating characteristic (ROC) curve (AUC) 

values were plotted to assess the diagnostic value of the 

LASSO and SVM models, using the pROC (version 

1.12.1) package [32] in R. By intersecting the results 

from these two machine learning algorithms, nine key 

FRGs were finally identified. 

 

Gene set enrichment analysis 

 

Gene set enrichment analysis (GSEA) can be used to 

compute gene clusters according to the degree of 

differential expression between two samples [33].  

The nine key genes screened by machine learning  

were divided into high- and low-expression groups  

for functional or pathway enrichment analysis. The 

enrichplot package in R was used to depict the results, 

and the clusterProfiler package in R was used to 

analyze the clusters with a p.adj threshold of less than 

0.05. 

 

Analysis of immune infiltration and immune 

correlation of diagnostic genes 

 

The immune microenvironment comprises mesenchymal 

stem cells, immune cells, fibroblasts, cytokines, 

inflammatory cells, and chemokines. Being a synovial 
joint, the progression of diseases of the knee involves 

many immune factors, including resident macrophages 

and fibroblast-like synoviocytes, leukocytes, cytokines, 

and secreted matrix metalloproteinases [34]. The 

proportion of various immune cell types in the combined 

dataset samples was assessed using CIBERSORT [35], 

following which the Kruskal–Wallis test was used to 

compare the variability of the distribution of different 

immune cells between the OA and control groups. 

Subsequently, the correlation between the expression of 

diagnostic genes in the constructed models and immune 

cells with significantly different identifications was 

calculated using the “cor” function in R. 

 

Sample subtype and immune correlation analysis 

based on diagnostic genes 

 

Based on the expression of significant diagnostic  

genes obtained by screening the combined samples, 

disease subtype analysis was performed on all OA 

samples using the ConsensusClusterPlus (version 

1.54.0) package [36] in R. Diagnostic gene scores were 

then evaluated for each sample using the gene set 

variation analysis (GSVA) (version 1.36.3) package in 

R [37]. Subsequently, the differences in diagnostic gene 

scores between the subtypes were compared using the 

Kruskal–Wallis test. Then, CIBERSORT was used to 

assess the proportional distribution of the immune cells 

in the combined samples. The immune and stromal 

scores of the OA samples in the combined dataset were 

calculated using the ESTIMATE package [38] in R. The 

expression of genes coding for immune checkpoint 

molecules [39] and human leukocyte antigen (HLA) 

family members was compared between the two groups. 

 

Culture of SW1353 cell line and real-time PCR 

(qRT-PCR) reactions 

 

We chose the SW1353 chondrosarcoma cell line  

to imitate chondrocytes in this study due to the  

human samples selected for the data set. The human 

chondrosarcoma cell line SW1353 was maintained  

at 37° C in 5% CO2 in 1% streptomycin, 1% penicillin 

(Hyclone, USA), 10% FBS (Bioind, Kibbutz Beit-

Haemek, Israel) and DMEM (Hyclone). To induce an  

in vitro model of osteoarthritis (OA), SW1353 cells 

were treated with recombinant human IL-1β (10 ng/ml; 

Beyotime, China) for 24 h. Here we selected the 

optimum concentration of 1L-1β as 10ng/ml [40]. Total 

ribonucleic acid (RNA) was isolated from cell cultures 

using the RNAiso Plus kit (Vazyme Biotech Co.,  

Ltd., Nanjing, China) according to the manufacturer’s 

instructions. Next, RNA was reverse transcribed to 

cDNA using the HiScript III Q RT SuperMix for qPCR 

(+gDNA wiper; Vazyme Biotech Co., Ltd.). qRT-PCR 

reactions were prepared using the SYBR Green PCR kit 
(Vazyme Biotech Co., Ltd.) and Applied Biosystems 

7500 Real-Time PCR System. Each reaction was 

performed in triplicate. PCR conditions were as follows: 
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step 1, 95° C for 30 s; step 2, 95° C for 5 s, 60° C for 20 

s, 40 cycles; step 3, 95° C for 15 s, 60° C for 60 s, 95° C 

for 15 s. Relative mRNA expression was calculated 

using the 2-∆∆Cq method. The values obtained are 

represented based on the fold-change relative to 

GAPDH. The target gene primers were designed and 

acquired by Sangon, Shanghai, China (Supplementary 

Table 2). GAPDH was used as internal control. 

 

Western blot analysis 

 

Chondrocytes in culture plates were washed in  

cold PBS three times, then lysed in RIPA (9806S,  

Cell Signaling Technology, USA) with 1 mM PMSF 

(ST506; Beyotime Biotech, Shanghai, China) and 1 mM 

phosphatase inhibitors (P1081; Beyotime Biotech, 

Shanghai, China). The lysates were centrifuged at 12,000 

rpm/min for 20 min at 4° C and the supernatants were 

collected and stored at −80° C. Protein quantification was 

performed using a BCA Protein Assay Kit (Enhanced) 

(Beyotime). Equivalent quantities of proteins (30 μg) 

were separated using polyacrylamide gel electrophoresis 

(8%–10% SDS-PAGE) and subsequently wet-transferred 

onto polyvinylidene difluoride (PVDF) membranes. 

Next, PVDF membranes were blocked with 5% bovine 

serum albumin (BSA) for 2 h at 25° C and washed 

thrice using Tris-buffered saline (TBS) with 0.1% 

Tween-20 (TBST) for 5 min. PVDF membranes were 

then incubated at 4° C overnight with the following 

primary antibodies: GABARAPL1-Specific antibody 

(1:1000; Proteintech, China; 11010-1-AP), Anti-SAT1 

antibody (1 μg/ml; Abcam, UK; ab105220), EGF 

Receptor Antibody (1:1000; Cell Signaling Technology 

#2232), Recombinant Anti-ELOVL5 antibody (1:1000; 

Abcam; ab205535), Anti-NAK/TBK1 antibody (1:5000; 

Abcam; ab40676), ZIP7 Polyclonal antibody (1:4000; 

Proteintech; 19429-1-AP), TRIM26 Polyclonal antibody 

(1:2500; Proteintech; 27013-1-AP), Recombinant Anti-

SHP1/TRIM26 antibody (1:1000; Abcam; ab32559), 

BEX1/2 Polyclonal antibody (1:2500; Proteintech; 

12390-1-AP), Anti-Collagen II antibody (1:1000; 

Abcam; ab34712), MMP13 Polyclonal antibody (1:2000; 

Proteintech; 18165-1-AP), and GAPDH antibody 

(1:20000; Proteintech; 10494-1-AP). The next day, 

PVDF membranes were washed thrice with TBST  

for 10 min and then incubated with goat anti-rabbit  

IgG H&L (HRP) (ab6721, 1:10,000, Abcam) for 2 h  

at 25° C. Membranes were visualized using enhanced 

chemiluminescence (Millipore, USA). ImageJ software 

(version: 2.0.0-rc-69/1.52p) was used for quantification. 

GAPDH was used as internal control. 

 
Statistical analysis 

 
RStudio (version 5.5.4) was used for all statistical 

analyses. The Wilcoxon test was used to assess 

differences between the two groups. Using the corrplot 

package, Pearson’s correlation analysis was performed to 

calculate the correlation coefficients between different 

genes. A two-tailed test result with a p-value of less 

than 0.05 was considered statistically significant. 

 

Data availability  

 

The original contributions presented in this study  

are included in the article and Supplementary  

Material, and further inquiries can be directed  

to the corresponding author. The datasets generated 

and/or analyzed during this study are available  

in the Gene Expression Omnibus (GEO) Dataset 

(http://www.ncbi.nlm.nih.gov/geo/). 

 

RESULTS 
 

Analysis and identification of differentially 

expressed ferroptosis-related genes 

 

The analytical process used in this study is shown  

in Supplementary Figure 1. The GEO datasets were 

corrected for batch effects, yielding 68 OA and 34 

control samples for analysis. Then, the usability of the 

combined matrix was evaluated as shown in the box  

and density plots (Figure 1A, 1B). The sample size and 

integration of the dataset are shown in Figure 1C. After 

elimination of the batch effects, the data distribution 

was consistent among each dataset, with the median 

appearing on a straight line and similar means and 

variances (Figure 1D, 1E). The expression of 484 FRGs 

were subsequently obtained using the integrated dataset. 

The limma package identification of FRGs that were 

differentially expressed between the OA and control 

samples yielded 49 upregulated and 90 downregulated 

genes (Figure 2A). Figure 2B shows a heat map of the 

139 FRGs and their normalized expression.  

 

GO functional and KEGG pathway analyses of the 

differentially expressed ferroptosis-related genes 

 

Enrichment analysis was performed to investigate 

which biological processes the 139 genes were  

involved in. The genes were significantly enriched in 

the cellular response to oxidative stress, transcription 

regulator complex, ubiquitin protein ligase binding, and 

RNA polymerase II-specific DNA-binding transcription 

factor binding terms of the GO MF category; the 

cellular response to chemical stress and response to 

peptide terms of the BP category; and the DNA-binding 

transcription factor binding, vesicle lumen, and secretory 

granule lumen terms of the CC category (Figure 3A, 

3B). The KEGG analysis revealed that these genes were 

mainly involved in the ferroptosis, autophagy, apoptosis, 

AGE-RAGE signaling in diabetic complications, FoxO 
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signaling, interleukin-17 (IL-17) signaling, and tumor-

necrosis factor (TNF) signaling pathways (Figure 3C). 

Spearman’s correlation analysis revealed that GABA 

type A receptor associated protein like 2 (GABARAPL2) 

gene expression was negatively correlated with TNF 

alpha induced protein 3 (TNFAIP3), IL1B, TANK 

binding kinase 1 (TBK1), and interleukin-6 (IL6)  

gene expression, whereas the expression of TNFAIP3 

was positively correlated with that of activating 

transcription factor 3 (ATF3), IL1B, TBK1, and IL6 

(Figure 3D). 

 

Construction and validation of the ferroptosis 

prediction model 

 

Of the 139 FRGs, 18 were found by the LASSO 

algorithm to have remarkable effects on arthritis (Figure 

4A, 4B), whereas the SVM-RFE algorithm identified  

19 effective predictors (Figure 4C, 4D). Intersection of 

the results of the two algorithms revealed nine common 

ferroptosis-related predictive genes: GABARAPL1, 

spermidine/spermine N1-acetyltransferase 1 (SAT1), 

epidermal growth factor receptor (EGFR), ELOVL fatty 

acid elongase 5 (ELOVL5), TBK1, solute carrier family 

39 member 7 (SLC39A7), tripartite motif containing  

26 (TRIM26), protein tyrosine phosphatase non- 

receptor type 6 (PTPN6), and brain expressed X- 

linked 1 (BEX1) (Figure 4E). Additionally, the risk 

scores were calculated on the basis of the coefficients  

of the diagnostic genes, the results of which are detailed 

in Supplementary File 1 (LASSO coefficients). The 

effectiveness of the disease diagnostic model was tested 

with the combined training set and the validation 

dataset, using the ROC curve analysis method (Figure 

4G, 4H.). As shown in Figure 4F, the efficiency of the 

nine-gene signature in predicting OA was good, with 

the diagnostic model performing well for both the 

training (AUC = 0.98) and validation (AUC = 0.87) 

sets. The expression data and risk scores of the samples 

are shown in Supplementary Files 2, 3. 

 

Gene set enrichment analysis of the screened key 

genes and immune analysis 

 

GSEA-KEGG pathway analysis was conducted to explore 

the pathways in which the nine key genes were enriched

 

 
 

Figure 1. Dataset information and merging. UMAP plot before de-batching effect (A) and UMAP diagram after de-batching (B). Sample 

content of each dataset (C). Box plot before (D) and after removing the batch effect (E). The data distribution tends to be consistent among 
the data sets after removing the batch effect, and the median is on a line. The samples of each dataset after removing the batch effect are 
clustered and intertwined with each other, suggesting a better removal of the batch effect. 
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in the high- and low-expression clusters. The top six 

pathways enriched in each key gene are illustrated  

in Figure 5A–5I. The enriched pathways were mainly 

related to chemokines, cytokines, cytokine receptors,  

T-cell receptors, Toll-like receptors, classic signaling,  

B-cell receptors, cell adhesion molecules, natural killer 

cell-mediated cytotoxicity, and immunodeficiency. These 

results suggest that changes in immune cells may be 

related to OA progression [41]. Therefore, the proportions 

of 22 types of immune cells between the two groups were 

compared using the Kruskal–Wallis test (Figure 6A), 

whereupon eight immune cell types displayed significant 

differences; namely, M0 macrophages, follicular helper  

T cells, activated mast cells, plasma cells, activated  

CD4 memory T cells, resting CD4 memory T cells, 

gamma-delta T cells, and activated natural killer  

cells. Furthermore, heatmap of immune cell correlations  

(Figure 6B) between the nine key genes used to construct 

the diagnostic model and the immune cells were  

evaluated (Supplementary File 4). The largest positive  

correlation was between PTPN6 and follicular helper T  

cells (correlation coefficient: 5.90), whereas the largest 

negative correlation was between resting CD4 memory  

T cells and PTPN6 (correlation coefficient: –0.45).  

These results imply that OA progression is associated 

with alterations in the immune system. 

 

Correlation analysis of osteoarthritis phenotypes 

and subtypes with immunity using unsupervised 

clustering 

 

Based on the expression of the diagnostic genes, OA 

subtype analysis was performed on all 68 patient 

samples, whereupon three different and significant 

subtype clusters were obtained; namely, C1, C2, and C3 

comprising 30, 18, and 20 OA samples, respectively 

(Figure 7A). The attribution information of each sample 

is shown in Supplementary File 5 (unsupervised 

clustering subtype distribution). Subsequently, the 

GSVA algorithm was used to evaluate the diagnostic 

gene scores of each cluster, the results of which  

are detailed in Supplementary File 6 (GSVA scores). 

The differences in diagnostic gene scores among the 

different subtype groupings are shown in Figure 7B. 

 

 
 

Figure 2. Differential analysis. Ferroptosis-related differentially expressed genes (FRGs) volcano plot (A) with log2FoldChange in the 

horizontal coordinate and -log10(P-value) in the vertical coordinate. Red nodes indicate upregulated FRGs, green nodes indicate 
downregulated FRGs, and black nodes indicate genes that are not significantly differentially expressed. Heat map (B) of ferroptosis-related 
DEG expression levels: p-value<0.001: “***”, p-value<0.01: “**”, p-value<0.05: “*”. 
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The proportion of immune cells in the combined 

samples was again assessed using CIBERSORT, 

following which the immune and stromal scores for the 

OA samples in the combined dataset were assessed,  

as presented in Supplementary File 7 (immune scores). 

Then, the Kolmogorov–Smirnov test was used to  

assess the differences in the distribution of individual 

immune cell proportions and estimate scores in the 

different subtype clusters. Four immune cell types 

(plasma cells, M1 macrophages, resting mast cells, and 

neutrophils) with significantly different distributions 

among the different subtype clusters were screened. The 

differences in immune scores between the three clusters 

were significant but not so for the stromal scores 

(Figure 7C–7E). 

 

The expression of the immune checkpoint and  

HLA family genes was extracted from the combined 

data samples, and the variability in expression between 

the different subtype clusters was compared using the 

Kolmogorov–Smirnov test (Supplementary Figure 2A, 

2B). Sixteen HLA family genes as well as four immune 

checkpoint genes (CD27, CD86, CTLA4, and IDO1, 

coding for CD27 protein, CD8 protein, cytotoxic T-

lymphocyte associated protein 4, and indoleamine 2,3-

dioxygenase 1, respectively) were identified that differed 

significantly among C1, C2, and C3. Analysis of the 

immune molecular clusters in ferroptosis-associated  

OA suggests that immune checkpoint molecules with 

significant expression differences may play a key role in 

the development of this joint disease. 

 

Validation of key genes in IL-1β induced 

chondrocyte inflammation and inflammation-related 

protein/mRNA expression 

 

To further validate the expression of key genes for 

constructing the model on OA chondrocytes, we 

performed qRT-PCR and Western blot analyses. We 

first detected the relative mRNA expression of disease-

 

 
 

Figure 3. Functional analyses for the DE-FRGs. Bubble plot (A) of functional enrichment analysis including molecular functions (MF), 
cellular components (CC), and biological processes (BP), and circle plot (B) display. Results of the KEGG pathway analyses of the DE-FRGs with 
barplot (C). Differential genes correlation heat maps (D) plotted using the corrplot package, we found GABARAPL2 had a negative correlation 
with TNFAIP3, IL1B, TBK1, and IL6. TNFAIP3 was positively correlated with ATF3, IL1B, TBK1 and IL6. Blue represents a negative correlation, 
and red represents a positive correlation. 
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related factors in the CG and 1L-1β (10ng/ml)  

groups. As shown in Figure 8E–8H, IL-1β-treated 

chondrocytes showed upregulations of MMP-13 

mRNA, whereas a downregulation of collagen II 

mRNA. This simulates the environment of OA in 

vitro. In addition, we did Western blot and qRT-PCR 

validation for each of the nine key genes screened  

by the machine learning methods described above,  

and the results obtained were almost consistent with 

our predictions (Figure 8A–8D, 8I, 8J). 
 

DISCUSSION 
 

With increasing insights into the development of  

OA, the treatment options for the condition have 

focused on pain relief through methods such  

as physical activity, pharmacologic, surgical, and  

complementary or alternative interventions (or both), 

nonpharmacologic treatment, patient education, weight 

control, and therapeutic exercise, which are typically 

used in combination to achieve optimal results. As 

understanding of OA development grows, treatment 

strategies emphasize pain relief through a combi-

nation of physical activity, medication, surgery, 

complementary or alternative interventions, non-

pharmacologic approaches, patient education, weight 

management, and therapeutic exercise to achieve 

optimal results [42, 43]. One study showed that it is 

important for patients to perform adequately dosed and 

progressive exercises (e.g., frequency and intensity) 

 

 
 

Figure 4. Construction of ferroptosis signature using machine learning algorithms. The LASSO coefficient profiles of the 9 co-

expressional ferroptosis genes (A). The optimal lambda value was selected in the LASSO regression model based on 10-fold cross-validation  
(B). The line graph shows the cross-validated accuracy based on different numbers of ferroptosis genes in the SVM-RFE model (C and D). The 19 
genes with the highest cross-validation accuracy (C) and the lowest error (D) were selected. Screening of nine key ferroptosis genes (E) using 
LASSO and SVM-RFE machine learning algorithms. ROC curves for the 9 marker genes (F). Logistic regression model to identify the AUC (G) of 
ferroptosis-related osteoarthritis samples. Model validation of disease diagnosis models in the independent validation dataset GSE82107 (H). 
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[44]. Recent studies have shown that abnormal  

bone remodeling of the subchondral bone may  

occur early in OA, which in turn leads to changes in 

synovial tissue, and synovitis with high levels of 

macrophages has been found in later stages of OA 

[45]. Inflammation is accompanied by activation of  

the immune system, and a study by Hu et al. showed 

differences in the infiltration of multiple immune  

cells between osteoarthritic and normal tissues [36].  

In the OA synovium, the predominant cells are T-

lymphocytes and macrophages, which together with 

activated synoviocytes promote cytokine production 

and angiogenesis, leading to a vicious cycle that 

ultimately results in permanent cartilage degeneration 

[46]. Because OA is a multifactorial and heterogeneous 

disease, variations in OA immune cells and their 

activity lead to loss of immune homeostasis, and the 

choice of treatment has extended to the cellular level, 

including intraarticular injections of mesenchymal 

stem cells [47] and extracellular vesicles [48]. 

Therefore, deepening our understanding of OA at the 

immune molecular level has important implications for 

individualized treatment. 

 

In 2012, scientists proposed a new type of cell death 

called ferroptosis, a phenomenon in which iron-

dependent lipid peroxidation in the cell leads to cell 

death [49, 50]. Ferroptosis is classified as a form of 

regulatory necrosis, which is more related to immunity 

than apoptosis, and compelling evidence suggests that 

the process also plays a key role in inflammation [51]. 

The main promoter of iron toxicity is lipoxygenase,  

an iron-containing enzyme that is dependent on the 

activation of acyl-CoA synthetase long chain family 

member 4 (ACSL4)-dependent lipid synthesis. The 

inhibitor of iron toxicity is thought to be glutathione 

peroxidase 4 (GPX4), a selenium-containing enzyme 

that produces glutathione by activating solute carrier 

 

 
 

Figure 5. Single-gene GSEA-KEGG pathway analysis. BEX1 (A), EGFR (B), PTPN6 (C), TBK1 (D), TR1M26 (E), ELOVL5 (F), GABARAPL1 (G), 

SAT1 (H) and SLC39A7 (I). 

9445



www.aging-us.com 10 AGING 

family 7 member 11 (SLC7A11). Inactivation of  

the Xc¯–glutathione (GSH)–GPX4 axis-dependent 

antioxidative defense system leads to the accumulation 

of lipid hydroperoxides and ultimately iron toxicity 

[52]. Phospholipid hydroperoxides play a role in the 

synthesis and activation of polyunsaturated fatty  

acids, as enforcers of iron toxicity [53]. Furthermore, 

ferroptosis is associated with many pathways, including 

the GPX4-independent surveillance, E-cadherin–NF2–

Hippo–YAP, 5′-AMP-activated protein kinase (AMPK) 

signaling, and hypoxia signaling pathways, all of which 

regulate iron toxicity. Specifically, ferroptosis regulates 

intracellular Fe2+ metabolism and reactive oxygen 

species production [54]. Although the association bet-

ween ferroptosis and disease is becoming increasingly 

apparent, the molecular mechanisms through which  

it affects OA or whether it contributes to the  

disease progression at all remain unclear. Therefore, 

investigating the potential mechanisms of posting 

intoxication in OA and disease subtypes associated with 

iron toxicity is necessary. In this study, a systematic 

analysis of FRG expression profiles in normal and OA 

samples was performed. A total of 139 differentially 

expressed FRGs between the two groups of samples 

was identified, suggesting that OA may be associated 

with ferroptosis. To investigate how the relationship  

of regulators differed between the two samples, the 

correlation between regulators of ferroptosis was 

calculated. Furthermore, the changes in the proportions 

of immune cells were investigated which revealed that 

 

 
 

Figure 6. Immune infiltration analysis. Comparison of the proportion of 22 immune cell types in OA and normal samples (A). Heat  
map display of 9 diagnostic genes with immune cell correlation (B). p-value<0.0001: “****”, p-value<0.001: “***”, p-value<0.01: “**”, p-
value<0.05: “*”. 
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patients with OA had higher levels of gamma-delta T 

cells, plasma cells, follicular helper T cells, activated 

CD4 memory T cells, and M0 macrophages, in 

agreement with the findings of previous studies [55]. 

Functional and pathway enrichment analyses of the 

differentially expressed FRGs revealed that they were 

involved in DNA replication, transcription, protein 

biosynthesis, metabolism, immune regulation, and 

response to stress. Additionally, the LASSO and SVM-

RFE algorithms identified nine key genes, which were 

subsequently revealed by the GSEA algorithm as being 

enriched in pathways related to cytokines, cytokine 

receptors, T and B cell receptors, Toll-like receptors, 

classic signaling, and immunodeficiency in the high- 

and low-expression groups. Studies have proven that 

there is a strong correlation between ferroptosis and  

the immune response [56–58]. T cells with GPX4 

defects accelerate the accumulation of membrane lipid 

peroxides and to trigger cellular iron toxicity [59]. 

Moreover, the increase in mitochondrial superoxide and 

IL-1β levels in GPX4-deficient Treg cells enhances the 

T helper 17 cell responses [60]. Ferroptosis activation 

 

 
 

Figure 7. Unsupervised cluster analysis. Sample subtype analysis clustering chart (A). Comparison of diagnostic gene scores between 

different subtype groups (B). Showing the distribution of various types of immune cells in samples from different subtype groups (C). The 
distribution of immune scores in different subtype groups of samples is displayed (D). The distribution of stromal scores in the samples of 
different subtype groups is displayed (E). 
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plays a vital role in driving B-cell and natural killer  

cell differentiation through the suppression of bone 

morphogenetic protein [13]. Thus, the relationships 

between the three FRG clusters and infiltrated immune 

cells were investigated. Cluster 1 showed strong 

association with activated plasma cells and neutrophils, 

while cluster 2 correlated with activated plasma  

cells and M1 macrophages, and cluster 3 associated 

 

 
 

Figure 8. Results of real-time PCR and Western blot analysis. The SW1353 cell line was divided into two groups: normal chondrocytes 

and those with the addition of interleukin 1β (10ng/ml) intervention. The results of COL2A1 and MMP13 with GAPDH as an internal control 
(A–D) and real-time PCR was performed to measure the relative mRNA expression of inflammatory genes/proteins in OA (E–H). Western 
blotting analysis of nine key genes in two groups (I, J). 
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predominantly with activated mast cells, M2 

macrophages, and neutrophils. The distinction in 

immune scores between the different subtype groups 

was remarkable but not so for the stromal scores. 

Activated neutrophils and mast cells are important 

elements in the initiation and progression of various 

diseases and are involved in autophagy [61–63]. 

Interferon-gamma and lipopolysaccharide induce 

macrophage polarization into the M1 subtype, whereas 

IL-4 stimulates formation of the M2 subtype. As a 

result, macrophages have different metabolic profiles 

and are involved in many signaling pathways, such as 

those of peroxisome proliferator-activated receptors, c-

Myc, hypoxia-inducible factors, phosphoinositide-3-

kinase–protein kinase B (PI3K-AKT), and AMPK 

[64]. Additionally, the patients in cluster 1 had higher 

immune scores, revealing that these patients had  

a worse disease prognosis, which was related to an 

increased immune response. Immune cells can be 

attracted to the amino acid oxidation products released 

by iron-toxic cells, resulting in a different distribution 

among the three groups of patients [65]. Iron uptake 

disorder may be associated with different OA sub-

types; therefore, a model constructed from the 139 

FRGs was used to identify genes that may play a key 

role in the disease. To determine the OA subtypes, a 

diagnostic model was constructed using the nine key 

genes (GABARAPL1, SAT1, EGFR, ELOVL5, TBK1, 

SLC39A7, TRIM26, PTPN6, and BEX1) identified by 

the LASSO and SVM-RFE algorithms.  

 
GABARAPL1 was identified as an estrogen-regulated 

early gene. GABARAP promotes the polymerization 

of tubulin by interacting with GABA type A receptor 

and tubulin [66]. Moreover, silencing GABARAPL1 

impairs the secretion of extracellular vesicles, which 

have proangiogenic properties [67]. In a study on the 

molecular mechanism of OA in relation to the theory 

of autophagy, it was shown that GABARAPL1 

downregulated among OA synovial tissues compared 

with non-OA synovial tissues, which is consistent with 

our results [68]. SAT1 is the rate-limiting enzyme for 

the conversion of spermidine and spermine to 

putrescine. P53 can promote ironosis by repressing the 

expression of SLC7A11 or upregulating SAT1 and 

glutaminase 2 (GLS2) expression [69, 70]. EGFR is a 

key factor in determining whether cellular autophagy 

is toxic [71]. Yulong Wei et al. showed that EGFR, a 

cartilage-specific epidermal growth factor receptor, 

accelerates knee joint deterioration in mice deficient  

in it [72]. And our study also verified its decreased 

mRNA levels in the OA group. ELOVL catalyzes  

fatty acid elongation and also affects cell proliferation 

and invasion [73]. A prostate cancer study showed  

that depletion of ELOVL5 altered mitochondrial 

morphology and function, leading to reactive oxygen 

species production, and that supplementation of 

ELOVL5 direct products reversed oxidative stress 

[74]. TBK1 drives autoinflammation through the 

regulation of IFN-I, nuclear factor-kappa B (NF-κB), 

and TNF-induced receptor-interacting serine/threonine-

protein kinase 1 (RIPK1)-dependent cell death [75]. 

SLC39A7 (ZIP7), a zinc transporter family member, is 

a novel determinant of ferroptosis, consistent with our 

study findings [76]. Consistent with our validation 

results those members of the SLC39a family transport 

zinc from the extracellular or intracellular endoplasmic 

reticulum (ER) to the cytoplasm, a decrease in the 

SLC39A7 gene resulted in increased ER zinc levels, 

impaired cell proliferation, and endoplasmic reticulum 

stress onset [77]. A study using TRIM26 knockout 

mice inhibited downstream kinase activation, resulting 

in reduced induction of pro-inflammatory factors 

following LPS, TNF-α and 1L-1β stimulation [78], 

corroborating the increased TRIM26 expression in  

our cellular model. TRIM26, PTPN6 (a cytoplasmic 

phosphatase), and BEX1 play critical roles in tumor 

immune inflammation [78–80]. Interestingly, the 

validation results for TBK1 and PTPN6 did not show 

significant differences. Consistently, the patients in 

cluster 1 had higher immune scores than those in 

clusters 2 and 3. A high AUC of the model was 

observed for both the validation and training datasets. 

More importantly, immune checkpoint and HLA 

family genes were extracted from the three clusters 

and found differences among them. Our results 

highlight the need for subsequent investigations of 

ferroptosis-related immune checkpoint molecules in 

OA. This study had some limitations, the primary one 

of which was the lack of additional clinical features, 

including OA-related assessment scales, for validating 

the predictive performance of the model. Future  

in vivo and in vitro studies are needed to validate  

these diagnostic genes, which could be significant  

for achieving precise treatment of OA.  

 

CONCLUSIONS 
 

In this study pertaining to OA, significant prognostic 

and immunologic differences were found among  

the three identified clusters with ferroptosis-related 

immunity. The OA prediction model, constructed using 

nine key genes identified by the LASSO and SVM-RFE 

algorithms, had good diagnostic value and a strong 

ability to classify the molecular subtypes of OA. This 

study provides a theoretical basis for future prognostic 

and pathological studies on patients with OA.  
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. The overall flow chart for this analysis. 

9455



www.aging-us.com 20 AGING 

 
 

Supplementary Figure 2. Significance analysis of immune checkpoint and HLA family genes in different subclusters. The 

distribution of expression levels of HLA family genes (A) and immune checkpoint genes (B) in samples of different subtype groups is 
displayed. P-value<0.0001: “****”, p-value<0.001: “***”, p-value<0.01: “**”, p-value<0.05: “*”. 
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Supplementary Tables 
 

Supplementary Table 1. Information on the training datasets. 

Data number Platform information Osteoarthritis group Control group Species 

GSE206848 GPL570 9 7 Homo sapiens 

GSE55457 GPL96 23 10 Homo sapiens 

GSE55235 GPL96 20 10 Homo sapiens 

GSE77298 GPL570 16 7 Homo sapiens 

 

Supplementary Table 2. Sequences of primers used for 
real-time PCR. 

Gene symbol Sequence (5´- 3´) 

GABARAPL1-F TTCTGGTTGCACAATACTGGATGCC 

GABARAPL1-R CCGGATAAATAACACCTTCTGCCCC 

SAT1-F AGAGGTGCTTCTGATCTGTCCAGTG 

SAT1-R ATGGAGGTTGTCATCTACAGCAGCA 

EGFR-F TGACTACCAGCAGGACTTCTTTCCC 

EGFR-R TCCTCCGTGGTCATGCTCCAATAAA 

ELOVL5-F GCACATTCCCTCTTGGTTGGTTGTA 

ELOVL5-R TGGTCCTTCAGGTGGTCTTTCCTTC 

TBK1-F AGTGGAATCAAACATACCATGACCCC 

TBK1-R AGAGCCAAACCTTTCTAAAATGTGGT 

TRIM26-F TGACTTTCACCAACGCAGAGTCACA 

TRIM26-R CAGATGTCAGGGCTCAGGGTCTTAG 

SLC39A7-F TGTGGGTTCTCAGTGGAATTGTTGC 

SLC39A7-R GAACGCTCTTGTCTTCCATGTCCATG 

PTPN6-F CAGAAGCAGGAGGTGAAGAACTTGC 

PTPN6-R GCTGTGGTCAAAGGGGAGAATGTTC 

BEX1-F TGGAGTCCAAAGAGAAACGAGCAGT 

BEX1-R TCTAGGCACACAGTATTCACCAGCA 

MMP13-F AACGCCAGACAAATGTGACCCTTC 

MMP13-R CGTTAAAAACAGCTCCGCATCAACC 

Collagen Ⅱ-F ACCTTGGACGCCATGAAGGTTTTC 

Collagen Ⅱ-R CTTGCTGCTCCACCAGTTCTTCTTG 

GAPDH-F GACATCAAGAAGGTGGTGAAGCAGG 

GAPDH-R GTGTCGCTGTTGAAGTCAGAGGAGA 
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Supplementary Files 
 

Please browse Full Text version to see the data of Supplementary Files 2–4, 6, 7. 

 

Supplementary File 1. LASSO coefficients. 

GABARAPL1 -6.55E-01 

SAT1 -4.24E-01 

EGFR -4.00E-01 

ELOVL5 -3.27E-01 

TBK1 -6.40E-01 

SLC39A7 -7.50E-01 

TRIM26 6.44E-01 

PTPN6 3.26E-01 

BEX1 -6.41E-01 

 

Supplementary File 2. Training-set-risk-score. 

 

Supplementary File 3. Validation-set-risk-score. 

 

Supplementary File 4. Key genes and immune cell correlations. 

 

Supplementary File 5. Unsupervised 
clustering subtype distribution. 

Sample Group 

GSM6265697_Treat C1 

GSM6265698_Treat C1 

GSM6265699_Treat C3 

GSM6265700_Treat C1 

GSM6265701_Treat C2 

GSM6265702_Treat C1 

GSM6265703_Treat C2 

GSM6265704_Treat C3 

GSM6265705_Treat C1 

GSM1337314_Treat C3 

GSM1337315_Treat C3 

GSM1337316_Treat C1 

GSM1337317_Treat C1 

GSM1337318_Treat C2 

GSM1337319_Treat C2 

GSM1337320_Treat C1 

GSM1337321_Treat C1 

GSM1337322_Treat C1 

GSM1337323_Treat C1 

GSM1337324_Treat C1 

GSM1337325_Treat C1 

GSM1337326_Treat C1 

GSM1337327_Treat C3 
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GSM1337328_Treat C3 

GSM1337329_Treat C2 

GSM1337330_Treat C3 

GSM1337331_Treat C3 

GSM1337332_Treat C3 

GSM1337333_Treat C3 

GSM1337334_Treat C3 

GSM1337335_Treat C3 

GSM1337336_Treat C2 

GSM1332211_Treat C2 

GSM1332212_Treat C3 

GSM1332213_Treat C2 

GSM1332214_Treat C2 

GSM1332215_Treat C2 

GSM1332216_Treat C3 

GSM1332217_Treat C1 

GSM1332218_Treat C1 

GSM1332219_Treat C3 

GSM1332220_Treat C2 

GSM1332221_Treat C1 

GSM1332222_Treat C1 

GSM1332223_Treat C1 

GSM1332224_Treat C1 

GSM1332225_Treat C1 

GSM1332226_Treat C1 

GSM1332227_Treat C1 

GSM1332228_Treat C1 

GSM1332229_Treat C1 

GSM1332230_Treat C1 

GSM2048272_Treat C2 

GSM2048273_Treat C1 

GSM2048274_Treat C1 

GSM2048275_Treat C3 

GSM2048276_Treat C1 

GSM2048277_Treat C3 

GSM2048278_Treat C3 

GSM2048279_Treat C1 

GSM2048280_Treat C2 

GSM2048281_Treat C2 

GSM2048282_Treat C3 

GSM2048283_Treat C2 

GSM2048284_Treat C3 

GSM2048285_Treat C2 

GSM2048286_Treat C2 

GSM2048287_Treat C2 

 

Supplementary File 6. GSVA scores. 

 
Supplementary File 7. Immune scores. 
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