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INTRODUCTION 
 

Low back pain stands as a significant factor in disability 

associated with aging, leading to the highest disability-

adjusted life years when compared to other health 

conditions [1, 2]. Intervertebral disc (IVD) degeneration 

(IVDD) is a complex condition with a multifactorial 

etiology, encompassing age-related degeneration, genetic 

predisposition, nutritional and oxygen deficiencies, 

mechanical overloading, and pathologic changes within 

the disc itself [3–6]. Treatment modalities for IVDD range 

from conservative management to innovative biological 

and engineering approaches. Hence, understanding the 

molecular mechanisms of IVDD holds the potential to 

guide the development of novel therapeutic interventions. 

 

The IVD is an avascular structure composed of the 

nucleus pulposus, annulus fibrosus (AF), and cartilaginous 
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ABSTRACT 
 

Low back pain stands as a significant factor in disability, largely resulting from intervertebral disc degeneration 
(IVDD). High glucose (HG) levels have been implicated in the pathogenesis of IVDD. However, the detailed 
mechanism of HG in IVDD is largely unknown. Our clinical results revealed that fibrosis markers such as CTGF, 
Col1a1, ATF4, and EIF2 are highly expressed in advanced-stage IVDD patients. Stimulation of human annulus 
fibrosus cells (HAFCs) with HG, but not mannitol, promotes fibrosis protein production. Ingenuity Pathway 
Analysis in the GSE database found that the mTOR, PKCδ, and NF-κB pathways were significantly changed 
during IVDD. The mTOR, PKCδ, and NF-κB inhibitors or siRNAs all abolished HG-induced fibrosis protein 
production. In addition, treatment of HAFCs with HG enhances the activation of mTOR, PKCδ, and NF-κB 
pathways. Thus, HG facilitates fibrosis in IVDD through mTOR, PKCδ, and NF-κB pathways. These results 
underscore the critical role of HG as a fibrotic factor in the progression of IVDD. 
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endplates [7]. Degeneration often involves structural 

failure and biochemical changes within these components 

[8]. Fibrosis and inflammation are intimately intertwined 

in the pathogenesis of various degenerative diseases, 

acting through complex mechanisms that are only 

partially understood. Inflammatory responses are known 

to initiate and exacerbate fibrotic processes, with chronic 

inflammation often resulting in the persistent deposition of 

extracellular matrix (ECM) and subsequent tissue scarring 

[9]. This relationship is not unidirectional; fibrotic tissue 

can further promote inflammatory responses, creating  

a vicious cycle that contributes to the progression of 

degenerative diseases [10, 11]. Matrix metalloproteinases 

(MMPs) play a pivotal role in this interplay, as they 

regulate both the breakdown of ECM in inflammation and 

its deposition during fibrosis [12]. 

 

Hyperglycemia-induced inflammation and fibrosis are 

pivotal in the progression of a myriad of diseases, acting 

through various mechanisms to exacerbate cellular and 

systemic dysfunction [13, 14]. The interplay between 

high glucose levels and inflammatory pathways has been 

shown to aggravate pancreatic inflammation and fibrosis, 

with studies suggesting that the renin-angiotensin axis 

activated by hyperglycemia plays a significant role  

in this process [15]. In the cardiovascular system, 

hyperglycemia has been implicated in modulating 

collagen expression and the functional differentiation of 

cardiac fibroblasts, leading to cardiac fibrosis [16]. The 

direct relationship between hyperglycemia, oxidative 

stress, and the inflammatory process is well-established, 

contributing to the chronicity of diseases [17, 18]. 

Moreover, hyperglycemia has been recognized to 

impair tissue healing by promoting a prolonged 

inflammatory response [19] and to synergize with 

hypoxia in sustaining a pro-inflammatory state in 

macrophages [20]. 

 

High glucose (HG) levels have been implicated in the 

pathogenesis of IVDD [21]. However, the detailed 

mechanism of HG in fibrosis on IVDD is largely 

unknown. Here, we found that the fibrosis markers are 

associated with the progression of IVDD. HG enhances 

fibrosis protein expression in human annulus fibrosus 

cells (HAFCs). The mTOR, PKCδ, and NF-κB 

pathways mediate HG-induced fibrosis. This establishes 

that HG is a critical factor for the development of 

IVDD. 

 

RESULTS 
 

Positive correlation between fibrosis markers and 

the gradient of IVDD 

 

Fibrosis is a critical process in the development of 

IVDD [9]. We first investigated the role of fibrosis in 

the pathogenesis of IVDD. To validate the association 

between tissue fibrosis and varying grades of disc 

degradation, we utilized MRI and Masson’s trichrome 

staining. The results confirmed a positive correlation 

between tissue fibrosis and Pfirrmann grading (Figure 

1A; Spearman R=0.69701). Furthermore, IHC staining 

 

 
 

Figure 1. Higher levels of fibrotic markers in high-grade IVDD patients. (A) MRI images and Masson’s trichrome staining of disc 
tissues from IVDD patients. (B) IHC staining (n=3) was performed for CTGF, Col1a1, ATF4 and EIF2 levels in disc tissues from IVDD patients, 
followed by photography and quantification. * p < 0.05 versus the Grade 3 group. 
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was employed to identify the upregulation of  

fibrotic markers, including CTGF, Collagen Type I 

(Col1a1), ATF4, and EIF2, in tissues manifesting 

advanced-stage IVDD procured from clinical specimens 

(Figure 1B). 

 

HG enhances expression of fibrotic proteins in 

HAFCs 

 

AF plays an essential role in the mechanical functionality 

of the IVD [7]; therefore, HAFCs were used to examine 

the role of HG in the expression of fibrotic proteins. 

Stimulation of cells with HG (33 mM) enhances mRNA 

and protein expression of fibrotic proteins such as CTGF, 

COL1a1, ATF4, and EIF2 (Figure 2). As osmotic 

controls, treatment with 33 mM mannitol also did not 

induce significant changes in the gene and protein levels 

of CTGF, COL1a1, ATF4, and EIF2 (Figure 2), 

indicating that the elevated expression of fibrotic proteins 

induced by HG is not attributable to increased osmolality 

within the media.  

 

mTOR and PKCδ signaling pathways are involved 

in HG-induced increase of fibrosis proteins 

 

We next sought to examine the regulatory mechanism 

underlying IVDD by investigating molecular pathways 

in the GSE219145 dataset using IPA software. Our data 

revealed a significant correlation between the mTOR, 

PKCδ, and NF-κB signaling pathways, which is the top 

signaling (mTOR signaling) in IVDD (Figure 3A). 

Pretreatment with the mTOR inhibitor (Rapamycin) or 

transfection with mTOR siRNA reduced HG-induced 

fibrosis proteins expression (Figure 3B, 3C). Treatment 

of HAFCs with HG induced time-dependent 

phosphorylation of mTOR (Figure 3D, 3E). Taken 

together, it appears that the mTOR signaling pathway 

regulates HG-induced fibrosis in IVDD. 

 

PKC served as a common downstream signaling of  

the mTOR pathway. Treatment of cells with the PKC 

inhibitor (GF109203x), PKCδ inhibitor (Rottlerin),  

or transfection with PKCδ siRNA diminished HG-

promoted fibrosis proteins expression (Figure 4A, 4B). 

Incubation with HG augmented the phosphorylation of 

PKCδ (Figure 4C, 4D), suggesting that PKCδ activation 

is controlled in the HG-induced induction of fibrosis in 

IVDD. 

 

NF-κB signaling pathway controls HG-induced 

fibrosis 

 

NF-κB is a pivotal transcription factor that responds to 

inflammatory reactions during IVDD [22]. HAFCs 

were incubated with NF-κB inhibitors, such as PDTC 

and TPCK; both diminished HG-enhanced fibrosis 

protein synthesis (Figure 5A). Conversely, siRNA 

against p65 had similar effects (Figure 5B). Treatment 

of cells with HG facilitated phosphorylation of p65 

(Figure 5C, 5D). We also used NF-κB luciferase 

activity to further examine the activation of NF- 

κB [23]. As shown in Figure 5E, HG stimulation  

of cells resulted in increased NF-κB luciferase  

activity concentration dependently (Figure 5E). The 

enhancement of NF-κB activity by HG was reduced by 

mTOR and PKCδ inhibitors (Figure 5F), indicating 

NF-κB activation is mediated in HG-promoted fibrosis 

through mTOR and PKCδ pathways. 

 

 
 

Figure 2. HG enhances fibrotic protein expression in HAFCs. HAFCs were treated with glucose (33 mM) or mannitol (33 mM) for 24 h, 
and the indicated mRNA (A) and protein (B) expression was examined by qPCR (n=5) and Western blot (n=3). (C) The densitometry analysis of 
(B) was quantified. * p < 0.05 versus the control group. 
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Figure 3. mTOR is regulated in HG-promoted fibrotic protein expression in HAFCs. (A) IPA pathway enrichment figure showing 
pathways in the GSE219145 dataset that significantly changed. (B, C) HAFCs were treated with mTOR inhibitor (rapamycin; 10 μM) or 
transfected with mTOR siRNA then treated with HG, and the indicated mRNA expression was examined by qPCR (n=5). (D) Cells were 
stimulated with HG, and the p-mTOR expression was examined by Western blot (n=3). (E) The densitometry analysis of (D) was quantified. * 
p < 0.05 versus the control group. # p < 0.05 versus the HG-treated group. 
 

 
 

Figure 4. PKCδ is regulated in HG-promoted fibrotic protein expression in HAFCs. (A, B) HAFCs were treated with PKC inhibitor 
(GF109203x; 10 μM), PKCδ inhibitor (rottlerin; 10 μM) or transfected with PKCδ siRNA then applied with HG, and the indicated mRNA 
expression was examined by qPCR (n=5). (C) Cells were stimulated with HG, and the p-PKCδ expression was examined by Western blot (n=3). 
(D) The densitometry analysis of (C) was quantified. * p < 0.05 versus the control group. # p < 0.05 versus the HG-treated group. 
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DISCUSSION 
 

IVDD is a prevalent cause of low back pain in middle-

aged and older adults, affecting around 40% of the 

global population. It not only negatively impacts the 

quality of life for patients but also places a burden on 

the healthcare system and society at large [24, 25]. 

Elevated blood glucose levels have been linked to  

the development of IVDD, with complex underlying 

mechanisms involving molecular, cellular, and metabolic

 

 
 

Figure 5. HG induces NF-κB-mediated fibrotic protein expression in HAFCs through mTOR and PKCδ pathways. (A, B) HAFCs 

were treated with NF-κB inhibitors (PDTC and TPCK; 10 μM) or transfected with p65 siRNA then applied with HG, and the indicated mRNA 
expression was examined by qPCR (n=5). (C) Cells were stimulated with HG, and the p-p65 expression was examined by Western blot (n=3).  
(D) The densitometry analysis of (C) was quantified. (E, F) HAFCs were treated with HG (3 – 33 mM) or pretreated with rapamycin or rottlerin 
then applied with HG, and the NF-κB luciferase activity was examined (n=5). * p < 0.05 versus the control group. # p < 0.05 versus the HG-
treated group. 
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processes working together to cause fibrosis and disc 

degeneration [21]. However, the detailed mechanism  

of HG in fibrosis in IVDD is largely unknown. In our 

investigation, we found that HG enhances the production 

of fibrotic proteins in HAFCs. The mTOR, PKCδ, and 

NF-κB pathways mediate HG’s effects. 

 

A well-known technique for evaluating IVDD  

that has been linked to clinical symptoms of  

disc degeneration is the Pfirrmann grading system.  

It facilitates communication between radiologists and 

spine surgeons by providing a reliable grading system 

with good inter- and intra-observer agreement [26]. 

Research has also shown a relationship between the 

disc’s fibrosis indicators and the Pfirrmann grading. 

Strong CTGF expression, for example, may be linked  

to disc degeneration and fibrosis in painful discs; this 

suggests that fibrosis markers are, indeed, correlated with 

alterations detected in the Pfirrmann grading [26]. Here, 

we found that fibrotic markers such as CTGF, Col1a1, 

ATF4, and EIF2 are associated with advanced stages of 

IVDD according to the Pfirrmann grading, indicating that 

fibrosis is a critical step in the progression of IVDD. 

 

mTOR and PKCδ have been identified as potential 

candidate signaling molecules mediating HG-regulated 

cellular responses [27, 28]. Our data obtained from the 

GSE dataset using IPA software indicated that the 

mTOR and PKCδ signaling pathways are related with 

the top signaling pathway (mTOR signaling). In line 

with this, our investigation revealed that inhibitors 

targeting mTOR and PKCδ effectively counteracted the 

HG-induced enhancement of fibrotic protein expression. 

Additionally, employing genetic inhibition via mTOR 

and PKCδ siRNAs yielded similar outcomes. Following 

incubation with HG, HAFCs exhibited increased 

phosphorylation of mTOR and PKCδ, suggesting the 

activation of the mTOR and PKCδ signaling pathways 

by HG in IVDD. 

 

It is well-documented that NF-κB comprises both 

classical and alternative pathways, mediating a  

critical role in IVDD progression [22]. HG, known for 

its potency in enhancing proinflammatory cytokine 

production, triggers activation of both NF-κB pathways 

[29]. Indeed, NF-κB pharmacological inhibitors and 

genetic siRNA were shown to diminish HG-induced 

fibrotic proteins expression. HG stimulation was also 

shown to enhance p65 phosphorylation. The mTOR and 

PKCδ inhibitor abolished HG-induced NF-κB luciferase 

activity, indicating that HG promotes NF-κB-dependent 

fibrosis in IVDD through activating mTOR and PKCδ 

pathways. 

 

To summarize, the current report indicated that HG 

promotes the production of fibrotic proteins in HAFCs 

by activating the mTOR, PKCδ, and NF-κB signaling 

pathways (Figure 6). These results underscore the 

critical role of HG as a fibrotic factor in the progression 

of IVDD. 

 

 
 

Figure 6. Schematic illustration showing signaling pathways involved in HG-facilitated fibrosis in IVDD. HG enhances fibrotic 

protein expression in HAFCs through mTOR, PKCδ and NF-κB pathways during IVDD progression. 
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MATERIALS AND METHODS 
 

Material 

 

CTGF (sc-25440), Cola1 (sc-293182), ATF4 (sc-

390063) and EIF2 (sc-517627) antibodies were 

purchased from Santa Cruz Biotechnology (Santa Cruz, 

CA, USA). All ON-TARGETplus siRNAs were sourced 

from Dharmacon (Lafayette, CO, USA). Glucose and 

other chemicals utilized in this study were provided by 

Sigma-Aldrich (St. Louis, MO, USA). 

 

Cell culture 

 

HAFCs were purchased from ScienCell Research 

Laboratories (Walkersville, MD, USA). Cells were 

cultured in an annulus fibrosus (AF) cell medium. The 

cells were applied onto culture dishes precoated with 

10% Poly-L-Lysine and were incubated in a humidified 

atmosphere at 37°C with 5% CO2. 

 

Quantitative real-time PCR 

 

qPCR assays were performed using the StepOnePlus 

sequence detection system in accordance with 

established protocols [30–32]. Total RNA was isolated 

from HAFCs using a TRIzol kit (MDBio, Taipei, 

Taiwan), and an M-MLV Reverse Transcriptase  

kit (Invitrogen, Carlsbad, CA, USA) was used to 

perform reverse transcription of total RNA into cDNA. 

Total cDNA was applied with sequence-specific 

primers using a KAPA SYBR® FAST qPCR Kit 

(Applied Biosystems, Foster City, CA, USA) [33, 34]. 

RT-qPCR assays were carried out in triplicate using  

a StepOnePlus sequence detection system. The  

cycling conditions were as follows: an initial 10-

minute polymerase activation at 95°C followed by  

40 cycles of denaturation at 95°C for 15 seconds  

and annealing/extension at 60°C for 60 seconds. The 

threshold was set above the non-template control 

background and within the linear phase of the target 

gene amplification to calculate the cycle number  

at which the transcript was detected (denoted as CT). 

The primer sequences used were as follows: CTGF 

forward primer (CAGGCTGGAGAAGCAGAGTC 

GT) and reverse primer (CTGGTGCAGCCAGAAA 

GCTCAA); Collagen Type I (Col1a1) forward primer 

(GAGGGCCAAGACGAAGACATC) and reverse 

primer (CAGATCACGTCATCGCACAAC); ATF4 

forward primer (ATGACCGAAATGAGCTTCCTG) 

and reverse primer (GCTGGAGAACCCATGAGGT); 

EIF2 forward primer (TGGTGAATGTCAGATCC 

ATTGC) and reverse primer (TAGAACGGATACG 

CCTTCTGG); GAPDH forward primer (ACCACAG 

TCCATGCCATCAC) and reverse primer (TCCAC 

CACCCTGTTGCTGTA). 

Patients and clinical samples 

 

IVD tissues were obtained from 10 patients suffering 

from lumbar spinal intervertebral disc herniation 

concurrent with intervertebral degeneration disease. 

Image studies with completed lumbar spine magnetic 

resonance imaging (MRI) were all obtained and 

confirmed the image relative with patients’ symptoms. 

All patients were scheduled for microdiscectomy with 

or without interbody fusion surgery. All patients were 

treated at the China Medical University Beigang 

Hospital, Yunlin, Taiwan and provided written 

informed consent prior to participation in the study. 

All procedures were conducted in accordance with the 

Institutional Review Board (IRB) regulations and 

guidelines established by the IRB of China Medical 

University Hospital, Taichung, Taiwan. 

 

Western blotting 

 

The proteins from the tested HAFCs were extracted 

using RIPA buffer. Subsequently, protein samples 

were electrophoretically separated using SDS-PAGE 

gels (7.5-12%) and transferred onto PVDF membranes 

(Merck; Darmstadt, Germany). After blocking with 

5% non-fat milk, the membranes were incubated with 

primary antibodies overnight at 4°C, followed by 

incubation with specific secondary antibodies for an 

hour at room temperature. The expression of the target 

protein was detected using an ECL kit (Millipore, 

USA) and visualized with the ImageQuant™ LAS 

4000 biomolecular imager [35–37]. 

 

Bioinformatics analysis 

 

To determine the underlying pathways involved in the 

formation of IVDD, we utilized the Ingenuity Pathway 

Analysis (IPA) to interrogate the GEO database 

(GSE219145). IPA was used to identify critical 

pathways related with the significant genes in both 

regions compared to control. Results from IPA are 

represented by z-score. Annotations were applied to 

identify which categories the differentially expressed 

genes (DEGs) were regulated with key pathways. 

 
Transient transfection and NF-κB-luciferase assay  

 

ON-TARGETplus siRNAs targeting mTOR (L-003008-

00), PKCδ (L-003524-00), and p65 (L-003533-00-

0005) were purchased from Dharmacon Research 

(Lafayette, CO, USA). siRNA (100 nM) was transiently 

transfected using DharmaFECT1 transfection reagent, 

according to the manufacturer’s instructions. 

 
HAFCs were cultured in a 6-well plate, and the NF-κB-

luciferase plasmid (pNF-κB-Luc; QYB0387; Stratagene, 
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San Diego, CA, USA) was transfected into the cells  

using Lipofectamine™ 2000. The luciferase activity 

value was normalized to transfection efficiency, which 

was monitored by the co-transfected β-galactosidase 

expression vector. 

 

Masson’s trichrome staining 

 

IVD tissues were fixed in 4% paraformaldehyde, 

embedded in paraffin, and serially sectioned at 5-µM 

thickness. The sections were stained with Masson’s 

trichrome staining kit (TRM-2; Scytek Laboratories, 

UT, USA) to measure collagen deposits. Three adjacent 

sections were quantified using ImageJ software. 

 

Immunohistochemistry (IHC) staining 

 

Immunohistochemistry assays were conducted on tissue 

specimens obtained from IVDD patients. The primary 

antibodies employed in the IHC procedure were CTGF, 

Cola1, ATF4 and EIF2. The quantification was carried 

out following the protocol detailed in our prior 

publications [34, 38]. The IHC staining was assigned 

scores ranging from 1 to 5 (from weak to strong) to 

denote positive expression [39]. 

 

Statistics 

 

All statistical analyses were carried out using GraphPad 

Prism 5.0 (GraphPad Software) and all values are 

presented as the mean ± standard deviation (SD). 

Statistical significance between experimental groups was 

evaluated using the Student’s t-test. For comparisons 

involving more than two groups, one-way analysis  

of variance (ANOVA) was employed, followed by 

Bonferroni’s post hoc test. Differences between groups 

were considered significant if the p-value was < 0.05. 
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