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ABSTRACT 
 

Background: Amyotrophic Lateral Sclerosis (ALS), a fatal neurodegenerative disease, continues to elude 
complete comprehension of its pathological underpinnings. Recent focus on inflammation in ALS pathogenesis 
prompts this investigation into the genetic correlation and potential causal relationships between circulating 
inflammatory proteins and ALS. 
Methods: Genome-wide association study (GWAS) data encompassing 91 circulating inflammatory protein 
measures from 14,824 individuals of European ancestry, alongside records from 27,205 ALS cases and 110,881 
controls, were employed. Assessment of genetic correlation and overlap utilized LD score regression (LDSC), 
high-definition likelihood (HDL), and genetic analysis integrating pleiotropy and annotation (GPA) 
methodologies. Identification of shared genetic loci involved pleiotropy analysis, functional mapping and 
annotation (FUMA), and co-localization analysis. Finally, Mendelian randomization was applied to probe causal 
relationships between inflammatory proteins and ALS. 
Results: Our investigation revealed significant genetic correlation and overlap between ALS and various 
inflammatory proteins, including C-C motif chemokine 28, Interleukin-18, C-X-C motif chemokine 1, and 
Leukemia inhibitory factor receptor (LIFR). Pleiotropy analysis uncovered shared variations at specific genetic 
loci, some of which bore potential harm. Mendelian randomization analysis suggested that alterations in 
specific inflammatory protein levels, notably LIFR, could impact ALS risk. 
Conclusions: Our findings uncover a genetic correlation between certain circulating inflammatory proteins and 
ALS, suggesting their possible causal involvement in ALS pathogenesis. Moreover, the identification of LIFR as a 
crucial protein may yield new insights into ALS pathomechanisms and offer a promising avenue for therapeutic 
interventions. These discoveries provide novel perspectives for advancing the comprehension of ALS 
pathophysiology and exploring potential therapeutic avenues. 
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INTRODUCTION 
 

Amyotrophic Lateral Sclerosis (ALS), a progressive 

neurodegenerative disorder, predominantly impacts 

motor neurons, leading to muscle wasting and 

diminished strength [1–3]. In recent years, increasing 

attention has been directed towards the role of systemic 

inflammation in the pathogenesis of neurodegenerative 

disorders, with ALS being particularly devastating. 

While the precise etiology of ALS remains elusive, 

emerging evidence implicates genetic factors in its 

pathogenesis. ALS patients harboring genetic variations 

may manifest distinct clinical features and inheritance 

patterns, yet the correlation between genotype and 

phenotype remains somewhat ambiguous. Research 

underscores the importance of investigating pathogenic 

genes in ALS for diagnosis and the identification  

of potential drug targets [4, 5]. Recently, mounting 

evidence suggests a potential link between inflammatory 

processes and the progression of ALS, especially 

regarding the putative role of circulating inflammatory 

proteins. Circulating inflammatory proteins, serving  

as biomarkers of systemic inflammation (including 

cytokines, chemokines, and acute-phase reactants),  

not only undergo changes in ALS patients but also 

correlate with disease severity and progression. ALS,  

as a multifactorial, multisystem neuroinflammatory 

disorder, leads to compromised muscle function and 

eventual mortality. The onset and progression of ALS 

coincide with alterations in inflammatory proteins, 

while neuroinflammation further hastens disease 

progression and exacerbates its severity; however, 

peripheral inflammatory processes remain insufficiently 

characterized [6–8]. 

 

Genome-wide association studies (GWAS) represent a 

potent tool for elucidating the genetic underpinnings  

of complex diseases. By analyzing genetic data from 

large cohorts of cases and controls, GWAS have the 

capacity to identify genetic variants associated with 

disease risk. In ALS research, GWAS have successfully 

pinpointed multiple genetic loci linked to disease risk 

[9–11]. However, existing research on the genetic 

correlation and potential causality between circulating 

inflammatory proteins and ALS is still insufficient. 

 

Inflammatory proteins, including cytokines and 

chemokines, serve as crucial components of the 

immune system, playing pivotal roles in modulating 

inflammatory responses and immune reactions. In 

ALS, aberrant expression of inflammatory proteins 

may impact the survival and function of neurons, 

thereby fostering disease progression [12–14]. The 

significance of these circulating proteins lies not  

only in their potential as diagnostic or prognostic 

markers but also in their ability to unveil novel 

therapeutic targets. For instance, alterations in specific 

inflammatory protein levels in ALS may be associated 

with crucial pathological processes such as glial  

cell activation, central nervous system immune cell 

infiltration, and neuronal death. This suggests that 

modulating the levels or activity of these proteins 

could ameliorate neuroinflammation and potentially 

slow disease progression. Therefore, a comprehensive 

understanding of the relationship between circulating 

inflammatory proteins and ALS is crucial for 

elucidating the disease's pathological mechanisms and 

developing novel therapeutic strategies. 

 

This study leverages large-scale GWAS data in 

conjunction with sophisticated statistical and genetic 

analysis techniques, with the objective of investigating 

the genetic correlation between circulating inflammatory 

proteins and ALS, as well as evaluating their potential 

causal relationship. Through these analyses, our aim is 

to offer fresh insights into the genetic underpinnings 

and pathological mechanisms of ALS, thereby laying  

a scientific groundwork for the development of future 

therapeutic interventions. 

 

MATERIALS AND METHODS 
 

The research process is illustrated in the flowchart 

figure (Figure 1) 

 

Data sources 

 

The GWAS data for 91 circulating inflammatory 

proteins were derived from a total of 14,824 participants 

of European descent across 11 cohorts, as measured 

using the Olink Target Inflammation panel, reported  

by Zhao et al. [15]. The ALS data came from  

a meta-analysis of a genome-wide association study 

(GWAS) “GCST90027164” (https://www.ebi.ac.uk 

/gwas/studies/GCST90027164) by van Rheenen et al., 

which included 27,205 European ALS cases and 

110,881 European controls [9] (Supplementary Table 1). 

 

Genome-wide genetic correlation and overlap 

 

Initially, we employed linkage disequilibrium score 

regression (LDSC) to assess the genome-wide genetic 

correlation between the 91 circulating inflammatory 

proteins and ALS for 91 trait pairs [16]. For the LDSC 

analysis, we used LD scores based on European 

ancestry from the 1000 Genomes Project [17]. In  

our LDSC analysis, we did not restrict the intercept. 

Although sample overlap can affect the intercept,  

it does not influence the slope. Therefore, genetic 

correlation is not impacted in the case of sample 

overlap. This approach not only considers residual 

confounding factors but also indicates potential sample 
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overlap between two GWAS studies. Subsequently, we 

utilized high-definition likelihood (HDL) to re-validate 

the genome-wide genetic correlation for these 91  

trait pairs. HDL offers greater precision in estimating 

genetic correlations compared to LDSC [18]. 

 

Lastly, we used Genetic analysis incorporating 

Pleiotropy and Annotation (GPA) to explore the 

overall genetic overlap between traits. GPA integrates 

multiple GWAS datasets and functional annotations  

to identify association signals. GPA not only detects 

many subtle signals that traditional single-phenotype 

analyses might miss but also reveals relationships 

between their genetic structures [19]. For all the 

aforementioned analyses, the Bonferroni-corrected 

significance threshold was set at P < 0.05. 

 

Shared loci between 91 circulating inflammatory 

proteins and amyotrophic lateral sclerosis 

 

For trait pairs showing significant genetic correlation 

or overlap, we employed pleiotropic analysis under 

composite null hypothesis (PLACO) to identify 

potential pleiotropic single-nucleotide variations 

(SNVs). PLACO specifically detects pleiotropic gene 

loci between two traits by considering the potential 

composite null hypothesis (i.e., a variant is unrelated 

to any trait or only related to one of the traits) [20]. 

SNVs with P. PLACO < 5 × 10^-8 were considered 

significant pleiotropic variations. 

 

For pleiotropic SNVs identified by PLACO, we 

utilized functional mapping and annotation of genetic 

associations (FUMA) for further analysis to recognize 

independent variations [21]. FUMA delineates genomic 

risk loci and annotates variations' functions using LD 

information from the European population reference 

panel of the 1000 Genomes Project Phase 3. We set 

the Maximum P-value of lead SNV to less than 5 × 

10^-8 and the Maximum P-value cutoff to less than 

0.05. Independent SNVs within 1 Mb with r2 less than 

0.6 and lead SNVs with r2 less than 0.1 were 

characterized. If the physical distance between lead 

SNVs was less than 250 kb, genomic risk loci were 

defined by merging genomic regions [22]. 

 

For pleiotropic SNVs identified based on PLACO,  

we annotated them using ANNOVAR [23] and 

calculated combined annotation-dependent depletion 

(CADD) and Regulome DB scores. SNVs with a 

CADD score greater than 12.37 were considered 

potentially harmful variations [24]. Regulome DB 

scores SNPs, with lower scores indicating stronger 

regulatory potential [25]. 

 

 
 

Figure 1. Flowchart figure. 
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For these potential pleiotropic loci, we conducted 

Bayesian colocalization analysis to test hypotheses 

where H3 represents both traits being associated but 

with different causal variants, and H4 represents both 

traits being associated and sharing a causal variant.  

We used the default settings of the coloc.abf function 

(p1 = p2 = 1 × 10^-4, p12 = 1 × 10^-5), where p1 and 

p2 represent the prior probabilities of an SNP being 

associated with trait 1 and trait 2 respectively, and p12 

represents the prior probability of an SNP being 

associated with both traits. A posterior probability 

(PP.H4) greater than 0.7 was used as the criterion for 

including a locus as colocalized [26, 27]. 

 

Mendelian randomization 

 

We employed two-sample Mendelian randomization 

(TSMR) analysis to investigate the causal relationship 

between circulating inflammatory proteins and ALS.  

In the MR analysis, inflammatory proteins serve as  

the exposure of interest, ALS as the outcome, and SNPs 

as instrumental variables (IVs). TSMR method is based 

on the following assumptions: (I) the instrumental 

variables are strongly associated with inflammatory 

proteins; (II) the instrumental variables only affect  

ALS risk through their association with inflammatory 

proteins; (III) the instrumental variables are independent 

of confounding factors [28, 29]. 

 
For the positive TSMR analysis, we selected SNPs 

associated with inflammatory proteins at a genome-

wide significance level (P < 5×10^-8). For the reverse 

TSMR, SNPs from ALS GWAS were extracted, again 

using SNPs with P < 5×10^-8. Additionally, the PLINK 

clumping method was utilized to calculate linkage 

disequilibrium (LD) between each exposure SNP based 

on the 1000 Genomes European panel, with an r2 

threshold of < 0.01 (clumping distance = 5000kb).  

The F-statistic was calculated using F = beta 2 /se 2.  

F-statistics > 10 indicate the robustness of IVs. 

 
We employed several MR methods, including MR-

Egger, weighted median, inverse variance-weighted 

(IVW), Wald ratio, simple mode, and weighted mode. 

IVW was selected as the primary analysis method, 

with Wald ratio used when SNPs < 2, and P-IVW 

values < 0.05 considered statistically significant  

[30, 31]. Cochran's Q statistic was used to assess 

heterogeneity among individual SNPs. If no significant 

heterogeneity was observed (P < 0.05), a fixed- 

effects model was employed [32]; otherwise, caution 

was exercised in interpreting causal significance. 

Sensitivity analyses were conducted to validate the 

robustness of our results. Furthermore, MR-Egger  

and MR-PRESSO methods were employed to assess 

for pleiotropy. The intercept obtained from MR-Egger 

regression was used to measure directional pleiotropy, 

while MR-PRESSO enhanced detection of pleiotropy 

[33]. Steiger tests were conducted to determine 

causality direction. Leave-one-out sensitivity analyses 

were performed to assess whether individual SNPs 

significantly influenced MR results. 

 

Statistical software 

 

All statistical analyses were conducted in R  

software version 4.3.0 (https://www.r-project.org/). 

The “TwoSampleMR” package was used for  

MR analysis and Steiger filtering [34–36]. MR-

PRESSO was conducted using the “MRPRESSO” 

package in R. 

 

All analyses in this study were conducted after 

excluding SNVs in the MHC region (chromosome 6: 

25-35 MB). 

 

Availability of data and materials 

 

The GWAS data for 91 circulating inflammatory 

proteins were derived from a total of 14,824 participants 

of European descent across 11 cohorts, as measured 

using the Olink Target Inflammation panel, reported  

by Zhao et al. The Amyotrophic Lateral Sclerosis 

(ALS) data came from a meta-analysis of a genome-

wide association study (GWAS) “GCST90027164” 

(https://www.ebi.ac.uk/gwas/studies/GCST90027164) by 

van Rheenen et al., which included 27,205 European 

ALS cases and 110,881 European controls. 

 

RESULTS 
 

Genetic correlation and overlap between 91 

circulating inflammatory proteins and ALS 

 

Among 91 paired traits, we observed significant 

genome-wide genetic correlations for three trait pairs 

identified by LDSC. Additionally, HDL identified 

significant genome-wide genetic correlations for eight 

trait pairs. Unfortunately, there were no trait pairs  

for which HDL and LDSC results were completely 

consistent (Supplementary Table 2). Traits such as C-C 

motif chemokine 28 levels (CCL28) and Interleukin-18 

levels (IL18) showed positive genetic correlations in 

LDSC analyses (LDSC.rg = 0.222; 0.313), while 

CD40L receptor levels exhibited a negative genetic 

correlation (LDSC.rg = -0.429). We also noted that two 

of the three trait pairs identified by LDSC (CCL28 and 

IL18) showed significant genetic overlap in GPA 

analysis (P_GPA = 2.12E-8; 1.03E-07). Of the eight 

trait pairs identified by HDL, two, such as C-X-C motif 

chemokine 1 levels (CXCL1) and Leukemia inhibitory 

factor receptor levels (LIFR), also demonstrated 
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significant genetic overlap in GPA analysis (P_GPA = 

2.91E-2; 6.34E-32). The final joint set of these four 

traits will be used for subsequent analysis. 

 

Shared loci between four circulating inflammatory 

proteins and ALS 

 

In the case of CCL28 and ALS, we identified  

79 SNVs using PLACO and further delineated 64 

independent genomic risk loci through FUMA, all 

located in chromosome region 9p21.2. Two shared  

SNVs were identified as potentially harmful variations:  

rs10967965 (CADD=17.2) and rs700795 (CADD=16.7) 

(Supplementary Table 3 and Figure 2). 

 

For IL18 and ALS, 157 SNVs were identified with 

PLACO, and FUMA confirmed 157 independent 

genomic risk loci across four chromosome regions: 

2p22.3, 9p21.2, 11q23.1, and 19p13.11. Six shared 

SNVs were deemed potentially harmful: rs762019 

(CADD=17.43), rs2366894 (CADD=17.61), rs868856 

(CADD=16.3), rs10967965 (CADD=17.2), rs700795 

(CADD=16.7), and rs77203424 (CADD=12.44) 

(Supplementary Table 4 and Figure 3). 

 

In the analysis of CXCL1 and ALS, 164 SNVs were 

identified via PLACO, and FUMA pinpointed 164 

independent genomic risk loci in three chromosome 

regions: 4q13.3, 5q14.3, and 9p21.2. Five shared SNVs 

were considered potentially harmful: rs61104616 

(CADD=17.99), rs4879515 (CADD=15.78), rs868856 

(CADD=16.3), rs10967965 (CADD=17.2), and rs700795 

(CADD=16.7) (Supplementary Table 5 and Figure 4). 

 

For LIFR and ALS, PLACO identified 22 SNVs,  

and FUMA established 21 independent genomic risk 

loci in two chromosome regions: 9p21.2 and 9q34.2. 

One shared SNV, rs10967965 (CADD=17.2), was 

identified as potentially harmful (Supplementary Table 

6 and Figure 5). 

 

Additionally, a common pleiotropic SNV (rs10967965) 

was identified across these trait pairs, with the nearest 

gene being MOB3B in region 9p21.2, indicating broad 

pleiotropy of this locus. 

 

Through colocalization analysis, we identified one 

potential pleiotropic locus (5q14.3) with a PP.H4 

greater than 0.7 (Supplementary Table 5). This finding 

indicates that the 5q14.3 locus plays a significant role in 

the shared pathogenesis of traits (CXCL1). 

 

For CCL28 and ALS, pleiotropic loci were annotated 

using ANNOVAR. We found that 7 SNVs were 

 

 
 

Figure 2. Shared sites between C-C motif chemokine 28 levels and ALS. 
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Figure 3. Shared sites between Interleukin-18 levels and ALS. 

 

 
 

Figure 4. Shared sites between C-X-C motif chemokine 1 levels and ALS. 
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intergenic variations, and 54 SNVs were intronic 

variations. There were no exonic variations identified 

(Supplementary Table 3 and Figure 2). 

 

In the case of IL18 and ALS, pleiotropic loci were 

annotated using ANNOVAR. We identified 23 SNVs as 

intergenic variations, 122 SNVs as intronic variations, 

and 2 SNVs as exonic variations (Supplementary Table 

4 and Figure 3). 

 

For CXCL1 and ALS, pleiotropic loci were annotated 

using ANNOVAR. We found 60 SNVs as intergenic 

variations, 91 SNVs as intronic variations, and 1 SNV 

as an exonic variation (Supplementary Table 5 and 

Figure 4). 

 

In the analysis of LIFR and ALS, pleiotropic loci were 

annotated using ANNOVAR. We identified 11 SNVs as 

intergenic variations, 1 SNV as an intronic variation, 

and 1 SNV as an exonic variation (Supplementary Table 

6 and Figure 5). 

 

Forward Mendelian randomization results 

 

For analysis of TSMR results for inflammatory 

proteins and ALS, SNP (P < 5×10^-8) was chosen as 

the threshold to extract instrumental variables, and 73 

inflammatory proteins were included in the TSMR 

analysis. The results indicated that elevated levels of 

Adenosine Deaminase increase the risk of ALS 

(OR=1.066, PIVW = 0.048). Elevated levels of 

Interleukin-17C were associated with an increased 

risk of ALS (OR=1.198, PIVW = 0.047) (SNPs < 3). 

Increased levels of Oncostatin-M were associated 

with a decreased risk of ALS (OR=0.840, PIVW = 

0.016). Increased levels of Leukemia Inhibitory 

Factor Receptor were associated with a decreased risk 

of ALS (OR=0.903, PIVW = 0.017). The analysis 

indicated no significant heterogeneity (Q p-value > 

0.05) or horizontal pleiotropy (P Egger Intercept > 

0.05) for all the results (Figure 6 and Supplementary 

Table 7).  

 

Subsequently, we conducted a leave-one-out analysis 

for the aforementioned 4 results, wherein each SNP  

was removed individually, and the effect size was 

estimated for the remaining SNPs. Notably, a deviation 

was observed in the results of Adenosine Deaminase 

levels upon the exclusion of SNP “rs112665079”, 

suggesting a significant impact of rs112665079 on MR 

estimation results. Furthermore, after the exclusion of 

rs112665079, Adenosine Deaminase levels showed no 

significant correlation with ALS in our MR analysis 

(Supplementary Table 8). 

 

 
 

Figure 5. Shared sites between leukemia inhibitory factor receptor levels and ALS. 
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Reverse Mendelian randomization results 

 

For analysis of Mendelian randomization results for  

ALS and 91 inflammatory proteins, SNP (P < 5×10^-8)  

was chosen as the threshold to extract instrumental 

variables for TSMR analysis. The results revealed that 

an increased risk of ALS was associated with elevated 

levels of C-C motif chemokine 20 (OR=1.088, PIVW = 

0.020). The risk of ALS increased with elevated levels 

of Tumor Necrosis Factor Ligand Superfamily Member 

12 (OR=1.097, PIVW =0.010). The analysis indicated 

no significant heterogeneity (Q p-value > 0.05) or 

horizontal pleiotropy (P Egger Intercept > 0.05) for  

all the results. Conversely, an increased risk of ALS 

was associated with decreased levels of Interleukin-5 

(OR=0.915, PIVW =0.031). Sensitivity analysis through 

leave-one-out method demonstrated the robustness of 

the results (Figure 7 and Supplementary Table 9). 
 

DISCUSSION 
 

This study systematically evaluated the genetic 

correlation, genetic overlap, and causal relationship 

between circulating inflammatory proteins and ALS, 

exploring the relationship between inflammatory 

proteins and ALS from multiple dimensions.  

Bayesian colocalization analysis further enhanced the 

understanding of the interaction between inflammatory 

proteins and ALS. This may also reveal new therapeutic 

targets. By identifying proteins directly related to disease 

development, we provide a scientific basis for the future 

development of targeted therapeutic strategies. The 

methodology and findings of this study contribute to  

the realization of precision medicine. Through in-depth 

exploration of the molecular mechanisms of the disease 

and identification of specific biomarkers, it becomes 

possible to provide more personalized prevention, 

diagnosis, and treatment plans for ALS patients. 

 

Our results indicate that certain circulating 

inflammatory proteins, such as CXCL1, IL18, LIFR, 

and CCL28, exhibit significant genetic correlation and 

overlap with ALS, which may unveil the potential role 

of inflammation in ALS pathology. Specifically, we 

identified a potential causal relationship between LIFR 

levels and ALS risk through TSMR analysis. 

 

 
 

Figure 6. Forward MR results. 
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Our analysis also revealed some shared genetic  

loci, which may be key in the interaction between 

inflammatory proteins and ALS. Furthermore, we 

identified a shared pleiotropic SNP (rs10967965) in  

all trait pairs with positive genetic correlation and 

overlap, with NearestGene being MOB3B, located  

at 9p21.2, indicating its broad pleiotropy between 

various circulating inflammatory proteins and ALS. 

This suggests that these proteins may play crucial  

roles in the development of ALS. Moreover, our 

colocalization analysis revealed a potential pleiotropic 

locus (5q14.3), indicating its significant role in the 

correlation between the two diseases. 

 

The NearestGene of rs10967965, MOB3B (MOB 

kinase activator 3B), is a protein that plays a role  

in various biological processes, including cell cycle 

regulation and cell death. Although there is relatively 

limited research on the specific role of MOB3B in 

neurodegenerative diseases, considering its potential 

role in regulating cell survival signals, MOB3B  

may play a role in ALS. Specifically, the rs10967965 

locus may affect the expression or function of the 

MOB3B gene, thereby influencing neuronal survival 

and exacerbating the pathological process of ALS. 

Chromosomal regions 9p21.2 and 9q34.2 have been 

identified as regions containing ALS risk loci, 

highlighting the potential role of these regions in the 

pathogenesis of the disease. Chromosomal region 9p21 

has been identified as an important genetic risk region 

in various diseases, including cardiovascular diseases 

and certain types of cancer. In conclusion, rs10967965 

and its neighboring gene MOB3B may play a crucial 

role in the pathology of ALS, particularly in the 

mediation of immune circulating proteins such as 

LIFR, providing new research directions and potential 

therapeutic targets. 

 

Our Mendelian randomization analysis further supported 

these findings, suggesting that changes in the levels of 

certain inflammatory proteins may affect the risk of 

ALS. For instance, we identified that LIFR has potential 

significance in genetic correlation, genetic overlap, and 

genetic causality with ALS. These findings provide 

important clues for future research and may contribute 

to the development of new therapeutic strategies. 

 

LIFR plays a significant role in the nervous system and 

is associated with various neuropsychiatric disorders. 

LIFR, part of the interleukin 6 cytokine receptor family, 

is renowned for its involvement in cell differentiation, 

survival, and regeneration. In the nervous system, LIFR 

 

 
 

Figure 7. Reverse MR results. 
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is crucial for neuron survival, neurogenesis, and neural 

plasticity [37–40]. 

 
Alterations in LIFR levels and signaling pathways 

have been observed in neuropsychiatric disorders. For 

instance, cytokine network dysregulation, including 

networks involving LIFR, has been reported in diseases 

such as depression, schizophrenia, and bipolar disorder. 

Such dysregulation impacts neuroinflammation, synaptic 

plasticity, and neuronal communication, contributing 

to the pathophysiology of these disorders [41, 42]. 

 
Furthermore, LIFR is involved in the process of 

neurodevelopment. Abnormalities in LIFR signaling 

can lead to impaired neural development, a key  

factor in the etiology of various developmental 

neuropsychiatric disorders. For instance, alterations in 

cytokine levels, including those related to the LIFR 

pathway, have been associated with developmental 

abnormalities in conditions such as Autism Spectrum 

Disorders and Attention Deficit/Hyperactivity Disorder 

(ADHD) [43, 44]. 

 
In neurodegenerative diseases such as Alzheimer's 

disease and Parkinson's disease, the role of LIFR  

in neuron survival becomes particularly crucial.  

LIFR-mediated signaling can affect neuroprotective 

pathways, and its dysregulation may contribute to  

the progression of neurodegenerative diseases. This 

opens potential therapeutic avenues, as modulating 

LIFR signaling could offer neuroprotective effects  

[45, 46]. 

 
Additionally, LIFR is involved in the response to 

neural injury. It promotes neuronal regeneration and 

repair, suggesting its potential therapeutic role in 

conditions like spinal cord injury or stroke [47, 48]. 

 
However, there is currently a lack of research on the 

relevance of LIFR in ALS. In addressing this complex 

disease, we believe that regulating the levels of 

inflammatory proteins may be a promising research 

direction. Specifically, research on LIFR can not only 

contribute to a deeper understanding of its mechanism 

of action in ALS but also lay the foundation for the 

development of new therapeutic strategies. 

 
In conclusion, LIFR levels and signaling have 

complex connections with various aspects of neuronal 

function and are associated with a wide range of 

neuropsychiatric and neurodegenerative diseases. 

Understanding these relationships offers potential for 

developing new therapeutic strategies targeting the 

LIFR pathway. Furthermore, there has been no direct 

research focusing on LIFR and ALS to date. Building 

on this, our future research will focus on exploring the 

molecular and cellular biology mechanisms between 

LIFR and ALS, as well as validating clinical case 

data. 

 

However, our study has several limitations. Firstly,  

our analysis is based on data from European ancestry, 

so the results may not be applicable to other racial  

or ethnic groups. Secondly, despite employing various 

statistical methods to bolster our findings, further 

research is still needed to confirm these results. 

Specifically, we need to conduct functional studies  

at the cellular and molecular levels to elucidate how 

circulating immune proteins like LIFR affect ALS. 

Additionally, cohort studies involving diverse ethnic 

populations are crucial to validate these results. Finally, 

clinical trials targeting these proteins can provide 

conclusive evidence of their therapeutic potential for 

ALS patients. 

 

In summary, our study provides new insights  

into the genetic correlation and causality between 

circulating inflammatory proteins and ALS. These 

findings could help in understanding the pathogenesis 

of ALS and offer new directions for future therapeutic 

strategies. 

 

CONCLUSIONS 
 

This study demonstrates significant genetic 

correlations and overlaps between certain circulating 

inflammatory proteins and ALS, suggesting potential 

causal relationships. These findings reveal the potential 

role of inflammation in the pathology of ALS and 

provide new insights for future research and therapeutic 

strategies. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1–9. 

 

Supplementary Table 1. Data sources. 

 

Supplementary Table 2. Genetic correlation, genetic overlap and genetic causation results between circulating 
inflammatory proteins and ALS. 

 

Supplementary Table 3. Shared sites between C-C motif chemokine 28 levels and ALS. 

 

Supplementary Table 4. Shared sites between Interleukin-18 levels and ALS. 

 

Supplementary Table 5. Shared sites between C-X-C motif chemokine 1 levels and ALS. 

 

Supplementary Table 6. Shared sites between leukemia inhibitory factor receptor levels and ALS. 

 

Supplementary Table 7. Results of forward Mendelian randomization analysis between 91 inflammatory 
proteins and ALS (snp p<5e-8). 

 

Supplementary Table 8. Exclude rs112665079 and reperform the Mendelian randomization analysis. 

 

Supplementary Table 9. Results of reverse Mendelian randomization analysis between 91 inflammatory 
proteins and ALS. 
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