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ABSTRACT 
 

Objective: The primary objective of this study is to conduct a comprehensive screening and analysis of 
differentially expressed genes related to disulfidoptosis (DEDRGs) in thyroid carcinoma (THCA). This entails 
delving into the intricate characterization of immune cell infiltration within the THCA context and subsequently 
formulating and validating a novel prognostic model. 
Method: To achieve our objectives, we first delineated two distinct subtypes of disulfidoptosis-related genes 
(DRGs) via consensus clustering methodology. Subsequently, employing the limma R package, we identified the 
DEDRGs critical for our investigation. These DEDRGs underwent meticulous validation across various databases, 
alongside an in-depth analysis of gene regulation. Employing functional enrichment techniques, we explored 
the potential molecular mechanisms underlying disulfidoptosis in THCA. Furthermore, we scrutinized the 
immune landscape within the two identified subtypes utilizing CIBERSORT and ESTIMATE algorithms. The 
construction of the prognostic model for THCA entailed intricate methodologies including univariate, 
multivariate Cox regression, and LASSO regression algorithms. The validity and efficacy of our prognostic model 
were corroborated through Kaplan-Meier survival curves and ROC curves. Additionally, a nomogram was 
meticulously formulated to facilitate the prediction of patient prognosis. To fortify our findings, we conducted a 
comprehensive Bayesian co-localization analysis coupled with rigorous in vitro experimentation, aimed at 
unequivocally establishing the validity of the identified DEDRGs. 
Result: Our analyses unveiled Cluster C1, characterized by elevated expression levels of DEDRGs, as harboring a 
favorable prognosis accompanied by abundant immune cell infiltration. Correlation analyses underscored 
predominantly positive associations among the DEDRGs, further affirming their significance in THCA. 
Differential expression patterns of DEDRGs between tumor samples and normal tissues were evident across the 
GEPIA and HPA databases. Insights from the TIMER database underscored a robust correlation between 
DEDRGs and immune cell infiltration. KEGG analysis elucidated the enrichment of DEDRGs primarily in pivotal 
pathways including MAPK, PPAR signaling pathway, and Proteoglycans in cancer. Furthermore, analyses using 
CIBERSORT and ESTIMATE algorithms shed light on the crucial role played by DEDRGs in shaping the immune 
microenvironment. The prognostic model, anchored by five genes intricately associated with THCA prognosis, 
exhibited commendable predictive accuracy and was intricately linked to the tumor immune micro-
environment. Notably, patients categorized with low-risk scores stood to potentially benefit more from 
immunotherapy. The validation of DEDRGs unequivocally underscores the protective role of INF2 in THCA. 
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INTRODUCTION 
 

THCA stands as the most prevalent malignancy within the 

realm of endocrine disorders, and its global incidence is 

unequivocally surging [1]. While a majority of THCA 

patients typically traverse a favorable prognostic trajectory, 

a subset grapples with formidable challenges such as 

distant metastasis, recurrent episodes, and suboptimal 

responses to therapeutic interventions, significantly 

impinging upon both their quality of life and survival rates 

[2]. Hence, the imperative quest for novel prognostic 

markers and therapeutic targets looms large, poised to 

revolutionize the landscape of THCA management and 

augment the well-being of affected individuals. 

 

 
 

Figure 1. The protocol of our study procedure. 

Conclusion: In summary, our study delineates two discernible subtypes intricately associated with DRGs, 
revealing profound disparities in immune infiltration and survival prognosis within the THCA milieu. The 
implications of our findings extend to potential treatment strategies for THCA patients, which could entail 
targeted interventions directed towards DEDRGs and prognostic genes, thereby influencing disulfidptosis and 
the immune microenvironment. Moreover, the robust predictive capability demonstrated by our prognostic 
model, based on the five genes (ANGPTL7, FIRRE, ODAPH, PROKR1, SFRP5), underscores its potential clinical 
utility in guiding personalized therapeutic approaches for THCA patients. 
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Disulfidptosis, emerging as a distinctive paradigm  

of cellular demise, operates autonomously from 

established programmed death pathways encompassing 

apoptosis, ferroptosis, necroptosis, and copper-induced 

death [3]. It delineates a rapid cellular demise incited 

by the perturbation of disulfide equilibrium within 

cellular confines. Remarkably, amidst glucose-deprived 

milieus, an anomalous accrual of disulfides, notably 

cystine, ensues within cells boasting heightened 

expression of SLC7A11. This accrual precipitates a 

state of disulfide stress, instigating a surge in disulfide 

bond densities within the actin-regulated cytoskeleton. 

Consequently, pronounced cytoskeletal contraction and 

detachment from the cellular membrane ensue, 

engendering disruptive distortions in cytoskeletal 

architecture, culminating inexorably in cellular demise. 

Ongoing investigations into disulfidptosis pre-

dominantly orbit around cancerous cell cohorts 

exhibiting augmented SLC7A11 expression amidst 

glucose-deprived microenvironments [4, 5]. Studies 

have discerned compelling associations linking 

disulfidptosis with a panoply of malignancies, spanning 

from bladder cancer [6] to hepatocellular carcinoma [7] 

and lung adenocarcinoma [8]. Nevertheless, the 

enigmatic nexus between disulfidptosis, as an incipient 

mechanism of cellular demise, and THCA remains 

shrouded in ambiguity, awaiting comprehensive 

elucidation. 
 

The integration of machine learning methodologies has 

emerged as a cornerstone in the realm of gene 

discovery, particularly in discerning genes harboring 

diagnostic prowess. Harnessing the power of machine 

learning algorithms has heralded a paradigm shift, 

markedly amplifying the precision in discerning 

differentially expressed genes (DEGs) within 

microarray datasets [9]. In the context of our 

investigation, we embarked upon the construction of a 

prognostic framework predicated upon the intricate 

interplay among the attributes characterizing DRGs. 

This prognostic model stands poised as a harbinger of 

elucidating hitherto uncharted biological cascades 

underpinning the genesis and progression of THCA, 

thereby unfurling vistas for the identification of novel 

diagnostic modalities, prognostic markers, and 

therapeutic targets of paramount clinical significance. 

The meticulously delineated study protocol is visually 

encapsulated in Figure 1. 

 

METHODS 
 

Bioinformatics analysis 
 

Source and processing of data 

The genomic sequencing data for THCA were 

obtained from the Cancer Genome Atlas (TCGA) 

database (https://portal.gdc.cancer.gov/). This study 

employed expression data from TCGA-THCA-FPKM, 

alongside pertinent clinical information from 507 

THCA cases, encompassing demographics such as age, 

gender, stage, TNM classification, survival status, and 

duration. The characteristics of the THCA patients 

within the TCGA database are outlined in Sup-

plementary Table 1. Before analyzing the expression 

profile data, transcripts per million (TPM) from  

the exon model per thousand bases underwent 

standardization. Drawing from prior literature [3, 4, 10, 

11], a curated set of 106 DRGs was compiled and 

detailed in Supplementary Table 2. 

 

Additionally, the THCA dataset GSE33630, comprising 

49 THCA samples and 45 normal tissues, was accessed 

from the GEO database (https://www.ncbi.nlm.nih.

gov/geo/). Leveraging the labeling information of the 

GPL570 platform, probes were converted into 

corresponding gene symbols. This dataset served as the 

validation cohort for our study. 

 

Consensus clustering 

Consensus clustering serves as a methodological 

cornerstone for discerning the optimal number of 

clusters across diverse clustering algorithms [12]. In our 

study, leveraging the expression profiles of DRGs, we 

employed the ConsensusClusterPlus R package to 

effectively stratify THCA samples into discernible 

subtypes. To ensure robustness, the ConsensusCluster-

Plus command was iterated 1000 times, thereby 

fortifying classification stability. The determination of 

the cluster number (k) was facilitated by the cumulative 

distribution function (CDF) of uniform clustering. 

Subsequently, survival analysis was meticulously 

conducted, juxtaposing Cluster C1 and Cluster C2 based 

on survival status and duration, utilizing the survival R 

package. Moreover, we undertook a comprehensive 

assessment of survival disparities concerning gender, 

disease stage, and TNM classification. 

 

Differential analysis 

The expression levels of DRGs were extracted from the 

TCGA-THCA dataset utilizing the limma package. 

Subsequently, the transcriptomic data of TCGA-THCA-

DRGs underwent rigorous analysis employing the 

DESeq2 R package. Employing stringent criteria, 

wherein |log2FC| > 1.5 and a corrected P < 0.05 were 

utilized as screening thresholds, the DEDRGs were 

meticulously identified. Simultaneously, employing  

the same rigorous methodology, we endeavored  

to identify DEDRGs within the validation cohort.  

This comprehensive approach ensured consistency  

and reliability across datasets, facilitating robust 

comparative analyses. 
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Verification of DEDRGs in the different database 

We employed the “Expression Boxplot” module within 

the GEPIA database (http://gepia.cancer-pku.cn/) [13] 

to evaluate the differential expression patterns of 

DEDRGs between normal tissues and THCA samples. 

This facilitated a comprehensive assessment of the 

transcriptional alterations of DEDRGs across distinct 

biological contexts. Additionally, we utilized the 

“Survival Plots” module within the same platform to 

delve into the prognostic implications associated with 

DEDRGs. This enabled a detailed exploration of the 

potential prognostic significance of DEDRGs in the 

context of THCA patient outcomes. Furthermore, to 

elucidate the precise cellular distribution and immuno-

histochemical (IHC) characteristics of DEDRGs, we 

conducted verification using the Human Protein Atlas 

(HPA) database (https://www.proteinatlas.org/) [14]. 

This comprehensive analysis provided valuable insights 

into the spatial localization and potential functional 

roles of DEDRGs within cellular frameworks. 

Moreover, the TIMER database (https://cistrome. 

shinyapps.io/timer/) [15] served as an essential resource 

for examining the intricate relationship between 

DEDRGs and immune cell infiltration. This facilitated a 

thorough interrogation of the immune micro-

environment within the context of THCA, shedding 

light on potential immunomodulatory roles of DEDRGs 

[14]. 

 

Gene regulation analysis of DEDRGs 

GenDoma represents a pioneering effort in China, 

constituting the premier comprehensive database 

encompassing human genes and diseases. By furnishing 

a multi-faceted analysis, GenDoma is poised to 

significantly bolster the realm of precision medicine. A 

central tenet of this study revolves around the Gene 

Regulatory Network (GRN), which serves as a 

compendium of molecular regulators governing gene 

expression at both mRNA and protein levels. In the 

pursuit of elucidating the regulatory landscape of 

DEDRGs, we harnessed the resources of the GenDoma. 

Through this platform, we accessed the GRN pertaining 

to DEDRGs, thereby unraveling the intricate web of 

regulatory interactions governing their expression 

dynamics. 

 

GO and KEGG analysis 

Utilizing the clusterProfiler R package [16], we 

conducted an in-depth analysis to elucidate the potential 

biological functions [17, 18] of the DEDRGs. 

Concurrently, we endeavored to explore their 

underlying molecular mechanisms. A significance 
threshold of P < 0.05 was applied to discern statistically 

significant findings. To present the results in a visually 

intuitive manner, we employed a diverse array of 

visualization techniques, including bubble charts, circle 

charts, and lollipop charts. These visualizations were 

meticulously crafted using the ggplot2 R package, 

facilitating the elucidation and interpretation of complex 

biological phenomena encoded within the DEDRGs. 

 

Analysis of mutation landscape 

Somatic mutation data pertinent to THCA were 

meticulously retrieved from the esteemed TCGA 

database in the form of Mutation Annotation Format 

(MAF) files. Subsequently, to offer a comprehensive 

visualization of the mutational landscape, a Waterfall 

Map was meticulously generated leveraging the 

Maftools R Package. 
 

Correlation analysis of immune cell infiltration 

In order to infer the abundance of 22 invasive immune 

cell types within THCA samples and normal tissues, we 

employed the CIBERSORT algorithm. CIBERSORT 

operates through a deconvolution analysis rooted in  

the linear support vector regression principle, thereby 

facilitating the prediction of the proportion of diverse 

cell types within gene expression profiles. A 

significance threshold of P < 0.05 was established as the 

standard for statistical significance [19]. The resultant 

data were visualized utilizing the barplot R package. 

Furthermore, the immune score and estimate score of 

THCA were meticulously computed utilizing the 

ESTIMATE algorithm. This allowed for a nuanced 

evaluation of the tumor microenvironment. To delve 

deeper into the correlation between DEDRGs and 

immune checkpoints within distinct subtypes, we 

employed the Pearson correlation coefficient to 

rigorously examine their association. 

 

Construction and verification of prognostic model and 

nomogram 

The glmnet R package served as a pivotal tool in 

conducting LASSO regression analysis, enabling the 

identification of pertinent variables associated with 

dependent variables (P < 0.05), while mitigating 

concerns related to variable collinearity [20]. This 

rigorous analysis facilitated the construction of a 

prognostic model by integrating survival time and 

survival status data for each sample. Subsequently, a 

corresponding risk score was meticulously generated, 

encapsulating the prognostic potential of the model. To 

comprehensively evaluate the predictive performance of 

the model, area under the curve (AUC) and receiver 

operating characteristic (ROC) analysis were employed, 

providing valuable insights into its efficacy. 
 

Furthermore, the risk score, alongside age, gender, 

TNM, and stage variables, underwent rigorous 

assessment through univariate and multivariate Cox 

regression analyses. Variables exhibiting a significance 
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level of P < 0.05 were identified as independent 

prognostic factors for THCA patient outcomes. 

Leveraging these independent prognostic factors, a 

nomogram was meticulously constructed utilizing the 

regplot R package. This nomogram facilitates the 

prediction of 1, 3, and 5-year survival rates of THCA 

patients, thereby offering a valuable clinical tool for 

prognostic assessment. 

 

Verification of DEDRGs 

 

Bayesian co-localization analysis 

Bayesian co-localization analysis plays a pivotal role in 

evaluating the presence of shared causal variation 

within two phenotypic regions. In our study, we 

employed the “coloc” R package to meticulously 

scrutinize the co-localization of seven DEDRGs with 

THCA, excluding FLNA due to the absence of GWAS 

data. This comprehensive analysis provides insights 

through four hypothetical posterior probabilities, 

elucidating the likelihood of a single variable being 

shared by both traits. To discern gene co-localization, 

we imposed a stringent criterion, stipulating that the 

PPH4 score exceed 0.75 [21]. The GWAS data for 

THCA (ebi-a-GCST90013867) were meticulously 

obtained from the IEU OpenGWAS platform 

(https://gwas.mrcieu.ac.uk/). 

 

Experimental verification in vitro  

Cell culture 

The THCA cell line FTC-133 and the normal thyroid 

cell line Nthy-ori 3-1 were meticulously acquired from 

the esteemed Nanjing Kaiji Biological Company in 

China. These invaluable cellular resources were 

diligently nurtured in a nurturing environment, 

specifically in 1640 complete medium, meticulously 

supplemented with 1% penicillin-streptomycin and 

10% fetal bovine serum. These cell lines were 

meticulously housed within a controlled cell incubator, 

meticulously set at a constant temperature of 37°C 

with 5% CO2 to ensure optimal growth conditions. 

Upon attaining a confluent state, typically ranging 

between 70% to 80%, the cells were meticulously 

segregated into two distinct groups: the normal group 

represented by FTC-133 and the control group 

represented by Nthy-ori 3-1. This meticulous 

stratification laid the groundwork for subsequent 

experimentation, ensuring the precise delineation of 

experimental parameters and the attainment of 

rigorous scientific insights. 

 

Quantitative real-time polymerase chain reaction  

(qRT–PCR) 
Following the compelling outcomes derived from 

Bayesian co-localization analysis, PDLIM1 and INF2 

emerged as prime candidates for qRT–PCR 

validation. To initiate this crucial validation process, 

total RNA was meticulously extracted from both the 

thyroid cancer cell line FTC-133 and the normal 

thyroid cell line Nthy-ori 3-1. Subsequently, cDNA 

synthesis was meticulously performed through reverse 

transcription, adhering meticulously to the prescribed 

protocols provided by the reverse transcription kit. 

The qRT-PCR reaction system was then meticulously 

established, meticulously employing the pertinent 

target gene primers and PCR Master Mix. Within this 

meticulously curated system, GAPDH served as the 

internal reference, ensuring the precision and 

reliability of the mRNA expression analysis of 

PDLIM1 and INF2. Employing a qRT-PCR kit, the 

mRNA expression levels of PDLIM1 and INF2 were 

meticulously assessed. PCR served as the method of 

choice to detect and quantify the expression levels of 

each gene relative to the internal reference, utilizing 

the well-established 2-ΔΔCt method. This pivotal 

experiment was meticulously repeated three times to 

ensure robustness and reproducibility of the findings, 

with outcomes meticulously averaged for precise 

interpretation. Detailed primer sequences utilized in 

this experiment can be found in Supplementary 

Table 3. 

 

Western blot 
The process of protein extraction involves meticulously 

applying a protein lysis solution to the cell lysate, a 

procedure meticulously conducted in an ice bath to 

ensure the preservation of protein integrity. 

Subsequently, the total protein concentration is 

quantitatively determined using the BCA method, 

thereby ensuring the accurate assessment of protein 

levels. For protein analysis, the protein samples undergo 

separation through either 10% or 12% SDS-PAGE 

electrophoresis, tailored to specific experimental 

requirements. Following electrophoresis, the proteins 

are carefully transferred onto a PVDF membrane, a step 

crucial for facilitating subsequent immunoblotting 

procedures. The PVDF membrane is then immersed in a 

shaking solution containing 5% skimmed milk powder, 

effectively blocking non-specific binding sites and 

enhancing signal specificity. 

 

Following the blocking step, the membrane is probed 

with a protein-specific primary antibody, ensuring the 

specific detection of the target protein of interest. 

Incubation with the primary antibody is carried out at 

4°C for an extended duration, typically lasting 13 hours, 

to facilitate optimal antibody binding. Subsequently, the 

membrane undergoes additional incubation with the 

corresponding secondary antibody, typically for 1.5 
hours, further amplifying the signal for enhanced 

detection sensitivity. After the secondary antibody 

incubation, protein bands are visualized using an ECL 
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luminous kit, enabling the detection of antibody-bound 

protein bands on the membrane. Finally, images of the 

protein bands are captured using an imaging system, 

ensuring the accurate documentation of experimental 

results. Subsequent analysis and quantification of 

protein band intensities are conducted using ImageJ 

software, facilitating data interpretation and comparison 

across experimental conditions. 

 

Statistical analysis 

 

Statistical analyses were meticulously conducted utilizing 

R (version 4.1.2) and GraphPad Prism (version 8.0.1) 

software packages. Intergroup comparisons were 

meticulously performed using one-way ANOVA. 

Systematic differences in continuous variables were 

meticulously assessed utilizing either independent sample 

t-tests or Mann-Whitney U-tests, depending on the 

distribution of the data. A stringent significance threshold 

of P < 0.05 was meticulously applied to determine the 

statistical significance of the observed results, ensuring 

robust and reliable interpretation of the findings. 

 

Availability of data and material 

 

The datasets presented in this study can be found in 

online repositories. The names of the repository and 

accession number(s) can be found within the article. 

 

RESULTS 
 

Bioinformatics analysis 

 

Landscape of DRGs 

To unravel the intricate interaction among various 

DRGs, we meticulously constructed a PPI network of 

DRGs (Figure 2A) utilizing the STRING database, a 

renowned resource for elucidating molecular 

interactions. Furthermore, the expression profiles 

pertinent to DRGs were meticulously visualized as a 

heatmap employing the pheatmap R package (Figure 

2B), providing a comprehensive overview of the 

expression patterns across different DRGs. 

 

Consensus clustering 

Employing the Consensus clustering method, THCA 

patients were meticulously stratified into two distinct 

subtypes (Figure 3A, Supplementary Figure 1A–1D). 

The heatmap representing the two subtypes distinctly 

portrayed that cluster C1 exhibited a heightened 

expression level of DRGs, while cluster C2 

showcased a comparatively lower expression level. 

This observation suggests a clear dichotomy, with 

cluster C1 corresponding to the high subtype of 

DRGs, and cluster C2 denoting the low subtype of 

DRGs (Figure 3B). 

Survival analysis unequivocally demonstrated that 

cluster C1, characterized by a high DRGs level, boasted 

a notably favorable prognosis, while cluster C2, marked 

by a lower DRGs level, exhibited a considerably poorer 

prognosis (Figure 4A). Furthermore, survival curves 

based on clinical characteristics elucidated that females 

exhibited a superior prognosis compared to males 

(Figure 4B), while earlier TNM staging was distinctly 

associated with a more favorable prognosis for THCA 

patients (Figure 4C–4F), underscoring the prognostic 

significance of clinical staging in THCA management. 

 

Differential analysis 

The comparative analysis of TCGA-THCA-DRGs and 

GSE33630-DRGs datasets meticulously revealed 

statistically significant differences in DRGs expression 

between normal and THCA samples (P < 0.05). From the 

TCGA-THCA-DRGs dataset, a total of eight DEDRGs 

were discerned, wherein seven genes exhibited up-

regulation while one gene displayed down-regulation 

(Figure 5A). Notably, Cluster C1 exhibited a distinctive 

hallmark of heightened expression of DEDRGs, while 

Cluster C2 was distinctly associated with a lower 

expression level of DEDRGs (Supplementary Figure 

2A). The correlation analysis of TCGA-DEDRGs 

distinctly unveiled predominantly positive correlations 

among the DEDRGs (Supplementary Figure 2B). 

 

In parallel, nine DEDRGs were successfully identified 

from the GSE33630-DRGs dataset, comprising five up-

regulated genes and four down-regulated genes (Figure 

5B). Remarkably, DEDRGs exhibited a markedly 

elevated expression level in the THCA group compared 

to the normal cohort (Supplementary Figure 2C). 

Moreover, the correlation analysis of GEO-DEDRGs 

underscored predominantly positive correlations among 

the DEDRGs (Supplementary Figure 2D). Notably,  

the intersection of DEDRGs from both datasets 

facilitated the identification of three co-DEDRGs 

(Figure 5C), highlighting potential candidates with 

robust implications across different datasets. 

 

Verification of DEDRGs in the different database 

The findings from the GEPIA database revealed 

significant differences in the expression levels of 

MYH10 and ME1 in THCA, with MYH10 exhibiting 

notably high expression and ME1 showing low 

expression (P < 0.05) (Supplementary Figure 3). 

Concurrently, insights gleaned from the HPA database 

illuminated the IHC staining patterns of the DEDRGs, 

showcasing distinct expression profiles between THCA 

samples and normal tissues (Figure 6). Specifically, 

MYH10 emerged as a potential risk factor for THCA, 
while ME1 and ZHX2 exhibited characteristics 

suggestive of protective factors against THCA 

development. 
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Figure 2. Landscape of DRGs. (A) PPI network of DRGs. (B) Heatmap of DRGs related expression profile. 

 

 
 

Figure 3. Consensus clustering analysis. (A) Represents that when k = 2, the matrix heatmap was neatly classified. (B) Heatmap of 

DRGs-related expression profile in cluster C1 and C2 subtypes. 
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Moreover, Figure 7 provides a visual depiction of the 

specific spatial distribution of the DEDRGs within 

cellular contexts, unraveling deeper insights into their 

intracellular localization. Notably, FLNA, IQGAP1, and 

ACTN1 predominantly localize within the plasma 

membrane, hinting at their potential involvement in 

plasma membrane signaling and regulation. Conversely, 

ZHX2 and ME1 exhibit predominant localization within 

the nucleoplasm, suggesting roles in nuclear processes. 

Furthermore, MYH10 and PDLIM1 are primarily 

distributed within the actin filaments, indicative of their 

pivotal roles in actin filament signaling and receptor 

activation. Additionally, INF2 predominantly localizes 

within the endoplasmic reticulum, implicating potential 

 

 
 

Figure 4. Survival analysis in the TCGA-THCA. (A) Kaplan-Meier of the two clusters. (B) Kaplan-Meier of THCA patients regrouped 

according to Gender. (C) Kaplan-Meier of THCA patients regrouped according to T. (D) Kaplan-Meier of THCA patients regrouped according 
to N. (E) Kaplan-Meier of THCA patients regrouped according to M. (F) Kaplan-Meier of THCA patients regrouped according to Stage. 
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roles in endoplasmic reticulum signaling. These 

distinctive spatial distribution patterns underscore the 

intricate regulatory mechanisms and diverse functional 

roles of the DEDRGs within THCA cells, offering 

valuable insights into their cellular localization and 

potential physiological functions. 

 

Furthermore, analysis from the TIMER database 

unveiled significant correlations between DEDRGs and 

immune cell infiltration in THCA (Supplementary 

Figure 4A–4H), shedding light on the intricate interplay 

between DEDRGs and immune cell infiltration 

dynamics within the THCA microenvironment. 

 

Gene regulation analysis of DEDRGs 

Analysis of the gene regulation mechanisms associated 

with DEDRGs revealed intricate interactions with 

various miRNAs, transcription factors, and proteins, 

exerting regulatory control over the onset and 

advancement of THCA. Notably, the DEDRGs 

collectively modulate the activity of key transcription 

factors, including KLF1, JUN, and FLI1 (Figure 8A–

8D). Furthermore, predictive modeling enabled the 

identification of potential targeted drugs and 

compounds, presenting promising prospects for future 

drug development and molecular therapy interventions 

aimed at disrupting the dysregulated pathways 

associated with THCA progression.  

 

GO and KEGG analysis 

The Gene Ontology (GO) function analysis, dissected 

into biological processes (BP), molecular functions 

(MF), and cellular components (CC) [22], unveiled 

significant enrichments, providing valuable insights into 

the functional roles of DEDRGs. Specifically, in BP, 

enrichment was evident in processes related to actin 

crosslink formation, cell junction organization, and 

exocytosis, highlighting their involvement in crucial 

cellular activities (Figure 9A). In CC, notable 

enrichment was observed in components associated 

with the actin filament and actin cytoskeleton, 

indicative of their pivotal roles in cytoskeletal 

organization and dynamics (Figure 9B). Meanwhile, 

MF analysis revealed significant enrichments in 

functions such as ADP binding, Ras GTPase binding, 

and actin filament binding, underscoring the diverse 

molecular functions of DEDRGs (Figure 9C). 

Furthermore, KEGG pathway analysis delineated the 

 

 
 

Figure 5. Differential expression and correlation analysis. (A) Volcanic map of DEDRGs in TCGA-THCA. (B) Volcanic map of DEDRGs in 

GSE33630. (C) Venn diagram of co-DEDRGs. * represents P < 0.05, *** represents P < 0.001, **** represents P < 0.0001, - represents no 
significant difference. 
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functional implications of DEDRGs in THCA 

pathogenesis. The analysis revealed significant 

enrichments in pathways including the MAPK, PPAR 

signaling pathway, and Proteoglycans in cancer, 

implicating their involvement in diverse signaling 

cascades and cellular processes critical for THCA 

progression (Figure 9D). These findings shed light on 

the intricate molecular mechanisms underlying THCA 

pathogenesis and highlight potential therapeutic targets 

for further investigation and intervention. 

 

Immune cell infiltration analysis and mutation 

landscape 

The results of immune cell infiltration analysis revealed 

that Cluster C2 exhibited higher immune cell infiltration 

compared to Cluster C1, indicative of distinct immune 

 

 
 

Figure 6. IHC of the DEDRGs in the HPA database. 
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microenvironments within these subtypes (Figure 10A–

10C). Notably, although Cluster C2 displayed elevated 

immune cell infiltration, it was associated with a poorer 

prognosis, while Cluster C1, characterized by lower 

immune cell infiltration, demonstrated a better prognosis. 

This observation led us to postulate that Cluster C2 

represents an immune rejection type, whereas Cluster C1 

corresponds to an immune inflammation type, suggesting 

divergent immunological responses in THCA (Figure 

10A–10C). Furthermore, correlation analysis of immune 

cells unveiled intriguing relationships among different 

immune cell populations (Figure 10D). 

 

To further elucidate the interplay between DEDRGs and 

immune checkpoints in THCA, a Wilcoxon signed-rank 

sum test confirmed significant upregulation of TIGIT, 

PD-L1, CTLA4, and CD274 in Cluster C1 (P < 0.0001), 

while PD-1 was highly expressed in Cluster C2 (P < 

0.05). Interestingly, no statistical difference in the 

expression of LAG3 was observed between the two 

subtypes, suggesting differential regulation of immune 

checkpoint molecules in distinct THCA subtypes 

(Figure 11A–11F). The correlation heatmap of immune 

checkpoints revealed intricate relationships among these 

molecules (Figure 11G, 11H). 

Moreover, analysis of the mutation landscape provided 

insights into susceptible genes in THCA. The waterfall 

map of gene mutations highlighted missense mutations 

as the predominant classification. Remarkably, the 

BRAF mutation rate (76.2%) emerged as the highest in 

THCA, with Cluster C1 exhibiting a higher BRAF 

mutation frequency compared to Cluster C2, whereas 

NRAS mutation frequency was higher in Cluster C2 

than in Cluster C1 (Figure 11I).  
 

Construction and verification of prognostic model and 

nomogram 

LASSO regression analysis was performed to 

ascertain the optimal λ value through cross-validation 

employing 10 folds. Subsequently, five genes 

demonstrating significant prognostic effects were 

identified (Figure 12A–12D). Cox multivariate 

regression analysis was then employed to construct a 

risk model for calculating the risk score, formulated 

as follows: RiskScore = (0.319775943653634 × 

ANGPTL7) + (1.61175649349686 × FIRRE) + 

(5.33230222379885 × ODAPH) + 

(1.05543854580178 × PROKR1) + 

(0.196685509128214 × SFRP5). Based on the median 

risk score, all samples were stratified into high and 

 

 
 

Figure 7. Specific spatial distribution of the DEDRGs in cells. 
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low-risk groups. Kaplan-Meier survival curve analysis 

unveiled that the survival rate of the high-risk group 

was significantly lower compared to the low-risk group 

(Figure 12E). Furthermore, the prognostic model 

exhibited robust forecasting ability, as evidenced by the 

high AUC values for predicting the OS of THCA 

patients at 1, 3, and 5 years, which were 0.99, 0.89, and 

0.89, respectively (Figure 12F). 

 

 
 

Figure 8. Gene regulatory network. (A, B) represents the gene regulatory network of the DEDRGs (FLNA, IQGAP1, MYH10, and ACTN1). 

(C, D) represents gene regulatory network of the DEDRGs (ZHX2, INF2, ME1, and PDLIM1). 
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The box diagram illustrated that prognosis genes 

ANGPTL7, FIRRE, and ODAPH were highly expressed 

in the high-risk group (P < 0.05), while PROKR1 and 

SFRP5 were highly expressed in the low-risk group 

(P < 0.0001) (Figure 12G). 

 

Through univariate and multivariate Cox analysis, it 

was ascertained that age, stage, gender, and risk score 

served as independent prognostic factors for THCA 

patients. This underscores the efficacy of the prognosis 

model in assessing THCA risk. Additionally, a 

nomogram model was developed by integrating clinical 

factors to evaluate the prognosis of THCA patients 

(Figure 13A, 13B). Calibration curve analysis revealed 

a close fit between the calibration curve and the ideal 

curve, indicating high prediction accuracy of the model 

(Figure 13C). Similarly, consistent conclusions were 

obtained in the validation cohort, where significant 

differences in OS were observed between the high and 

low-risk groups, with patients in the high-risk group 

exhibiting poorer prognosis (Figure 13D). 

 

Furthermore, we evaluated the relationship between risk 

scores and immune cell infiltration. The results 

indicated that patients with increased risk scores were 

negatively correlated with CD8+ T cells, CD4 memory 

cells, and M2 macrophages (Figure 14A–14I). This 

suggests that patients with low-risk scores could 

potentially benefit more from immunotherapy. 

 

Verification of DEDRGs 

 

Bayesian co-localization analysis 

In the GWAS co-location analysis between DEDRGs 

and THCA, our investigation revealed PDLIM1 (PPH4 

= 0.78) and INF2 (PPH4 = 0.99) to be collocated with 

THCA. Notably, our analysis did not unveil any 

GWAS co-location findings for FLNA with THCA

 

 
 

Figure 9. GO and KEGG analysis. (A) Represents the biological process bubble diagram of the DEDRGs in TCGA-THCA. (B) Represents the 

cellular component bubble diagram of the DEDRGs in TCGA-THCA. (C) Represents the molecular function bubble diagram of the DEDRGs in 
TCGA-THCA. (D) Represents the KEGG bubble diagram of the DEDRGs in TCGA-THCA. The bubble size represents the number of hub genes 
enrichment, and the color depth represents the level of significance. 
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(Figure 15A–15G, Supplementary Table 4). This 

observation suggests that the remaining five DEDRGs 

(IQGAP1, MYH10, ACTN1, ZHX2, ME1) do not 

exhibit a genetic correlation with THCA, despite their 

documented involvement in its pathogenesis as 

elucidated in our study. We postulate that observational 

studies may be susceptible to acquired confounding 

factors, such as environmental influences and acquired 

genetic variations. 

 

Experimental verification in vitro  

qRT-PCR analysis was utilized to discern the disparity in 

PDLIM1 and INF2 mRNA expression levels between the 

normal and control groups. Remarkably, a discernible 

decrease was observed in the expression level of INF2 

mRNA within the control group (FTC-133) compared to 

the normal group. Conversely, the expression level of 

PDLIM1 mRNA within the control group (FTC-133) 

exhibited a marked increase relative to the normal group. 

These disparities yielded statistically significant results 

(P < 0.05), as depicted in Figure 15H. Western blot 

results indicated a significant decrease in the expression 

of INF2 protein in the control group, while the expression 

of PDLIM1 protein in the control group showed a 

significant increase (Figure 15I), which is consistent with 

the qRT-PCR validation. These results further cor-

roborate the findings of our study. 

DISCUSSION 
 

THCA, as an endocrine system tumor, has been 

associated with favorable clinical therapeutic outcomes. 

However, the potential for cancer cells to evade anti-

tumor immune responses raises concerns regarding 

recurrence or metastasis [23]. Consequently, the search 

for novel therapeutic targets in THCA remains 

imperative. Currently, the precise mechanism 

underlying disulfidptosis in THCA remains elusive. 

Therefore, through an analysis of the relationship 

between DRGs and THCA, this study aims to identify 

new therapeutic targets and provide theoretical insights 

for the treatment of THCA. 
 

Initially, two distinct subtypes related to DRGs were 

identified through consensus clustering. Cluster C1, 

characterized by elevated DRGs levels, exhibited a 

favorable prognosis, whereas cluster C2, marked by 

diminished DRGs levels, presented a poorer prognosis. 

Subsequently, eight DEDRGs (FLNA, IQGAP1, 

MYH10, ACTN1, ZHX2, INF2, ME1, PDLIM1) were 

discerned from the TCGA-THCA-DRGs dataset, with 

seven genes showing up-regulation and one gene 

displaying down-regulation. Notably, cluster C1 

demonstrated heightened expression of DEDRGs, while 

cluster C2 exhibited diminished expression. Among 

 

 

 
 

Figure 10. Immune cell infiltration analysis. (A) Stack diagram of immune cell infiltration. (B) Violin diagram of immune cell infiltration 

between cluster C1 and cluster C2. (C) Violin diagram of immune score between cluster C1 and cluster C2. (D) Heatmap of correlation 
analysis between immune cells. * represents P < 0.05, ** represents P < 0.01, *** represents P < 0.001, **** represents P < 0.0001,  
- represents no significant difference. 
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these genes, FLNA, classified as an actin-binding 

protein (ABP), plays a pivotal role in cytoskeletal 

formation and is intricately involved in cellular 

processes such as adhesion, proliferation, migration, 

signal transduction, and tumorigenesis [24]. Research 

has elucidated that the expression of FLNA escalates in 

invasive breast cancer tissue concomitant with reduced 

differentiation [25]. Additionally, FLNA exhibits

 

 
 

Figure 11. Immune checkpoints analysis and mutation landscape. (A) Expression difference of CTLA4 in two subtypes. (B) 

Expression difference of LAG3 in two subtypes. (C) Expression difference of PD-L1 in two subtypes. (D) Expression difference of PD-1 in two 
subtypes. (E) Expression difference of TIGIT in two subtypes. (F) Expression difference of CD274 in two subtypes. (G, H) Heatmap of 
correlation analysis between immune checkpoints. (I) Waterfall map of the Mutation landscape. * represents P < 0.05, ** represents P < 
0.01, *** represents P < 0.001, **** represents P < 0.0001, - represents no significant difference. 
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significant mutations in THCA [26]. IQGAP1, an 

integral player in various biological processes within 

the human body, plays a pivotal role in modulating cell 

adhesion, signal transduction, and cell division [27]. 

Prior investigations have implicated IQGAP1 in the 

invasion and metastasis of THCA [28]. Moreover, 

MYH10, a member of the protein-coding gene 

superfamily, not only participates in normal cellular 

physiological activities but also bears close association 

with cancer initiation and progression [29]. Although 

MYH10’s involvement in bladder cancer and lung 

cancer has been documented, its relationship with 

THCA remains unexplored. Furthermore, heightened 

expression of ACTN1 is intricately linked to tumor cell

 

 
 

Figure 12. Construction and verification of prognostic model. (A) LASSO coefficient map of the prognostic genes. (B) After ten cross-

verifications, the LASSO model of parameter selection is adjusted with minimum absolute shrinkage and selection. (C) Forest plot of the 
prognostic genes. (D) Heatmap of risk score. (E) Kaplan-Meier of high and low-risk group. (F) Predictive value of Cox prognostic model in 
THCA patients evaluated by ROC curves. (G) Box diagram of the prognosis genes expression in the high and low-risk groups. 
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motility, metastasis, and invasiveness [30]. Silencing 

ACTN1 expression has been demonstrated to impede the 

proliferation of hepatocellular carcinoma (HCC) [31]. 

ZHX2, recognized as a tumor suppressor gene, 

orchestrates lipid metabolism regulation, suppresses cell 

proliferation [32], and influences the immune 

microenvironment [33]. Notably, ZHX2 has been 

implicated in the occurrence of brain metastasis in 

THCA [34]. INF2, through its involvement in 

mitochondrial division, exerts effects on the proliferation 

and invasion of numerous tumors [35]. Furthermore, 

INF2 has been shown to inhibit THCA proliferation via 

the Hippo pathway [36]. ME1 primarily participates in 

lipid metabolism and tumor progression [37]. Although 

ME1 serves as a transcriptional target of thyroxine, its 

association with THCA remains unexplored [38]. 

PDLIM1, a cytoskeleton protein, interacts with actin 

stress fibers [39]. Studies have revealed diverse 

functions of PDLIM1 across various tumor tissues, 

wherein it can either impede epithelial-mesenchymal 

transition (EMT) and tumor cell infiltration and 

metastasis or promote tumor development [40]. Notably, 

PDLIM1 up-regulation has been observed in THCA 

[41]. Furthermore, we corroborated the findings related 

to DEDRGs in the GEPIA and HPA databases, which 

aligned with the existing literature. Additionally, 

analysis from the TIMER database revealed a robust 

correlation between DEDRGs and immune cells. 

Collectively, these results underscore the close 

association of DEDRGs with THCA and immune 

infiltration [23]. 

 

In our subsequent analysis, we employed functional 

enrichment analysis to delve into the potential biological 

functions and molecular mechanisms orchestrated by 

DEDRGs. The findings from this endeavor unveiled 

remarkable enrichments in pivotal pathways, including 

the MAPK, PPAR signaling pathway, and Proteoglycans 

in cancer. Among these pathways, the MAPK signaling 

pathway emerged as a central conduit bridging cell 

membrane receptors with nuclear events, playing a 

pivotal role in initiating and propelling various 

malignancies [42]. Notably, the strikingly elevated 

BRAF mutation rate, peaking at 76.2% in THCA, 

underscores its paramount importance in driving the 

progression of THCA by activating the MAPK signaling 

pathway [43]. Furthermore, the regulation mediated by 

PPAR, influencing thyroid peroxidase, thyroglobulin, 

and thyrotropin receptor gene promoters, facilitates the 

intricate process of thyroid cell differentiation [44]. 

These insights shed light on the intricate interplay 

between signaling pathways and genetic alterations, 

offering valuable perspectives into the molecular 

landscape of THCA pathogenesis [24–41]. 

 

 
 

Figure 13. Establishment of a nomogram model. (A) Nomogram model for evaluating the prognosis of THCA patients. (B) Multivariate 

Cox regression. (C) Calibration curve of nomogram model. (D) Kaplan-Meier of the high and low-risk groups in the validation cohort. * represents 
P < 0.05, ** represents P < 0.01, *** represents P < 0.001, **** represents P < 0.0001, - represents no significant difference. 
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The tumor microenvironment has garnered recognition 

as a crucial determinant influencing tumor initiation, 

progression, treatment response, and prognosis [45]. 

However, the intricate relationship between genes 

associated with the tumor microenvironment and THCA 

remains partially understood. Therefore, we embarked 

on a comparative analysis of immune cell infiltration 

between two distinct subtypes. Our findings unveiled 

that cluster C1, characterized by heightened DRGs 

levels, exhibited elevated immune cell infiltration, while 

cluster C2 demonstrated higher immune, estimate, and 

stromal scores. This led us to hypothesize that cluster 

C2 signifies an immune rejection type, whereas cluster 

C1 represents an immune inflammation type. 

Remarkably, immune checkpoint molecules TIGIT, PD-

L1, CTLA4, and CD274 displayed heightened 

expression in cluster C1. Hence, we conjectured that 

DEDRGs might modulate disulfidptosis and reshape the 

immune microenvironment, potentially offering 

therapeutic targets for THCA. 

 

Following the insightful Bayesian co-localization 

analysis, PDLIM1 and INF2 emerged as candidates 

collocated with THCA. However, the genetic 

correlation between THCA and the remaining five 

DEDRGs (IQGAP1, MYH10, ACTN1, ZHX2, ME1) 

did not find substantiation, possibly due to susceptibility 

to acquired confounding factors. Based on these 

compelling findings, we selected PDLIM1 and INF2 for 

experimental validation. Our results revealed that both 

the mRNA and protein expression levels of INF2 in the 

control group (FTC-133) were notably lower than those 

in the normal group, whereas the mRNA and protein 

expression levels of PDLIM1 in the control group 

(FTC-133) were markedly higher than those in the 

normal group (P < 0.05). These experimental 

validations provide robust confirmation of our study’s 

hypotheses [42–44]. 

 

The establishment of prognostic models represents a 

pivotal stride in effectively predicting the outcomes of 

tumor patients [46, 47]. In the realm of molecular 

characteristics, specialized models like the m1Ascore 

have been devised to assess individual patients’ m1A 

modification patterns [48]. Remarkably, our study 

pioneers a comprehensive analysis delving into 

potential therapeutic targets, mechanisms, and candidate 

therapeutic agents for THCA, with a focused 

exploration into disulfidptosis and the immune micro-

environment. Leveraging bioinformatics methodo- 

 

 
 

Figure 14. Relationship between risk scores and immune cell infiltration. (A) CD8+ T cells; (B) Memory B cells; (C) Activated 

memory CD4+ T cells; (D) Activated NK cells; (E) M0 macrophages; (F) Neutrophils; (G) M1 macrophages; (H) M2 macrophages; (I) Naïve B 
cells. 
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logies, we forecasted that interventions targeting 

DEDRGs, prognostic genes, and pathways such as 

MAPK and PPAR could hold transformative potential 

in THCA treatment by modulating disulfidptosis and 

the immune microenvironment. In comparison with 

prior prognostic features, our study’s prognostic model 

demonstrates a heightened AUC level in the 

verification set, signifying enhanced predictive 

accuracy. Moreover, the validation through Bayesian 

co-localization analysis and in vivo experiments 

further bolsters the reliability and precision of our 

findings. 

 

 
 

Figure 15. Verification of DEDRGs by Bayesian co-localization and experiment. (A–G) Bayesian co-localization analysis. (H) mRNA 
relative expression of PDLIM1 and INF2 (*P < 0.05). (I) Protein level of INF2 and PDLIM1 in the normal group and control group. 
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Nevertheless, it is imperative to acknowledge several 

inherent limitations in our study. Primarily, all our 

findings stem from publicly available databases, and our 

experimental validations were exclusively confined to 

in vitro settings. Thus, the imperative need for further in 

vivo experiments and additional functional assays to 

robustly authenticate our results cannot be understated. 

Secondly, the intricate mechanistic interplay between 

disulfidoptosis and the tumor microenvironment 

warrants deeper exploration and elucidation. Sustained 

research endeavors in these domains will be pivotal in 

augmenting our comprehension and propelling 

therapeutic strategies forward for THCA. Thirdly, the 

construction of a prognostic risk model for THCA based 

on immune correlation holds significant promise. Such 

a model could offer comprehensive insights into the 

survival rate and response to immunotherapy among 

THCA patients, underscoring the importance of future 

investigations in this direction [45–48]. 

 

CONCLUSION 
 

In our investigation, we adeptly delineated two distinct 

subtypes intricately associated with DRGs, thereby 

illuminating their unique infiltration patterns and 

divergent survival prognosis. This delineation provides 

crucial insights into the complex interplay between 

DRGs and THCA progression. Moreover, our findings 

underscore the potential regulatory role of DEDRGs in 

shaping the tumor immune microenvironment, notably 

through modulation of key signaling pathways such as 

MAPK and PPAR. These revelations not only deepen 

our understanding of THCA pathogenesis but also 

furnish a solid theoretical foundation for the 

development of innovative therapeutic strategies 

aimed at combatting this disease. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1 Consensus clustering analysis. (A) Represents the CDF curve when k = 2−10. (B) Represents the delta 

area fraction of the CDF curve when k = 2–10. (C) Represents the tracking chart when k = 2–10. (D) Represents the consensus values 
when k = 2–10. 
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Supplementary Figure 2. Differential expression and correlation analysis. (A) Heatmap of DEDRGs in cluster C1 and C2 subtypes. 

(B) Correlation analysis of DEDRGs in TCGA-THCA. (C) Heatmap of DEDRGs in GSE33630. (D) Correlation analysis of DEDRGs in GSE33630. 
* represents P < 0.05, *** represents P < 0.001, **** represents P < 0.0001, - represents no significant difference. 
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Supplementary Figure 3. Expression difference of the DEDRGs in the GEPIA database. Red represents tumor samples and gray 

represents normal tissues. 
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Supplementary Figure 4. Relationship between the DEDRGs and immune cell infiltration in the TIMER database. (A) FLNA; 

(B) IQGAP1; (C) MYH10; (D) ACTN1; (E) ZHX2; (F) INF2; (G) PDLIM1; (H) ME1. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Table 4 

 

Supplementary Table 1. Characteristic of the THCA patients in TCGA database. 

 TCGA 

No. of patients 507 

Age (%)  

 ≤45 268 (52.9) 

 >45 139 (47.1) 

Gender (%)  

 Female 371 (73.2) 

 Male 136 (26.8) 

Stage (%)  

 I 285 (56.2) 

 II 52 (10.2) 

 III 113 (22.4) 

 IV 55 (10.8) 

 NA 2 (0.4) 

TNM (%)  

 T  

 T1 144 (28.4) 

 T2 167 (33) 

 T3 171 (33.7) 

 T4 23 (4.5) 

 TX 2 (0.4) 

N  

 N0 231 (45.5) 

 N1 226 (44.6) 

 NX 50 (9.9) 

M  

 M0 283 (55.9) 

 M1 9 (1.79) 

 MX 214 (43.2) 

 NA 1 (0.01) 

Survival status  

 Median OS (day) 944 

Ending (%)  

 Survival 491 (96.8) 

 Death 16 (3.2) 

Abbreviations: T: primary tumor; N: regional lymph nodes; M: distant metastasis; NA not available. 
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Supplementary Table 2. Disulfidptosis-related genes (DRGs) in the study. 

Gene names 

AAAS 

ACTB 

ACTN1 

ACTN2 

ACTN3 

ACTN4 

ANP32E 

ARMC6 

ARNT 

ATG5 

ATXN10 

BOP1 

CAPZB 

CD2AP 

CHCHD3 

CHD4 

CNOT1 

DBN1 

DHX9 

DSTN 

EBLN2 

EPAS1 

FANCI 

FLNA 

FLNB 

FLNC 

GCN1L1 

GLUD1 

GTF2I 

GYS1 

HNRNPA3 

HNRNPH1 

HNRNPH2 

HNRNPH3 

HNRNPM 

HNRNPU 

INF2 

IPO4 

IPO7 

IQGAP1 

LGALS13 

LRPPRC 

ME1 

MRPS17 

MYH1 

MYH10 

MYH11 

MYH13 

MYH14 

MYH2 

MYH3 

MYH4 

MYH6 

MYH7 
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MYH7B 

MYH8 

MYH9 

MYL6 

MYL6B 

NCKAP1 

NDUFA10 

NDUFA11 

NDUFB10 

NDUFB11 

NDUFB6 

NDUFC1 

NDUFS1 

NDUFS2 

NIPBL 

NLN 

NSUN2 

NUBPL 

OXSM 

PCBP1 

PCBP2 

PCBP3 

PDLIM1 

PML 

PPIH 

PPM1F 

PRC1 

PRDX1 

RNH1 

RPA1 

RPN1 

RRP1 

RUFY1 

SAFB 

SAFB2 

SAMM50 

SART3 

SCO2 

SLC3A2 

SLC7A11 

SMPD4 

SPG20 

SQSTM1 

STRAP 

TARDBP 

TDP43 

TLN1 

TLN2 

TNKS1BP1 

TRIP6 

UBASH3B 

ZHX2 
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Supplementary Table 3. Real-time polymerase chain reaction primers. 

Gene Sequence (5′–3′) 

PDLIM1-F CTCCAACCTACTAATTCCGACCTTCAC 

PDLIM1-R ACGCACTCAACGGCTTATCACAC 

INF2-F CTCCAACCTACTAATTCCGACCTTCAC 

INF2-R ACGCACTCAACGGCTTATCACAC 

 

 

Supplementary Table 4. Information of Bayesian co-localization analysis. 
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