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INTRODUCTION 
 

Colon cancer (CC) is the leading cause of cancer-

related mortality worldwide, and it’s one of the 

common digestive system tumors [1]. Treatment 

options for CC include surgical tumor removal, 

chemotherapy, radiation therapy, and others [2]. The 

choice of treatment options depends on the stage and 
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ABSTRACT 
 

Background: Colon cancer (CC) is the most frequently occurring digestive system malignancy and is associated 
with a dismal prognosis. While super-enhancer (SE) genes have been identified as prognostic markers in several 
cancers, their potential as practical prognostic markers for CC patients remains unexplored. 
Methods: We obtained super-enhancer-related genes (SERGs) from the Human Super-Enhancer Database 
(SEdb). Transcriptome and relevant clinical data for colon cancer (CC) were sourced from the Gene Expression 
Omnibus (GEO) database. Subsequently, we identified up-regulated SERGs by the Weighted Gene Co-
expression Network Analysis (WGCNA). Prognostic signatures were constructed via univariate and multivariate 
Cox regression analysis. We then delved into the mechanisms of these predictive genes by examining immune 
infiltration. We also assessed differential sensitivities to chemotherapeutic drugs between high- and low-SERGs 
risk patients. The critical gene was further validated using external datasets and finally confirmed by qRT PCR. 
Results: We established a ten-gene risk score prognostic model (S100A11, LZTS2, CYP2S1, ZNF552, PSMG1, 
GJC1, NXN, and DCBLD2), which can effectively predict patient survival rates. This model demonstrated 
effective prediction capabilities in survival rates at 1, 3, and 5 years and was successfully validated using 
external datasets. Furthermore, we detected significant differences in immune cell infiltration between high- 
and low-SERGs risk groups. Notably, high-risk patients exhibited heightened sensitivity to four 
chemotherapeutic agents, suggesting potential benefits for precision therapy in CC patients. Finally, qRT-PCR 
validation revealed a significant upregulation of LZTS2 mRNA expression in CC cells. 
Conclusion: These findings reveal that the SERGs model could effectively predict the prognosis of CC. 

www.aging-us.com AGING 2024, Vol. 16, No. 11

9918

https://www.aging-us.com


www.aging-us.com 2 AGING 

location of the tumor and the overall condition of the 

patient. However, the 5-year survival rate of advanced 

high-grade CC patients is less than 10% [3]. It is 

crucial to effectively determine the prognosis of CC 

patients as well as to provide rational treatment 

options. Therefore, our objective was to create a 

prognostic model functioning as the prognostic marker 

for CC. 

 

Super-enhancers (SEs), an exceptional group of  

cis-regulatory elements, are characterized by their 

aggregation of multiple neighboring enhancers [4, 5]. 

They have been recognized as crucial oncogenic drivers 

for preserving the identity of cancer cells [6]. Aberrant 

SEs frequently assemble to activate proto-oncogenes 

or other genes vital for cancer cells, instigating 

tumorigenesis, promoting tumor proliferation, and 

enhancing the adaptability of cancer cells within the 

tumor microenvironment [7]. Suppression of the 

cellular machinery necessary for super-enhancer (SE) 

assembly and upkeep hinders oncogenic transcription, 

consequently impeding tumor growth [8]. More and 

more pieces of evidence show that SEs are effective 

biomarkers in cancer [9–11]. However, SEs as 

effective prognostic markers for CC patients remain 

unassessed. Consequently, it is crucial to investigate 

the possible molecular mechanisms and prognostic 

markers associated with CC by focusing on SEs. 

 

In this study, the GSE39582 and the Human Super 

Enhancer Database (SEdb) database [12] were utilized 

to analyze SE-related genes (SERGs) in CC and develop 

the prognostic model. Subsequently, we employed  

the TCGA-COAD dataset to validate the predictive 

efficacy of the model. Additionally, we delved into  

the correlation between the risk model and immune  

in CC. Moreover, we predicted chemotherapeutic  

drug sensitivity and prognosis for CC patients. These 

findings have the potential to differentiate high-risk 

patients, enhancing the opportunity for personalized 

therapy and thereby improving patient survival rates. 

 

METHODS 
 

Data source 

 

The GSE39582 dataset from the Gene Expression 

Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/) 

database was defined as the training set for COAD, 

which contains 566 patients with COAD and 19  

control population. The TCGA (Cancer Genome Atlas 

database, http://cancergenome.nih.gov) database was 

defined as the testing set for 467 COAD tissues and  

41 normal tissues. The SERGs were derived from the 

SEdb database for HCT116 and HT29 cell lines and  

are shown in Supplementary Table 1. 

Construction of WGCNA 

 

Weighted Gene Co-expression Network Analysis 

(WGCNA) is performed as a systematic biology 

algorithm designed to construct gene co-expression 

networks and elucidate gene correlations across multiple 

dimensions. In this study, we utilized the R package 

“WGCNA” to estimate the COAD modules of correlated 

genes. Before the analysis, outliers were filtered out 

using the cutreeStatic function found within WGCNA. 

Subsequently, with a soft threshold power of 6 (b = 6), 

we generated the adjacency matrix to optimally fit the 

network structure. Pearson correlations were calculated 

between gene expression levels to construct the 

correlation matrix of genes, which established the 

connectivity between the nodes. Utilizing a hierarchical 

clustering dendrogram of this matrix, we built a 

topological overlap matrix to segregate different 

modules that follow similar gene expression patterns. 

The module eigengene (ME) expression profiles were 

then identified by amalgamating the expression profiles 

of each module, aiming to uncover a link between ME 

and clinical status. Candidate modules demonstrating 

significant correlation coefficients with clinical traits 

were subsequently shortlisted. 

 

Enrichment analysis of SERGs 

 

The genes from positive correlation coefficient modules 

of COAD in WGCNA and SERGs were intersected and 

visualized by using the Jvenn. Then, we analyzed 

functional annotations of these shared genes using GO 

and KEGG enrichment analysis. 

 
Establish a prognostic risk model for SERGs 

 

Univariate and multivariate Cox analysis, as the 

important means of determining prognostic-related 

SERGs in COAD, were performed for identification. 

Then, using the prognostic-related prediction formulas 

obtained by multivariate Cox regression analysis, the 

prognostic model was constructed in the R survival 

package. Afterwards, the high- and low-risk groups 

were differentiated by Kaplan Meier (K-M) survival 

analysis. Subsequently, the predictive value of the 

prognostic model was evaluated by the receiver operating 

characteristic area (ROC). 

 
Immune profile analysis 

 

We conducted a series of analyses to identify the 

differences between high- and low-SERGs risk groups 

in immune-cell infiltration. The abundance of 28 

immune-cell types was determined using the ssGSEA. 

The Wilcoxon rank-sum test was applied to evaluate 

differences in immune cell proportions. 
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Single-cell analysis 

 

We obtained single-cell RNA sequencing (scRNA-seq) 

data of COAD patients from the GEO database 

numbered GSE200997 and performed analysis using 

the ‘Seurat’ package. Subsequently, we identified 

immune cell clusters using the ‘FindNeighbors’ and 

‘FindClusters’ functions. To evaluate the expression  

of key genes within the same type of immune cells 

between the tumor and normal groups, we utilized the 

‘FindAllMarkers’ function. 

 

Chemotherapeutic sensitivity  

 

To predict the sensitivity of chemotherapeutic drugs 

between high- and low-SERGs risk groups, we utilized 

the pRRophetic R package to project drug sensitivity 

values (IC50) by constructing a ridge regression model 

[13]. We selected several common anticancer drugs  

for this analysis, including camptothecin, docetaxel, 

gefitinib, gemcitabine, pazopanib, and sunitinib. 

 

Hub genes validation in CC 

 

To confirm the hub gene in CC, we performed  

the expression of ten genes on GSE39582 and  

TCGA-COAD via the Wilcoxon rank-sum test and 

ggplot2 with cutoff P-value < 0.05, respectively. The 

intersection of hub genes in the GSE39582 and 

TCGA-COAD was identified. The hub genes were 

identified using the GEPIA2 database based on 

“overall survival,” with the cutoff values determined 

using the “median” group. P < 0.05, P (HR) <  

0.05 were significant. Subsequently, we acquired 

immunohistochemistry (IHC) images of CC and 

normal tissues via the Human Protein Atlas (HPA) 

portal [14]. 

 
Cell culture 

 

CC cell lines (HCT116 and HT29 cells) and NCM460 

cells were acquired from the Cell Bank of the Chinese 

Academy of Sciences. HCT116, HT29, and NCM460 

cells were grown in the DMEM medium (10%-FBS) in 

a 37°C incubator with 5% CO2. 

 
qRT-PCR validation of the key gene 

 

We isolated the total RNA from cells via TRIzol 

reagent (Invitrogen, USA). For cDNA synthesis, a 

cDNA Synthesis kit (Invitrogen, Thermo Fisher 

Scientific Inc., USA) was performed to reverse the 

transcription reaction into cDNA. The relative mRNA 

levels were assessed by the 2−ΔΔCq calculation method 

and normalized by GAPDH mRNA expression. 

Primers were as follows: LZST2 forward primers: 

GGTGGCCCTATGACTTGG, reverse primers: 

AGCGGTGGGGAATGAAG. S100A11 forward 

primers: ATGGCAAAAATCTCCAGCCCT, reverse 

primers: TGTGAAGGCAGCTAGTTCTGTA. CYP2S1 

forward primers: GCGCTGTATTCAGGGCTCAT, 

reverse primers: CTTCCAGCATCGCTACGGTT. 

PSMG1 forward primers: TCCTTTCCTGAGA 

GCCCTAAAA, reverse primers: TGTTCTAGCAAT 

GGACAACACG. DCBLD2 forward primers: 

ATGTGGACACACTGTACTAGGC, reverse primers: 

CTGTTGGGATAGGTCTGTGGG. GAPDH forward 

primers: GGAAGCTTGTCATCAATGGAAATC, 

reverse primers: TGATGACCCTTTTGGCTCCC. 

 

Western blot assay 

 

CC cell lines (HCT116 and HT29 cells) and NCM460 

cells were lysed in ice-cold RIPA lysis buffer 

(Beyotime Inc., China, P0013B). The quantification 

of protein content was achieved by utilizing the  

BCA Protein Assay Kit (Epizyme Biotech, China, 

ZJ101). The proteins were resolved via SDS-PAGE 

and subsequently transferred onto PVDF membranes. 

To block non-specific binding, the membranes were 

incubated with a solution containing 5% milk. 

Subsequently, the membranes were incubated with 

|the corresponding primary antibodies overnight at 

4°C. The horseradish Peroxidase secondary anti-

bodies were applied and detected using an ECL 

solution (New Cell Molecular Biotech, China, 

P10200). Primary antibodies against LZTS2 (15677-

1-AP) and GAPDH (60004-1-Ig) were sourced from 

Proteintech. 

 

Statistical analysis 

 

Statistical analyses were conducted using R  

(version 4.3.1) and GraphPad Prism. The T-test was 

performed to reveal the statistical differences between 

the two groups and One-way ANOVA analysis was  

for comparisons involving multiple groups. Statistical 

significance was determined at P < 0.05. 

 

Data availability statement 

 

The raw data are encompassed within the article and 

supplementary material. 

 

RESULTS 
 

Identification of SERGs  

 

366 and 859 SERGs were identified in HCT116 and 

HT29 cell lines from the SEdb database, respectively. 

After removing the duplicates, a total of 974 SERGs 

were obtained. 
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Co-expression modules in LUAD and PAH 

 

To identify the module genes associated with the 

disease, 23 modules were generated in GSE39582 by 

WGCNA, and different colors represented different 

modules. Then, we mapped the heat map, which could 

assess the association between modules and the 

disease based on the Spearman correlation coefficient 

(Figure 1). Considering the association of SEs with 

gene expression in tumors, most of the related genes 

may probably function as oncogenes [15]. Given  

that SEs enrich transcription factors to enhance  

gene expression, we specifically selected the modules 

“lightgreen”, “darkgrey”, “lightyellow”, “magenta”, 

“royablue”, “cyan”, “brown”, “darkturquoise”, 

“greenyellow”, and “blue” as COAD-related modules, 

which were positively correlated with COAD 

(lightgreen: r = 0.09, p = 0.03, genes = 209; darkgrey 

module: r = 0.25, p = 2e−09, genes = 147; lightyellow 

module: r = 0.25, p = 1e−09, genes = 203; magenta 

module: r = 0.28, p = 1e−11, genes = 654; royablue 

module: r = 0.25, p = 1e−09, genes = 191; cyan 

module: r = 0.25, p = 7e−10, genes = 398, brown 

module: r = 0.29, p = 7e−13, genes = 1612, 

darkturquoise module: r = 0.3, p = 2e−13, genes = 1770, 

greenyellow module: r = 0.15, p = 4e−04, genes = 996, 

blue module: r = 0.21, p = 4e−07, genes = 169). 

 

Enrichment analyses of shared genes 

 

A total of 406 genes at the intersection of  

WGCNA positive-correlated modules and SERGs 

were considered to be connected with the pathogenesis 

of COAD (Figure 2A). GO and KEGG analyses were 

utilized to identify 406 genes’ biological functions and 

essential pathways. The results indicated that the 

biological process (BP) was mainly enriched in tube 

morphogenesis and vasculature development, etc. The 

cellular component (CC) was primarily enriched in 

focal adhesion, etc. The molecular function (MF) was 

especially involved in cell adhesion molecule binding, 

etc., and KEGG analysis was primarily related to 

Pathways in cancer and PI3K-Akt signaling pathway 

(Figure 2B). 

 

Establishment of the SERGs prognostic model 

 

To further assess the SERGs associated with the 

prognosis of COAD and construct the model, we 

initially conducted univariate Cox analysis, considering

 

 
 

Figure 1. Consensus module analysis of CC using WGCNA. (A) Scale-free topology model fit (R2 > 0.98) and mean connectivity. (B) 
Association between the gene modules. (C) Cluster dendrogram for CC. (D) Heatmap analysis of modules and clinical features in CC. 
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genes with P < 0.01 (Supplementary Table 2). The 

P-value of the model (S100A11, LZTS2, RASA3, 

CYP2S1, ETFB, ZNF552, PSMG1, GJC1, NXN, and 

DCBLD2) was 2.3608e-09, with an AIC of 2225.98  

by multivariate Cox analysis (Figure 3A). Even though 

the P-values for LZTS2, PSMG1, GJC1, NXN, and 

DCBLD2 exceed 0.05, it’s noteworthy that the model 

still exhibits the lowest AIC value among the tested 

models. We then proceeded to create a ten-gene SERGs 

model, which was formulated using the expression 

levels of each gene and their respective coefficients: 

risk score = (0.362746416 × S100A11) + (0.361912228 

× LZTS2) + (0.495106924 × RASA3) + (−0.284872577 

× CYP2S1) + (−0.274930212 × ETFB) + (−0.350131731 

× ZNF552) + (−0.138081346 × PSMG1) + (0.395225421 

× GJC1) + (−0.153361139 × NXN) + (0.203044412 × 

DCBLD2). Among the seven genes (S100A11, LZTS2, 

RASA3, GJC1 and DCBLD2) were classified as risk-

related genes (HR > 1), while CYP2S1, ETFB, ZNF552, 

PSMG1 and NXN were protective genes (HR < 1). The 

risk score classified patients into high- and low-risk 

groups using the median as the threshold. To validate 

the signature of SERGs, we calculated the risk scores  

of patients in the TCGA-COAD dataset. The survival 

status in the two groups is shown in Figure 3B and  

gene expression in Figure 3C. Patients in the high-risk 

group suffered the worse OS. The validation results 

were largely consistent with those obtained from the 

GSE39582 dataset: the high-risk group endured worst 

OS (Figure 3D). Additionally, the AUCs at 1, 3, and  

5 years for OS were 0.631, 0.684, and 0.681 in the 

GSE39582 dataset, respectively. The AUCs for OS  

at 1, 3, and 5 years were found to be 0.681, 0.702,  

and 0.633 in the TCGA-COAD dataset, respectively 

(Figure 3E). 

 

Immune cell infiltration with SERGs risk group 

 

We investigated the correlation between SERGs risk 

score and immune cell infiltration by ESTIMATE 

algorithms and ssGSEA. SERGs high-risk group had 

greater ESTIMATE score, Immune score, and Stromal 

score levels (P < 0.001) (Figure 4A). ssGSEA analysis 

revealed that the high-risk group had significantly lower 

levels of activated CD8 T cells, CD56 bright natural 

killer cells, CD56 dim natural killer cells, gamma delta 

T cells, memory B cells, monocyte, Type 17 T helper 

cells than those in the low group. However, the levels of 

 

 
 

Figure 2. SERGs screening and function enrichment analysis. (A) Identification of pivotal SERGs in COAD. (B) GO and KEGG analysis 

of SERGs. 
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effector memory CD8 T cells, Macrophages, Mast cells, 

natural killer T cells, natural killer cells, regulatory T 

cells, and Type 1 T helper cells were significantly 

higher than those in the low group (Figure 4B). The 

immune cells assessment between the two groups is 

shown in Figure 4C. Between the 28 immune cells, 

macrophage was positively correlated with myeloid-

derived suppressor cells (r = 0.87) and regulatory T 

cells (r = 0.82) (Figure 4D). 

 

Furthermore, the correlation analysis conducted on the 

ten biomarkers and the immune cells indicated a strong 

 

 
 

Figure 3. Identification and validation of the ten-SERGs risk model. (A) The forest plot of ten-SERGs prognostic model. The risk 

score distribution, survival status, and heat map of ten SERGs in (B) training set and (C) testing set. (D) Patients in low-risk groups had 
longer OS in the training set and testing set. (E) The ROC analysis of the SERGs risk model in the training set and testing set. 
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association between ZNF552 and S100A11 with immune 

cells (Figure 4E). The risk score was positively correlated 

with regulatory T cells, immature B cells and natural 

killer cells, and negatively correlated with memory B 

cells and Type 17 T helper cells (Figure 4F). These 

findings demonstrate the significant difference between 

the two groups in the immune microenvironment and are 

closely associated with ZNF552 and S100A11. 

 

 
 

Figure 4. Analysis of immune cell infiltration with SERGs risk group. (A) The ESTIMATE score, Immune score, and Stromal score 

between high- and low- SERGs risk groups were compared. (B) Violin diagram of 28 type immune cells in two groups. (C) Immune cells 
assessment between two groups. (D) Analysis of correlation in 28 type immune cells. (E) Correlation analysis of ten prognostic biomarkers 
(S100A11, LZTS2, CYP2S1, ZNF552, PSMG1, GJC1, NXN and DCBLD2) and immune cells. (F) Correlation analysis of risk score and immune cells. 
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Single-cell analysis 

 

The following major cell types were characterized: CD8 

+ T cells, CD4 + T cells, Plasma cells, epithelial cells, 

macrophages, B cells, Goblet cells, Natural killer cells, 

fibroblasts and endothelial cells (Figure 5A). S100A11 

was mainly distributed in macrophages, endothelial 

cells, and fibroblasts. LZTS2 was mainly distributed in 

endothelial cells and fibroblasts (Figure 5B, 5C). 
 

SERGs were predictive to chemotherapy 
 

We employed the pRRophetic algorithm to estimate 

IC50 values, enabling the prediction of distinct 

chemotherapy responses between high- and low-SERGs 

risk groups. Based on the GSE39582 database, we 

found that the high-SERGs risk group had a low IC50  

of the anticancer drugs compared to high-SERGs risk 

group such as docetaxel (P < 0.02), gefitinib (P < 0.001), 

pazopanib (P < 0.001), sunitinib (P < 0.001), which 

means that the above drugs were more sensitive to the 

high-SERGs risk group (Figure 6). 
 

Identification of key gene expression in COAD 
 

To further identify the key gene, we analyzed the 10 genes 

between cases and controls on GSE39582 and validation 

on the TCGA-COAD dataset. Eight genes were selected, 

including S100A11, LZTS2, CYP2S1, ZNF552, PSMG1, 

GJC1, NXN and DCBLD2 (Figure 7A). Meantime, 

S100A11, LZTS2, CYP2S1, PSMG1 and DCBLD2 were 

found on validation cohorts TCGA-COAD dataset (Figure 

7B). Finally, we found that the five genes (S100A11, 

LZTS2, CYP2S1, PSMG1 and DCBLD2) were up-

regulated in both GSE39582 and TCGA-COAD datasets 

with P < 0.05. Then, we performed qRT-PCR and found 

that LZTS2 was significantly up-regulated in HCT116  

and HT29 cell lines compared to normal NCM460  

cells (Figure 7C). The expression of S100A11, CYP2S1, 

PSMG1, and DCBLD2 were inconsistent with predicted 

results. Specifically, the five genes were queried in the 

GEPIA2 database, and LZST2 was selected based on 

“overall survival.” (Supplementary Figure 1). Notably,  

the WB experiment showed that the levels of LZTS2 

decreased in HCT116 and HT29 cell lines than in 

NCM460 cells (Supplementary Figure 2). The high 

LZTS2 expression was related to an unfavorable OS by 

prognostic analysis (Figure 7D). Finally, the immuno-

histochemical findings retrieved from the HPA database 

demonstrated elevated LZTS2 protein expression within 

the CC tissue (Figure 7E). 

 

DISCUSSION 
 

Colon cancer is the common cause of cancer-related 

fatalities, and its occurrence has steadily risen in recent

 

 
 

Figure 5. Single-cell analysis. (A) 10 types of cells were clustered. (B) The ten identified SERGs markers expressions were identified in CC 
single-cell clusters. (C) A bubble plot was employed to visually represent the gene expression characteristics. 
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Figure 6. The pRRophetic algorithm predicted the IC50 values for six anti-cancer drugs. 

 

 
 

Figure 7. Identification of LSZT2 mRNA expression. (A) The expressions of ten genes in discovery cohorts. (B) The expression of ten 

genes in validation cohorts. (C) The LSZT2 expression level in NCM460 cells and CC cell lines. (D) The prognostic analysis of LSZT2 in CC 
patients. (E) IHC staining of LSZT2 in normal and CC tissues from the HPA database. 
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years. The acknowledged tumor-promoting potential of 

SEs makes them a prospective target for immunotherapy 

[16, 17]. Moreover, SE has been reported to influence the 

development of malignancies, and SERGs can function 

as valuable prognostic markers [18]. Nevertheless, 

clinical applications remain challenging because of the 

absence of effective biomarkers. At the same time, few 

studies have explored the link between SREGs and CC. 

This challenge has prompted us to explore novel SERGs 

in CC. 

 

In the current work, we used WGCNA to identify  

8245 genes in CC, 406 of which overlapped with  

SEs. GO enrichment analysis revealed that BP  

was mainly enriched in tube morphogenesis and 

vasculature development, etc. CC was mainly enriched 

in focal adhesion, etc. MF was mainly enriched in cell 

adhesion molecule binding, etc. KEGG analysis was 

primarily related to Pathways in cancer and PI3K-Akt 

signaling pathway, etc. The PI3K/Akt/mTOR signaling 

pathway is a crucial component in the process of 

colorectal carcinogenesis, playing significant roles not 

only in the development of drug resistance but also  

in the initiation of metastasis in colorectal cancer  

[19]. Subsequently, we established and validated a ten-

SERGs prognosis mode. The effectiveness of this model 

was further confirmed using verification datasets for 

the first time. The outcomes of external validation 

align with the previous findings, underscoring the 

robust predictive performance of the prognostic 

signature. 

 

In this study, we noted that immune cell  

infiltration was notably more abundant in the high- 

risk SERGs group, such as memory CD8 T cells, 

Macrophages, Mast cells, natural killer cells, etc.  

The efficacy of most immunotherapies relies on the 

substantial infiltration of CD8+ T cells within the 

tumors [20–22]. Meanwhile, SE-associated lncRNAs 

are involved in the tumor immune microenvironment 

[23]. In addition, macrophages and natural killer cells 

play a crucial role in exerting an anti-cancer effect in 

tumor immunotherapy [24–27]. These findings imply 

that the prognostic model might serve as an indicator 

of immunocyte infiltration levels in two risk groups, 

potentially influencing patient overall survival through 

its impact on immunotherapy. Interestingly, high-risk 

CC patients were more sensitive to docetaxel, gefitinib, 

pazopanib, and sunitinib than low-risk patients. The 

combination of chemotherapy and immunity has 

become a trend in treating tumors. Docetaxel can 

potentially enhance anti-tumor efficacy by increasing 

the secretion of HMGB1 and CXCL11, consequently 
promoting the recruitment of CD8+ T cells into  

the tumor microenvironment [28]. Gefitinib, when 

combined with an immunostimulatory nanocarrier, 

exhibits greater efficiency in suppressing lung tumor 

development. This combination induces an immune-

active microenvironment characterized by a higher 

presence of functional CD8 T cells and reduced 

infiltration of regulatory T cells [29]. In response,  

we present a promising therapeutic approach that 

combines conventional chemotherapy, natural products, 

and targeted immunotherapy directed at SERGs to 

enhance the infiltration of CD8+ T cells into tumors 

and restore sensitivity in high-risk SERGs-positive 

tumors to existing T-cell-based immunotherapies. 

Nevertheless, further research is required to develop 

synergistic treatment strategies. 

 

We verified seven ten genes in the discovery  

and validation cohort to further identify the key  

gene for CC. Interestingly, our results showed that  

the five genes (S100A11, LZTS2, CYP2S1, PSMG1 

and DCBLD2) were up-regulated in both GSE39582 

and TCGA-COAD datasets with P < 0.05. Specifically, 

the five genes were queried in the GEPIA2 database, 

and LZST2 was selected based on “overall survival.” 

LZTS2 was significantly up-regulated in HCT116  

and HT29 cells compared to normal NCM460  

cells through PCR experiment. Notably, the WB 

experiment showed that the levels of LZTS2 decreased 

in HCT116 and HT29 cell lines than in NCM460  

cells (Supplementary Figure 2). We found that the 

expression levels of LZTS2 mRNA were not consistent 

with their protein level in this study. Following the 

process of transcription, mRNA molecules experience 

a complex array of interconnected steps that ultimately 

lead to their translation into functional proteins. 

Nonetheless, the mRNA abundance of the particular 

gene does not always have a linear correlation with  

the protein expression of its translation product  

[30]. Gene expression is subject to a multitude of 

regulatory mechanisms. Both transcriptional and  

post-transcriptional controls, as well as translational 

and post-translational modulations, contribute to the 

ultimate expression of proteins [31, 32]. Furthermore, 

the levels of mRNA may not align with the levels  

of protein expression because of various factors, 

including the decay of mRNA, the breakdown of 

proteins, alterations in protein folding, and other 

regulatory influences [33, 34]. Consequently, this could 

account for the discrepancies between the expression 

levels of LZTS2 mRNA and its corresponding protein 

in our investigation. Moreover, it reported that the 

translation of LZTS2 was reduced in colorectal cancer 

[35]. Therefore, when it comes to disease prognosis, 

we need to take into account differences in both  

gene and protein levels. Some inhibitors targeting  
the translation level can also be developed in the 

course of clinical treatment of CC. The LZTS2 gene  

is on chromosome 10 at 10q24.3 [36]. It as a tumor 
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suppressor gene, with aberrant expression implicated 

in the initiation and progression of certain cancers  

[37]. The removal of LZTS2 enhances vulnerability  

to tumor development [38]. LZTS2 has emerged as a 

novel prognostic biomarker for clear cell renal cell 

carcinoma and laryngeal squamous cell carcinoma [39, 

40]. Nevertheless, the effects of LZTS2 in CC remain 

unexplored, which necessitates further investigations. 

 

Nevertheless, this study has several limitations. 

Firstly, it relied on publicly available sequencing data 

with a relatively small sample size. Consequently, 

validating our prognostic model based on SERGS-

related features in more extensive clinical trials is 

imperative. Second, cross-validation at the proteomic 

level is essential to ensure applicability in clinical 

settings. Thirdly, we lack experiments to ascertain the 

specific stage of CC at which LZTS2 is most effective. 

Utilizing the GEPIA2 database, we observed increased 

levels of LZTS2 in stage III CC. However, there was 

no significant variance in LZTS2 levels across 

different stages (Supplementary Figure 3). Certainly, 

we intend to continue our research. We plan to  

collect blood and tissue samples from CC patients at 

various stages to analyze LZTS2 expression, aiming  

to determine the pivotal stage in COAD development 

associated with LZTS2 expression. Additionally,  

there is currently no direct evidence demonstrating  

the influence of LZTS2 on prognosis via immune 

infiltration, and the underlying mechanisms remain 

unknown. Therefore, in future studies, we aim to 

employ flow-based techniques to elucidate the impact 

of LZTS2 inhibition or over-expression on immune 

cell distribution in vivo. Furthermore, we will employ 

immunohistochemistry to assess the distribution of 

immune cells in LZTS2 knockout nude mice models  

of CC. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Identification of key gene. (A) The LSZT2 expression level in NCM460 cells and CC cell lines. (B) The prognostic 

analysis of LSZT2 in CC patients. 

 

 

 
 

Supplementary Figure 2. The expression of LZTS2 in NCM460 cells and CC cell lines through WB analysis. 

 

 

 
 

Supplementary Figure 3. The level of LZTS2 in different stages in CC through the GEPIA2 database. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Table 1. 

 

Supplementary Table 1. The list of the SERGs from the SEdb for CC HCT116 and HT29 cell lines. 

 

Supplementary Table 2. Genes with P < 0.01 in the univariate analysis. 

 p-value HR 

S100A11 0.004343611 1.487508743 

BTBD19 0.00089113 1.45870721 

LZTS2 0.000522237 1.807077409 

ACSL5 0.001001566 0.743193629 

ITGB1 0.001205038 1.437819296 

PPFIBP2 3.84E-06 0.56669651 

FUT4 0.001908012 0.792675032 

RASA3 0.000239138 1.953158299 

HNF1B 0.002213428 0.633892564 

PRR15L 1.30E-05 0.728492767 

SLC25A10 0.008165605 0.696385056 

GATA6 0.001019726 0.693431733 

JUNB 0.006129202 1.423368894 

RHPN2 8.95E-05 0.6398474 

CEBPA 0.000233095 0.728040599 

CYP2S1 0.006454524 0.809237313 

ETFB 0.004902666 0.728385606 

ZNF552 0.003001983 0.624446982 

SPATA2 0.001066697 0.674213999 

ETS2 0.005831722 0.783848938 

PSMG1 0.009291438 0.79613124 

SPRY4 0.007014512 1.475598899 

ABLIM3 0.005552087 1.37781399 

REPIN1 0.002972757 0.674837116 

PRR15 0.001433493 0.789788149 

SYBU 0.001660871 0.782693099 

PLEC 0.00371291 1.522814194 

ADORA2B 0.006341077 0.81708598 

GJC1 0.006357807 1.726527912 

NXN 0.009991729 1.193947245 

GADD45B 0.000771276 1.344235954 

WWTR1 0.004248447 1.349251887 

DCBLD2 7.00E-07 1.614855247 

ANGPT2 0.001023235 1.311722989 
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